九年级上册数学23.2.1 中心对称
人教版数学九年级上册..中心对称课件PPT优秀课件
练习:
• 1.下列说法中正确的有( c )
A.全等的两个图形的两个图形全等 D.旋转后能够重合的两个图形成中心对称
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册23.2.1中心对 称课件
(1)如图1,把其中一个图案绕点O旋转180°,你 有什么发现?
(2)如图2,线段AC, BD相交于点O,OA=OC, OB=OD.把 △OCD绕点O旋转180°,你有 什么发现?
重合
重合
O
B
(2) C
人教版数学九年级上册23.2.1中心对 称课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册23.2.1中心对 称课件
练习
• 3.已知如图所示,△AOB与△COD关于点O 成中心对称,连接BC,AD.
(1)求证:四边形ABCD为平行四边形;
(2)若△AOB的面积为15 cm2,求四边形 ABCD的面积.
人教版数学九年级上册23.2.1中心对 称课件
中心对称的作法: 人教版数学九年级上册23.2.1中心对称课件
C’ A
B’
O
B
A’ C
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
练习
• 1.如图所示,在下列四组图形中,右边图形 与左边图形成中心对称的有_(_1_)(_2.)(3)
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
23.2.1中心对称作图方法
课堂练习
〔难点稳固〕
变式:当对称中心的位置比拟特殊的时候:1、在图形内;2、在图形某个顶点上。
小结
总结中心对称作图方法。
解:第一步、分别作点A,点B关于点O的 中心对称点A′,B′;
第二步、连接A′B′,线段A′B′既为线段AB关于点O的中心对称图形。
例3、如图,选择点O′D′。
解:第一步、:分别作点A、点B、点C、点D关于点O的 中心对称点A′、B′、C′、D′,
难点教学方法
1.通过动画演示作图过程
教学环节
教学过程
导入
中心对称的定义。
知识讲解
〔难点突破〕
例1、如图,选择点O为对称中心,画出 点A关于点O的中心对称点A′。
解:连接AO,在AO的延长线上截取OA′=OA,点A′既为点A关于点O的对称点。
例2、如图,选择点O为对称中心,画出 线段AB关于点O的中心对称线段A′B′。
教师姓名
米存
单位名称
填写时间
学科
数学
年级/册
九年级上册
教材版本
人教版
课题名称
中心对称的作图方法
难点名称
中心对称的作图操作
难点分析
从知识角度分析为什么难
知识点本身内容复杂:根据要求作出不同图形的中心对称图形
从学生角度分析为什么难
学生抽象逻辑思维较弱,理解困难:学生的观察分析、归纳能力,感受中心对称美,开展学生的作图能力。
人教版九年级数学上册23.2.1 中心对称 课件
23.2 中心对称
23.2.1 中心对称
复习回顾
定义
在一个平面图形绕平面内某一点O转动 一个角度,叫做图形的旋转.
旋 三要素 转
旋转中心 旋转方向 旋转角
性质 对应点到旋转中心的距离相等
对应点与旋转中心所连线段的夹角等于旋转角
旋转前、后的图形全等
新课导入 思考
问题1:如图,把其中一个图案绕点O旋转 180°,你有什么发现?
2. 图中的两个四边形关于某点对称,找出 它们的对称中心.
解:由于旋转中心在任意
两个对称点所连的线段上,
.
所以画出两条相交连线就
O
可以确定对称中心. 如图
所示,点O即所找的点.
巩固训练
1. 下列四组图形中,成中心对称的有( C )
A. 1组
B. 2组
C. 3组
D. 4组
2. 下列说法中,关于中心对称的描述不正确的是( A ) A. 把一个图形绕着某一点旋转,如果它能与另一个 图形重合,那么就说这两个图形中心对称
知识点三 作已知图形关于某一点对称的图形
例 1 (1)如图,选择点 O 为对称中心,画出点 A 关于点 O 的对称点 A′.
