杆梁结构的有限元分析原理
2_杆系结构有限元分析1
( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e
e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为
杆梁结构的有限元分析原理[详细]
le
EAe
le
EAe
u1 u2
P1
le
P2
u1 u2
1 qeTK eqe PeTqe 2
刚度矩阵
节点力列阵
3)离散单元的装配
在得到各个单元的势能表达式后,需要进行离散单元的装配,以
求出整个系统的总势能,对于该系统,总势能包括两个单元部分
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
第4章 杆系结构的有限元分析原理
杆梁单元概述
讨论杆梁单元和由它们组成的平面和空间杆梁结构系统. 从构造上来说其长度远大于其截面尺寸的一维构件 承受轴力或扭矩的杆件成为杆 杆梁问题都有精确解 承受横向力和弯矩的杆件称为梁 平面桁架 平面刚架 连续梁 空间刚架 空间桁架等 承受轴力或扭矩的杆件称为杆 将承受横向力和弯矩的杆件称为梁 变截面杆和弯曲杆件
单元节点条件:u(0)=u1, u(l)=u2
从而得
a0 ui ,
a1
uj
le
ui
i
1,
j
2
回代得
u(x) a0 a1x
ui
u j ui le
x
1
x le
ui
x le
u
j
Niui N ju j
其中Ni,Nj是形函数。
写成矩阵形式为
q Niu Nqe
N
ju
ui u j
1 2
u1
EA1
u2
l1 EA1
l1
EA1
l1
EA1
u1 u2
R1
l1
0
u1 u2
1 2
u2
EA2
杆梁结构有限元分析
3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l
梁的有限元分析
梁的有限元分析——2D问题
▪ 1.有一简支梁,载荷和边界条件如图所示, L=6m,梁的截面面积A=0.0072m2,高 H=0.42m,惯性矩=0.00021m4,材料弹性模 量E=2.06e11N/m2,P=10000N。求支反力 和挠度。
▪ 要点 1)实常数 2)分网密度控制 3)如何加载:左:UX,UY,右UY 4)后处理结果的观察
直线,“OK”,进行显示控制,标出各节点号。
▪ 显示梁和弹簧的形状
2
1
3
▪ 施加约束:1、12为“DOF” 。
▪ 施加载荷
▪ 求解 ▪ 后处理 1)定性分析:变形,云图,动画 2)定量分析:支反力,各节点位移
梁——3D问题(型材)
▪ 单元名称 188、189 ▪ 截面定义方法 ▪ 方向点的定义和使用 ▪ 应用举例
▪ 在“Mesh”菜单中按“Mesh”,选择表示梁的二
直线,“OK”,进行显示控制,标出各节点号。
▪ 对弹簧进行网格划分
▪ 在“Mesh”菜单点击“line”,选择表示弹簧的直线, “OK”,在弹出的菜单中的单元等分数输入“1”, (如果二等分表示两弹簧串联),“OK”。
▪ 在“Mesh”菜单中按“Mesh”,选择表示弹簧的
2.梁的有限元分析概要
▪ 梁的有限元分析问题也是是工程中最常见的 结构形式之一,常用在建筑、机械、汽车、 工程机械、冶金等多种场合。
▪ 梁结构的特点是,梁的横截面均一致,可承 受轴向、切向、弯矩等载荷。根据梁的特点, 等截面的梁在进行有限元分析时,需要定义 梁的截面形状和尺寸,用创建的直线代替梁, 在划分网格结束后,可以显示其实际形状。
▪ 定义单元类型:1)梁单元;2)弹簧单元
▪ 选择弹簧单元后,按“Option”按钮,在K3项 中选择如图所示:
第五章杆系结构的有限元法
第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。
其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。
杆系结构中的每个杆件都是一个明显的单元。
杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。
显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。
杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。
