【经典】建模-组合优化模型-排序

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优排序规则:
a1 a2 … an 建立工时矩阵 M= b1 b2 … bn 在工时矩阵M中找出最小元素(若不止一个
可任选其一),若它在上行,则相应的工件 排在最前位置;若它在下行,则相应的工件 排在最后位置。 将排定位置的工件所对应的列从M中划去, 然后对余下的工件再进行排序。如此进行下 去,直到把所有工件都排完为止。
5
6
8
+2
+2
-5
9
5
43
2
T
动态规划思想
动态规划是用来解决多阶段决策过程最优 化的一种数量方法。其特点在于,它可以 把一个n 维决策问题变换为几个一维最优 化问题,从而一个一个地去解决。
需指出:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一 种算法。必须对具体问题进行具体分析, 运用动态规划的原理和方法,建立相应的 模型,然后再用动态规划方法去求解。
f(X,t,i,j)
状态转移: (X,t) (X/i,zi(t))
A
ai
工件i
当t≤ai时 B
当t≥ai时
t
工件i-1
t
工件i-1
bi
bi t-ai+bi
ai f (X / i,t ai bi) 当t ai时
f (X ,t,i)
ai f (X / i,bi)
当t ai时
zi(t) max( t ai,0) bi f ( X , t, i) ai f [ X / i, zi(t)]
j2
j3
j4
j5
7
1
5
4
交货日期(d) 23
20
8
6
14
X/i表示在集合X中去掉工件i后剩下的工件集合
(X,t) (X/{i,j},zij(t))
f (X ,t,i, j) ai aj f [X /i, j, zij(t)]
zij (t ) max[zi(t) aj,0] bj max(t ai aj bi bj, bi bj aj, bj)
最优化原理:作为整个过程的最优策略具有这样的 性质:无论过去的状态和决策如何,相对于前面的决 策所形成的状态而言,余下的决策序列必然构成最优 子策略。”也就是说,一个最优策略的子策略也是最 优的。
n × 1 排序问题
即n 种零件经过1 种设备进行加工,如何安排?
例一、
零件代号
j1
加工时间(t) 3
动态规划中能 处理的状态转移 方程的形式。
动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要 做到这一点,就必须将问题的过程分成几个相互 联系的阶段,恰当的选取状态变量和决策变量及 定义最优值函数,从而把一个大问题转化成一组 同类型的子问题,然后逐个求解。即从边界条件 开始,逐段递推寻优,在每一个子问题的求解中, 均利用了它前面的子问题的最优化结果,依次进 行,最后一个子问题所得的最优解,就是整个问 题的最优解。
• 能用动态规划方法求解的多阶段决策过程 是一类特殊的多阶段决策过程,即具有无 后效性的多阶段决策过程。
如果状态变量不能满足无后效性的要求,应ห้องสมุดไป่ตู้当地改
变状态的定义或规定方法。
状态具有无后效性的多阶段决策过程的状态转移方
程如下
s2 T1 ( s1 , u1 ) s3 T2 ( s2 , u2 ) sk 1 Tk ( sk , uk )
排序问题
排序问题
排序问题指n 种零件经过不同设备加工时 的顺序问题。其目的是使加工周期为最短。
分类:
单台机器的排序问题
单件作业(Job-shop)排序问题: 工件的加工路线不同
多台机器的排序问题
流水作业(Flow-shop)排序问题: 所有工件的加工路线完全相同
n × 2 排序问题
即n 种零件经过2 种设备进行加工,如何 安排?
阶段:n个 状态变量:(X,t)
X: 在机床A上等待加工的按取定顺序排列的 工件集合。
t: 在A上加工完x的时刻算起到B上加工完x 所需的时间。
指标最优值函数:
f(X,t):由状态(X,t)出发,对未加工的 工件采取最优加工顺序后,将
X中
所有工件加工完所需时间。
f(X,t,i):由状态(X,t)出发,在A上加工 工件i,然后再对未加工工件采取最优加工顺 序后,将X中所有工件加工完所需时间。
例题:
设备 零件 j1
j2 j3
j4
j5
A
6 8735
B
3 2594
工件的加工工时矩阵为:M=
6 3
8 2
7 5
3 9
5 4
根据最优排序规则,最优加工顺序为: j4,j3,j5,j1,j2
A
B T
加工周期 T = 3+7+5+6+8+2 = 31 即 tAi tB小
加工顺序图如下:
A
3
B
7
设有n个工件需要在机床A、B上加工,每个 工件都必须先经过A而后B•两道加工工序。 以ai、bi分别表示工件i(1≤i≤n)在A、B上的 加工时间。问应如何在两机床上安排各工 件的加工顺序,使在机床A上加工第一个工 件开始到在机床B上加工完最后一个工件为 止,所用的加工总时间最少?
分析:
加工工件在机床A上有加工顺序问题,在机
zji (t ) max( t ai aj bi bj, bi bj ai, bi)
f ( X , t) 随t单调增加,所以当Zij(t)≤ Zji(t) f ( X , t,i, j) f ( X , t, j, i) 成立
工件i放在工件j前面的条件:
max( bi bj aj,bj) max( bi bj ai,bi) min( ai,bj) min( aj,bi)
床B上也有加工顺序问题。可以证明:最优 排序方案可以只在机床A、B上加工顺 序相同的排序中寻找。即使如此,所有
可能的方案仍有n!个,这是一个不小的数, 用穷举法是不现实的。
问题:
如何用动态规划方法来研究同 顺序两台机床加工N个工件的 排序问题?
动态规划求解
最优排序方案:尽量减少在B上等待加工的 时间,使总加工时间最短。
相关文档
最新文档