解:第一步:连接 AO,并延长; 第二步:在 AO 的延长线上截取OA′=OA.
A
A'
O
点A′就是所求作的点.
(2)如图,选择点 O 为对称中心,画出与 △ABC 关于点 O 对称的△A′B′C′.
1.中心对称的两个图形,对称点所连
线段都经过对称中心,而且被对称中心
所平分. 即:对称中心在对称点的连线上,
对称中心到对称点的距离相等.
2.中心对称的两个图形是全等图形.
人教版九年级数学上册:23.2.1中心对称(教案)
-理解中心对称的实质:学生往往容易将中心对称与轴对称混淆,需要通过实例讲解和练习,使学生明确两者的区别。
-判断中心对称图形:学生可能在判断复杂图形是否为中心对称图形时遇到困难,需要教授一些识别技巧和辅助方法。
-应用中心对称解决实际问题:将中心对称应用于实际问题解决时,学生可能不知如何下手,需提供具体的案例和指导。
-中心对称在图案设计中的应用:学生可能缺乏创新意识,难以独立设计出具有中心对称美的图案。
举例:
-对于难点的突破,可以通过以下方法:
1.对比中心对称和轴对称,通过直观演示和图例分析,强化学生对中心对称实质的理解。
2.提供一系列图形,指导学生通过观察、折叠、标记等方法判断其是否为中心对称图形。
3.设计一些实际问题,如平面坐标系的图形变换、建筑物布局等,指导学生运用中心对称的性质进行求解。
-掌握中心对称的性质:中心对称图形的每一点关于对称中心都有对应的另一点,且两点之间的线段被对称中心平分。
-学会识别中心对称图形:能够识别常见的中心对称图形,如正方形、圆形、线段等。
-应用中心对称进行图形变换:掌握如何利用中心对称对图形进行旋转、翻折等变换。
举例:讲解中心对称的定义时,可以通过实际操作教具或多媒体演示,让学生直观感受中心对称的过程。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如中心对称与轴对称的区别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题,如如何在坐标平面上找到对称中心。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过折叠和旋转正方形,观察中心对称的基本原理。
人教版数学九年级上册23.2.1中心对称教学设计
1.教学活动:教师引导学生回顾本节课所学内容,总结中心对称的定义、性质和寻找对称中心的方法。
2.归纳要点:
-中心对称是平面几何中的一种重要对称性;
-中心对称图形具有独特的性质,如对称中心唯一、对应点距离相等等;
-寻找对称中心的方法有观察法、解析法等;
-中心对称在生活中的应用广泛,如设计图案、解决实际问题等。
(二)过程与方法
1.引导学生通过观察、思考、讨论的方式,发现中心对称图形的特点和性质;
2.设计丰富的教学活动,如小组合作、动手操作等,让学生在实践中掌握中心对称的知识;
3.利用现代教育技术手段,如多媒体课件、网络资源等,直观演示中心对称的过程,帮助学生形成清晰的认识;
4.引导学生运用中心对称的知识解决实际问题,提高学生解决问题的能力和创新意识。
2.学生在寻找对称中心、判断中心对称图形时的思维方法,帮助他们建立正确的思维模式;
3.学生在解决实际问题时,对中心对称知识的应用能力,引导他们运用所学知识解决具体问题;
4.针对不同学生的学习特点和能力水平,制定合适的教学策略,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
2.提出问题:这些图案有什么共同之处?它们是如何形成的?