因此,本章将采用这种方法进行单元分析。
至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。
5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。
3. 外载荷均为作用于节点的集中力。
由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。
5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。
两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。
图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。
由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。
有限元分析及应用例子FEM14
有限元分析及应用例子FEM14有限元分析及应用例子FEM14有限元分析(Finite Element Analysis, FEA)是一种数值计算的方法,用于求解工程结构中的各种物理问题。
它将结构分割成有限个小单元,通过计算每个单元的行为来推断整体结构的行为。
下面将介绍有限元分析的原理,并举例说明其在实际应用中的使用情况。
有限元分析的原理是将复杂的结构问题转化为一系列简单的数学模型,通过数学方法求解这些模型的行为来预测整体结构的行为。
具体而言,有限元分析的步骤包括对结构进行离散化、建立有限元模型、确定边界条件、计算求解和分析结果。
举例来说,假设我们希望研究一根悬臂梁的变形和应力分布。
首先,我们将梁划分成若干个小单元,如梁单元。
然后,我们需要为每个单元定义适当的数学模型来描述其行为。
对于梁单元而言,可以使用简化的梁理论或柔性梁解来建立数学模型。
接下来,我们需要确定边界条件,如悬臂梁的杆端固定,另一端加载一定的力。
然后,通过求解各个单元的行为,并结合边界条件,我们可以计算整个梁的变形和应力分布。
最后,我们可以根据求解结果,分析梁的承载能力,优化设计以及进行结构改进。
1.结构力学:有限元分析可用于预测建筑物、桥梁、飞机和汽车等结构的应力分布和变形情况,以评估结构的安全性和稳定性。
例如,可以通过有限元模拟来确定一个钢梁在承受一定荷载后的变形和应力情况,以保证其设计的合理性。
2.流体力学:有限元分析可以用于模拟流体在管道、容器或其他结构中的流动情况。
例如,可以通过有限元分析预测液体或气体在流体力学系统中的流动速度和压力分布,并优化系统设计。
3.热传导:有限元分析可以用于计算热传导过程中的温度分布和热流情况。
例如,可以通过有限元分析来优化热交换器的设计,以提高传热效率。
4.振动分析:有限元分析可以用于模拟结构在受到激励时的振动情况。
例如,可以通过有限元分析来研究机械系统中的固有频率和模态形状,以减少振动和噪声。
梁的有限元分析原理
j
·
x
i·
Chapter 5 Bernoulli-Euler Beam
z
27
福州大学研究生课程-有限元程序设计
平面桁架杆单元(2D LINK1)
空间杆单元(3D
LINK8)
平面刚架,BEAM3 空间梁单元(BEAM4)
Chapter 5 Bernoulli-Euler Beam
28
福州大学研究生课程-有限元程序设计
举例说明
Chapter 5 Bernoulli-Euler Beam
18
福州大学研究生课程-有限元程序设计
这种高斯积分阶数低于被积函数所有项次精确 积分所需要阶数的积分方案称之为减缩积分。 实际计算表明:采用缩减积分往往可以取得较 完全积分更好的精度。这是由于: 精确积分常常是由插值函数中非完全项的 最高方次要求,而决定有限元精度的是完全多 项式的方次。这些非完全的最高方次项往往不 能提高精度,反而可能带来不好的影响。取较 低阶的高斯积分,使积分精度正好保证完全多 项式方次的要求,而不包括更高次的非完全多 项式的要求,其实质是相当用一种新的插值函 数替代原来的插值函数,从而一定情况下改善 19 Chapter 5 Bernoulli-Euler Beam 了单元的精度。
福州大学研究生课程-有限元程序设计
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