3.学生回答:图案通过对称轴进行折叠或旋转,两边完全一致。
4.引入新课:今天我们将学习一种新的对称性——中心对称。
(二)讲授新知
1.教学活动:教师引导学生回顾已学的轴对称知识,然后介绍中心对称的定义和性质。
2.讲解中心对称的定义:在平面内,存在一个点,使得该点与平面内任意一点关于这个点对称,这样的对称性称为中心对称。
-总结反馈:对本节课的内容进行总结,了解学生的学习情况,针对问题进行反馈和指导。
23.2.1 中心对称
23. 2 . 1 中心对称
知 识 管 理
数学
人教版九年级上册
课件目录
首
页
末
页
知 识 管 理
1.中心对称的概念 180° ,如果它能够 中心对称:把一个图形绕着某一个点旋转_______ 与另一个图形________ 重合 ,那么就说这两个图形关于这 中心 对称,这个点叫做____________ 对称中心 . 个点对称或_______
数学
人教版九年级上册
课件目录
首
页
末
页
2.如图23-2-9,已知▱ABCD的对角线BD=4 cm,将▱ABCD绕
其对称中心O旋转180°,则点D所转过的路径长为 ( C )
图23-2-9 A.4π cm C.2π cm B.3π cm D.π cm
【解析】 点D所转过的路径长是以O为圆心,以2 cm为半径的半 圆,圆周长为4π cm,所以半圆弧长为2π cm.
∴A1,A2是以点O为对称中心的对称点.
数学
人教版九年级上册
课件目录
首
页
末
页
6.在8×8的正方形网格中建立如图23-2-13所示的平面直角坐
标系,已知A(2,4),B(4,2).C是第一象限内的一个格点, 由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰 三角形.
图23-2-13
数学
人教版九年级上册
数学
人教版九年级上册
课件目录
首
页
末
页
3.如图23-2-10,菱形ABCD与菱形EFGH的形状、大小完全相 同.
图23-2-10
数学
人教版九年级上册
课件目录
首
02-第二十三章23.2.1中心对称
23.2.1 中心对称
(2)点D的位置共有三种可能.如图:
栏目索引
23.2.1 中心对称
栏目索引
1.点A和点B的坐标分别为(0,2),(1,0),若将△OAB绕点B顺时针旋转180° 后,得到△O'A'B,则点A的对应点A'的坐标是 ( ) A.(0,2) B.(2,2) C.(-2,2) D.(2,-2)
图23-2-1-6
23.2.1明中的应用 例2 如图23-2-1-7,在△ABC中,∠A=90°,D为BC的中点,DE⊥DF,DE交 AB于点E,DF交AC于点F,试探索线段BE,EF,FC之间的数量关系.
图23-2-1-7
23.2.1 中心对称
解析 FC2+BE2=EF2.理由如下: ∵D为BC的中点, ∴BD=DC. 作△BDE关于点D对称的△CDM,如图23-2-1-8所示, 由中心对称的性质可得△BDE≌△CDM. ∴CM=BE,MD=DE,∠DCM=∠B. 又∵∠B+∠ACB=90°, ∴∠DCM+∠ACB=90°,即∠FCM=90°. 连接FM,在△FME中,MD=DE,FD⊥ME, ∴FM=FE. 又∵在Rt△FCM中,FC2+CM2=FM2,
答案 D 如图所示,点A和点B的坐标分别为(0,2),(1,0),∴OA=2,OB=1, ∠AOB=90°.将△OAB绕点B顺时针旋转180°后,得到△O'A'B,∴O'B=OB =1,O'A'=OA=2,∠A'O'B=90°,∴点A的对应点A'的坐标为(2,-2).
23.2.1 中心对称
栏目索引
图23-2-1-3
23.2.1 中心对称
人教版九年级上册23.2.1中心对称课件 (共38张PPT)
O
重合
ቤተ መጻሕፍቲ ባይዱ
B
(2) C
重合
概念
把一个图形绕 着某一个点旋 B’
A’
转180°,如果
O
它能够与另一 C’
C
个图形重合,那
么就说这两个 图形关于这个
B A
点对称,也称这
这个点叫作对称中心
两个图形成中
心对称
2个图形中的对应点叫做对称点
位够定置 重理两关合个系,1 图。所形从以图关关定这形于于义两是中中可个心全心知图对,形对等称关一称形,于定的。是中全两指心等个两对。个称所图的以形两有之个:间图的形形必状须、能
观察下面的图形,你有什么发现?
观察下面的两个图形你有什么发现?
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
灵活运用,体会内涵
1、点的中心对称点的作法
以点O为对称中心,作出点A的对称点A′;
AO
A′
点A′即为所求的点
2、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
人教版九年级数学上册23.2.2.1《中心对称》教案
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
人教版数学九年级上册23.2.1《中心对称》教案
人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.重点:中心对称的概念和性质。
2.难点:中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。
六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。
2.学具准备:学生自带直尺、圆规、三角板。
七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。
同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。
3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。
教师巡回指导,及时纠正错误,帮助学生巩固知识。
4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。
同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。
5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。
人教版九年级数学上册23.2.1《中心对称》说课稿
人教版九年级数学上册23.2.1《中心对称》说课稿一. 教材分析人教版九年级数学上册第23.2.1节《中心对称》是整个初中数学知识体系中的一部分,主要介绍中心对称图形的概念及其性质。
这一节内容在教材中的位置是在学生已经掌握了平面几何的基本知识的基础上进行教学的,为学生后面学习对称变换、坐标与图形的变换等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的变换、对称性等概念有一定的了解。
但学生在学习这一节内容时,可能会对中心对称图形的概念和性质的理解存在一定的困难,因此,在教学过程中,需要教师耐心引导,通过大量的实例让学生深入理解中心对称图形的概念和性质。
三. 说教学目标1.知识与技能目标:让学生掌握中心对称图形的概念,理解中心对称图形的性质,能运用中心对称的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生良好的数学素养,使学生感受到数学的美。
四. 说教学重难点1.教学重点:中心对称图形的概念及其性质。
2.教学难点:中心对称图形的性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的几何直观能力和逻辑思维能力。
2.教学手段:利用多媒体课件、几何画板等软件,展示中心对称图形的性质和变换过程,增强学生对知识的理解和记忆。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,引导学生关注对称性,激发学生学习兴趣。
2.探究中心对称图形的概念:让学生通过观察、操作,发现中心对称图形的特征,从而引出中心对称图形的定义。
3.理解中心对称图形的性质:引导学生通过小组合作学习,探索中心对称图形的性质,教师进行讲解和总结。
4.应用中心对称图形的性质:让学生通过解决一些实际问题,运用中心对称图形的性质,巩固所学知识。
23.2.1 中心对称图形(数学人教版九年级上册)
2. 知道中心对称图形和两个图形成中心对称的联系与区别.
思考
中心对称图形的概念
练一练
在以下的图案中,哪些是中心对称图形?
不是
不是
是
中心对称与中心对称图形的比较
名称
中心对称
中心对称图形
知识小结
1. 中心对称图形的概念;
把一个图形绕着某一个点旋转180°,如果旋 转后的图形能够与原来的图形重合,那么这个图 形叫做中心对称图形,这个点就是它的对称中心.
2. 中心对称与中心对称图形的比较.
区别
把一个图形绕着某一点旋 转180°,如果它能够与另 一个图形重合,那么就说 这两个图形关于这个点对 称或中心对称
如果一个图形绕着某一个 点旋转180°后的图形能够 与原来的图形重合,那么 这个图形叫做中心对称图 形
联系
如果将中心对称的两个图形看成一个图形,那么这个 图形就是中心对称图形;一个中心对称图形,如果把 对称的部分看成两个图形,那么它们又关于中心对称.
23.2.1 中心对称与中心对称图形 课件(人教版九年级上)
∠A′C′B′,∠AOB=∠A′OB′.