福州大学研究生课程-有限元程序设计
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
Chapter 5 Bernoulli-Euler Beam
杆结构 分析的有限元方法(有限元)
杆单元形状函数
杆单元刚度矩阵
平面问题中的坐标变换
梁结构分析的有限元方法
梁:承受横向荷载和弯矩的杆件。
梁的主要变形为挠度v
横截面变形前后都垂直于杆变形前的轴线x轴
中性层变形=0
纯弯曲没有剪力,只有弯矩
梁截面的惯性矩
杆结构分析的有限元方法
杆:承受轴向荷载的杆件
最基本的承力结构件:杆、梁
弹簧--简单的承受轴力的结构件
有限元方法中,每一个处理步骤都是标准化和规范化的,
因而可以在计算机上通过编程来自动实现。
F=kδ
k--刚性系数
位移的绝对变化量/杆件的伸长量δ=u2—u1
应力某截面上单位面积上的内力/内力的分布集度
应变相对伸长量单位长度的伸长量
杆单元的特性是节点位移及节点力的方向都是沿轴线方向。
杆结构的力学分析
铰接的杆结构----杆只受轴力-----杆件拉伸问题---可自然离散
两端为铰接的杆件只承受轴力。
各个单元研究(基于局部坐标系的表达)
各个单元研究
离散单元的集合、组装
杆单元及坐标变换
自由度:描述物体位置状态的每个独立变量。
对于杆单元,其节点位移有两个自由度。
杆梁结构的有限元分析原理
杆梁结构的有限元分析原理杆梁结构是工程中常用的一种结构形式,它由多个杆件或梁组成,用于承担载荷和传递力量。
有限元分析是一种通过将结构离散为许多小单元,利用数学方法对结构进行分析的技术。
下面将详细介绍杆梁结构的有限元分析原理。
一、杆件离散化在有限元分析中,首先需要将杆梁结构离散化为一组子结构,即离散化为一组离散的杆件。
离散后的每个杆件可以看作是一个子系统,每个子系统由两个节点组成,节点之间以杆件连接。
通过节点与杆件的连接方式,能够模拟出整个杆梁结构的受力特点。
离散化的过程中,需要确定杆件的几何形状、截面以及材料特性等参数,并根据实际情况设置合适的杆件单元数目。
通常,单元数目越多,离散程度越高,结果越接近真实情况,但计算成本也会增加。
二、有限元法的基本原理有限元方法的基本原理是将结构分成许多小的单元,每个单元内的行为可以用简单的数学函数来表示。
对于杆梁结构,常用的单元有梁单元和杆单元。
梁单元适用于承受弯曲强度较大的杆件,而杆单元适用于承受轴向载荷的杆件。
通过将结构分成小单元后,可以建立一个与原结构相似的离散模型,并在每个单元上建立相应的方程。
三、应力应变关系在进行有限元分析时,需要获得每个杆件的应变和应力。
应变与杆件的变形有关,而应力与应变之间的关系则与材料的本构关系有关。
对于线弹性材料,应力与应变之间可以通过胡克定律来描述。
胡克定律表明,应力与应变之间成线性关系,材料的弹性模量E、泊松比ν以及应变关系能够决定应力。
应根据结构中不同材料的应变特性来选择相应的材料模型。
四、施加边界条件在进行有限元分析前,需要施加适当的边界条件。
边界条件用于模拟实际情况中的约束和限制。
常见的边界条件有固定边界、弹性边界和施工阶段边界。
五、求解位移和应力当离散化杆梁结构、建立了位移和应变关系、施加了边界条件之后,可以通过数值求解方法,例如有限元法中的坐标变形法,计算得到结构的位移和应力。
坐标变形法能够基于得到的位移结果,进一步计算应力。
第二章-杆和梁结构的有限元法案例
第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
注意: 上述弹簧系统的分析求解原理和过程就是有限元 法求解连续体力学问题时对离散后系统的分析求 解原理和过程。
第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
例题1:弹簧系统
已知条件:
求:(a) 系统总刚度矩阵 (b) 节点2,3的位移
单元特性
系统平衡方程
第二章 杆和梁结构的有限元法
KD F
2)单元方程扩大相加法 单元特性
F1 f11
相加
F2 f 21 f12 F3 f 22
系统节点 平衡条件
引入系统节点平衡条件
KD F
系统节点平衡方程
第二章 杆和梁结构的有限元法
2.2 杆单元和平面桁架
杆单元
2.2.1 一维等截面 杆单元
fi k f j k
第二章
k ui k u j
f kd