【跟踪训练】 1.下列说法:①成中心对称的两个图形形状、大小一样; ②成中心对称的两个图形必须重合;③形状、大小一样的两个 图形成中心对称;④旋转后能够重合的两个图形成中心对称. 其中说法正确的个数是( B ) A.0 个 B.1 个 C.2 个 D.3 个 解析:成中心对称的两个图形经过旋转后能够重合,②不 正确;绕点旋转180°后能够重合的两个图形才成中心对称,当
(1)对称中心是______,点 A 的对称点是______; (2)指出图中相等的线段与相等的角(各写 4 组).
思路点拨:中心对称是旋转的特例,如果两个图形的对称 点连成的线段都经过某一点且被该点平分,那么这两个图形关 于这一点成中心对称. 解:(1)O A′ (2)AB=A′B′,BC=B′C′,AC=A′C′,OA=OA′, ∠BAC=∠B′A′C′,∠ABC=∠A′B′C′,∠ACB=
图形. 3.中心对称图形的概念 把一个图形绕着某一个点旋转 180°,如果旋转后的图形能 中心对称图形. 够与原来的图形重合,那么这个图形叫做____________
4.中心对称与中心对称图形 探究:如图 23-2-1 在
ABCD 中,
图 23-2-1
△COD 关于点 O 成中心对称,△AOD 与 (1) △AOB 与________ △COB 关于点 O 成中心对称; ________ (2)△ABD 与________ △CDB 关于点 O 成中心对称,由这两个成中 中心对称图形 . 心对称的三角形组成的 ABCD 是_____________ 归纳:中心对称是指两个图形间的位置关系,中心对称图 形是指一个图形所具有的性质.
图 D12
CA′C′A.
【跟踪训练】 3.如图 23-2-5,△ABC 与△PMN 是关于某点成中心对称
23.2.1中心对称
教师:邓登江 沙寨中学
• 教学目的:1.理解中心对称的概念及性质 • 2.中心对称性质的应用 教学重点:中心对称图形的画法 教学难点:中心对称性质的应用
观察 (1)把其中一个图案绕点O旋转180°,你有什么发现?
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD 绕点O旋转180°,你有什么发现?
重合
重合
(3)如图,线段AC,BD相交于点O,OA=OC, OB=OD,把△OCD绕点O旋转180°,你有什 么发现? D
A
O
C B
可以发现,△OCD与△OAB重合 像这样,把一个图形绕着某一个点旋转180°,如 果它能够与另一个图形重合,那么就说这两个图形 关于这个点对称或中心对称, 这两个图形中的对应点 叫做关于中心的对称点. 这个点叫做对称中心.
把一个图形绕着某一个点旋转180°,如果它能够 与另一个图形重合,那么就说这两个图形关于这个 点对称或中心对称
二.中心对称图形的性质:
1.关于中心对称的两个图形,对称点所连线段经过对称 中心,而且被对称中心所平分 2.关于中心对称中心的两个图形是全等图形.
三.中心对称图形的作法及对称中心的找法
布置作业
解法一:根据观察,B、B’应是对应点,连 结BB’,用刻度尺找出BB’的中点O,则点
O即为所求(如图)
C O B A C’ B’
A’
解法二:根据观察,B、B’及C、C’应是两组对
应点,连结BB’、CC’,BB’、CC’相交于点O, 则点O即为所求(如图). C
O B’
B A C’
A’
•巩固练习:书本64面
△ABC关于点O对称的△A′B′C′.
最新初中数学23.2 中心对称1 1 中心对称的概念和性质
23.2中心对称23.2.1 中心对称——中心对称的概念和性质一、新课导入1.导入课题:问题1:把图①中一个图案绕点O旋转180°,你有什么发现?问题2:如图②,线段AC、BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你又有什么发现?图①图②由此导入课题:中心对称.(板书课题)2.学习目标:(1)通过具体实例认识中心对称,弄清楚中心对称及其有关概念的含义.(2)探究并归纳出中心对称的性质.(3)会作与一个图形关于某个点成中心对称的另一个图形.3.学习重、难点:重点:中心对称的概念和性质.难点:中心对称性质的证明.二、分层学习1.自学指导:(1)自学内容:教材第64页最后一段话之前的内容.(2)自学时间:5分钟.(3)自学方法:通过操作,从具体的情景中感受,理解、归纳中心对称及相关概念.(4)自学参考提纲:①把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.②中心对称是指几个图形之间的位置关系?一个图形绕一点旋转能与另一个图形重合就是中心对称吗?两个.不一定,必须是绕一点旋转180°能与另一个图形重合才是中心对称.③在下列四组图形中右边数字与左边数字成中心对称的有(1)(2)(3)(4) .(1)(2)(3)(4)2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:通过自学参考提纲的第②③题,了解学生是否能抓准中心对称的本质特征.②差异指导:依据学情予以点拨、指导.(2)生助生:小组内相互交流、研讨.4.强化:两个图形成中心对称须具备三个条件:①能找到一个对称中心;②旋转角为180°;③这两个图形旋转后能重合.1.自学指导:(1)自学内容:教材第64页最后一段话到第65页例题之前的内容.(2)自学时间:5分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①按下列步骤动手画图:第一步:用三角尺画出△ABC;第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,再画出△A′B′C′;第三步:移开三角尺,并用虚线连接对应点AA′,BB′,CC′.②思考下列问题:a.△ABC与△A′B′C′关于点O对称吗?对称.b.△ABC与△A′B′C′全等吗?为什么?全等.由图形旋转的性质可知△ABC≌△A′B′C′.c.线段AA′、BB′、CC′有何关系?相交于点O.d.点O在线段AA′、BB′、CC′的什么位置?点O在线段AA′、BB′、CC′的中点处.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否在探究提纲的指引下,顺利完成相应内容的学习.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:交流学习成果,归纳中心对称的性质.1.自学指导:(1)自学内容:教材第65页至第66页的例1.(2)自学时间:5分钟.(3)自学方法:阅读教材并弄清画点A关于点O的对称点的画法,并在下图中动手画一画.(4)自学参考提纲:①如图,怎样画点A关于点O的对称点?连接AO,在AO的延长线上截取OA′=OA,即可求得点A关于点O的对称点A′.图①图②②如图②,怎样画△ABC关于点O对称的△A′B′C′?作出A,B,C三点关于点O的对称点A′,B′,C′,依次连接A′B′,B′C′,C′A′,就可得到与△ABC关于点O对称的△A′B′C′.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否正确画图.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:(1)画一个点关于另一个已知点的对称点的操作要点.(2)作一个图形关于一个已知点的对称图形的操作要点.(3)练习:①分别画出图1中各图形关于点O对称的图形.图1 图2②图2中的两个四边形关于某点对称,找出它们的对称中心.解:如图所示,点O即为它们的对称中心.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何成功的经验或自我感觉不足的地方?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、小组交流协作情况、学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.学生在探究新知的过程中,教师给予学生更多的互动时间,联系生活中的例子,让学生对知识易于理解,易于接受.教学过程中要强调中心对称的性质和利用中心对称的性质作图的方法.从课堂发言和练习来看,学生积极动手动脑,教师适当引导,学生成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 下列结论中,错误的是( A )A .形状大小完全相同的两个图形一定关于某点成中心对称B .成中心对称的两个图形,对称中心到两对称点的距离相等C .成中心对称的两图形,对称中心在两对称点的连线上D .成中心对称的两图形,对应线段平行(或在同一直线上)且相等2.(10分) 如图,△ABC 与△A 1B 1C 1关于点O 成中心对称,下列说法:①∠BAC=∠B 1A 1C 1;②AC=A 1C 1; ③OA=OA 1;④△ABC 与△A 1B 1C 1的面积相等.其中正确的有(D )A.1个 B .2个 C .3个 D .4个第2题图 第3题图 第4题图3.(10分) 如图,△ABC 和△AB′C′成中心对称,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为(D)A.4B. 3C. 3D. 34.(10分) 如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是(D )A .AD ∥EF ,AB ∥GFB .BO=GOC .CD=HE ,BC=GHD .DO=HO5.(10分) 如图,两个卡通图案是关于某点成中心对称的两个图案,试在图中确定其对称中心.解:如图:点O 即为所求的对称中心.6.(20分)分别画出下面图形关于点O 对称的图形.解:如图:二、综合应用(20分)7.(20分)如图,△DEC是由△ABC经过如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下、向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有(A)A.①②B.①③C.②③D.①②③三、拓展延伸(10分)8.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积.解:(1)AE与BF关于点C中心对称.理由:因为△FEC是由△ABC绕点C顺时针旋转180°得到的,所以△FEC于△ABC关于点C成中心对称,根据中心对称的性质可知点A、F,点B、E分别关于点C成中心对称,所以它们的连线AE与BF关于点C中心对称.(2)S四边形ABFE=4S△ABC=12 cm2.。
23.2.1中心对称 课件2024-2025学年人教版数学九上
证明:∵△ABO与△CDO关于O点中心对称,
∴BO=DO,AO=CO,
∵AF=CE,∴AO-AF=CO-CE,∴FO=EO,
FO EO ,
在△FOD和△EOB中,∠FOD ∠EOB,
DO BO ,
∴△FOD≌△EOB(SAS), ∴DF=BE.
随堂练习
3. 如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD
称中心平分.(即对称点与对称中心三点共线)
2.中心对称的两个图形是全等形.
知识讲解
知识点1 中心对称的定义及性质
【例 1】如下图所示的四组图形中,左边图形与右边图形成中心对称的
有(
A.1组
)
B.2组
C.3组
D.4组
知识讲解
知识点1 中心对称的定义及性质
解析:将选项中左边图形沿着某一点旋转180°能与右边图形重合的
②同样可得:BD=B′D,CD=C′D;
③连接A′B′、B′C′、C′D,则四边形A′B′C′D为所
求的四边形,如图所示.
知识讲解
知识点2 中心对称作图
(1)这两个图形是否成中心对称?如果是,对称中心是哪一点?如果不
是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点?
数量关系,并说明理由.
∴∠F=∠CPM﹣∠PMF=α﹣β,
∠MCD=∠CDE﹣∠DMC=α﹣β,
∴∠F=∠MCD.
课后小结
中心对称的定义
及性质
定义
定义相关
性质
中心对称
中心对称作图
作图形关于某点对
称的图形
找出对称中心
数量关系,并说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称性质的证明.
推进新课 知识点1 中心对称及其相关概念
问题1:把图①中一个图
案绕点O旋转180°,你有什 么发现?
问题2:如图②,线段AC、BD相交于点O, OA=OC,OB=OD.把△OCD绕点O旋转180°,你 又有什么发现?
你发现了什么? 把一个图形
绕着某一点旋转180° ,如果
它 能够与另一个图形重合 ,那么就说这两个图
B′ A′ C′
随堂演练
1. 下列结论中,错误的是( A ) A.形状大小完全相同的两个图形一定关于某点 成中心对称 B.成中心对称的两个图形,对称中心到两对称 点的距离相等 C.成中心对称的两图形,对称中心在两对称点 的连线上 D.成中心对称的两图形,对应线段平行(或在 同一直线上)且相等
2. 如图,△ABC与△A1B1C1关于点O成中心对称,下
中心对称的性质 中心对称的两个图形,对称点所连线段 都经过对称中心,而且被对称中心所平分. 中心对称的两个图形是全等图形.
①怎样画点A关于点O的对称点? 连接AO,在AO的延长线上截取OA′=OA, 即可求得点A关于点O的对称点A′.
A′
②怎样画△ABC关于点O对称的△A′B′C′? 作出A,B,C三点关于点O的对称点A′, B′,C′,依次连接A′B′,B′C′,C′A′,就可得 到与 △ABC关于点O对称的△A′B′C′.
课堂小结
绕着某一点旋转180° 能够与另一个图形重合 中心对称
概念
对称点所连线段都经过对称中心, 性质
而且被对称中心所平分.源自中心对称的两个图形是全等图形.
课后作业 1.从课后习题中选取;
2.完成练习册本课时的习题.
教学反思
本课设计通过问题导入,遵循从感性到理性的渐 进认识规律、发展学生直观想象能力,分析、归纳、 抽象概括的思维能力.学生在探究新知的过程中,教 师给予学生更多的互动时间,联系生活中的例子,让 学生对知识易于理解,易于接受.教学过程中要强调 中心对称的性质和利用中心对称的性质作图的方法. 从课堂发言和练习来看,学生积极动手动脑,教师适 当引导,学生成为课堂的主人.
在下列四组图形中右边数字与左边数字成 中心对称的有 . (1)(2)(3)(4)
(1)
(2)
(3)
(4)
思考:两个图形成中心对称需要具备什么条件? 两个图形成中心对称须具备三个条件:
①能找到一个对称中心;
②旋转角为180°; ③这两个图形旋转后能重合.
知识点2
中心对称的性质
按下列步骤动手画图: 第一步:用三角尺画出△ABC; 第二步:以三角尺的一个顶点O为中心, 把三角尺旋转180°,再画出△A′B′C′; 第三步:移开三角尺,并用虚线连接对应 点A、A′,B、B′,C、C′.
第一步
第二步
第三步
a. △ABC与△A′B′C′关于点O对称吗? 对称. b. △ABC与△A′B′C′全等吗?为什么? 全等.由图形旋转的性质可知△ABC≌△A′B′C′. c. 线段AA′、BB′、CC′有何关系? 相交于点O. d. 点O在线段AA′、BB′、CC′的什么位置? 点O在线段AA′、BB′、CC′的中点处.
4. 如图,在△ABC中,AB=AC,若将△ABC 绕点C顺时针旋转180°得到△FEC. (1)试猜想AE与BF有何关系?说明理由; (2)若△ABC的面积为3cm2,求四边形ABFE 的面积.
解:(1)AE∥BF,AE=BF; 理由:∵△ABC绕点C顺时针旋转180°得到 △FEC, ∴△ABC≌△FEC, ∴AB=FE,∠ABC=∠FEC, ∴AB∥FE, ∴四边形ABFE为平行四边形 (2)S四边形ABFE=4S△ABC=12 cm2.
23.2 中心对称
23.2.1 中心对称
R· 九年级上册
新课导入 问题1:把图①中一个图案绕 点O旋转180°,你有什么发现? 问题2:如图②,线段AC、 BD相交于点O,OA=OC,OB= OD.把△OCD绕点O旋转180°, 你又有什么发现?
图①
图②
(1)通过具体实例认识中心对称,弄清楚中心对 称及其有关概念的含义. (2)探究并归纳出中心对称的性质. (3)会作与一个图形关于某个点成中心对称的另 一个图形. 中心对称的概念和性质.
列说法:①∠BAC=∠B1A1C1;②AC=A1C1;
③OA=OA1;④△ABC与△A1B1C1的面积相等.其中
正确的有( D )
A.1个
B.2个
C.3个
D.4个
3. 如图,四边形ABCD与四边形FGHE关于点O 成中心对称,下列说法中错误的是( D ) A.AD∥EF,AB∥GF G B.BO=GO C.CD=HE,BC=GH D.DO=HO
形关于这个点 对称 叫做 或 中心对称 ,这个点
对称中心(简称中心) . 这两个图形在旋
转后能重合的对应点叫做关于对称中心的对称点.
中心对称是指几个图形之间的位置关系? 一个图形绕一点旋转能与另一个图形重合就 是中心对称吗?
两个. 不一定,必须是绕一点旋转180°能与另 一个图形重合才是中心对称.