杆和梁结构的有限元法
2、弹簧系统的集成 1)列节点平衡方程法
F1 f11 F2 f 21 f12 F3 f 22
系统节点 平衡条件
F1 k1u1 k1u2 F2 k1u1 ( k1 k2 )u2 k2u3 F3 k2u2 k2u3
第二章 杆和梁结构的有限元法
k k k
k k
fi k f j k
k ui k u j
kii k k ji
kij k jj
§2.1.2 弹簧系统分析
求解一个弹簧系统:
1)各单元的特性分别为:
第二章 杆和梁结构的有限元法
《有限元理论与数值方法》第三讲-杆、梁结构有限元分析
Finite Element Theory and Numerical Method
一、杆、梁的物理力学模型
拉压杆单元如图3-6所示,已知等直杆件杆长为 l 横截面面积为 A 材料弹性模量为 E 所受轴向分布载荷集度为 p(x) 杆端位移分别为 u1 u2
杆端力分别记为 F1 F2
1、建立位移场
F1, u1 xa
1
a p(x)
2 F2 , u2
x
设局部坐标系下杆中任意点a的坐标为 xa
因为只有两个边界条件 u1
形函数具有如下性质: 1)本端为1,它端为0 2)单元内任意一点总和为1
N1(0) 1
N1(1) 0
N2 (0) 0 N2 (1) 1
N1() N2 () 1
2、应变分析
du dx
dN dx
ue
dN1 dx
B为应变矩阵或者几何矩阵。
dN2 dx
u
e
1 l
1 l
ue
[B1
B2 ]ue Bue
图示所示桁架 l 2m
EA 1.2106 kN
试求1-2杆和1-4杆单元的局部坐标单元 刚度矩阵
1-2杆:抗拉刚度 EA / l 6106 kN/m
F1 10N 3
1
F2 20N 4
2
ke1
EA l
1 1
1
1
6
105
1 1
1
1
kN
/
m
1-4杆:抗拉刚度 EA /( 2l) 4.24264 105 kN/m
有限单元法课件第四章 杆件系统的有限元法
(a)
(b)
由杆件组成的结构体系称为杆系,如起重机,桥梁等。
由桁杆组成的杆系称为桁架。
由梁组成的杆系成为刚架。
若杆系和作用力均位于同一平面内,则称为平面桁架 或平面刚架,否则称为空间桁架或空间刚架。
由于杆件结构采用一维单元进行离散,所以杆系的网 格划分容易用半自动方法实现。当采用自动网格划 分方法时,杆系的几何模型是由杆件轴线构成的线框 模型。
R
e P
RiP R jP
R
lP
R
R
e F
RiF R jF
Rlx Rly NlT l R l
lF T l
Px dx (l i, j ) Py
e T
Bj dx
kii k ji
kij k jj
其中矩阵元素为
kst D Bt dx B as 0 EA 0 at 0 0 0 bs dx 0 EI 0 bt ct 0 cs 0 0 EAas at dx 0 EIb b EIb c s t s t EIcs bt EIcs ct 0
e
du dx e x 2 B Bi q x d v dx 2
Bj q
e
其中
ai 0 0 Bi 0 b c i i a j 0 0 Bj 0 b c j j 1 12 6 ai a j bi b j 3 x 2 l l l 4 6 2 6 ci 2 x cj 2 x l l l l
第三讲 杆系有限元-单元分析部分
两类坐标系统的变换矩阵
平面桁架杆单元
cos T 0
sin 0
0 cos
0 sin
两类坐标系统的变换矩阵
空间桁架杆单元
cos T 0
cos 0
cos 0
0 cos
0 cos
0 cos
两类坐标系统的变换矩阵
空间一般杆单元
杆系有限元分析的基本未知量
三、单元杆端力与单元杆端位移
在单元坐标系统中,在平面一般杆单元中,截面位移包括截面转角 和轴、切向线位移;有意义的截面合力也对应包括截面弯矩、截面 轴力和截面剪力 将单元两端结点位置的截面位移合成一个向量,即为单元杆端位移 向量; 将单元两端结点位置的截面合力合成一个向量,即为单元杆端力向 量; 在不同类型的杆单元中,由于结点的自由度不同,杆端位移和杆端 力向量有着不同的表达
杆系有限元分析的基本未知量
一、结点、结点位移、结点位移向量
一般空间杆系结构中, 结点自由度为6。 包括三个平动自由度和 相关于三个主轴的转动 自由度
杆系有限元分析的基本未知量
一、结点、结点位移、结点位移向量
根据位移法的概念: 体系分析时,结点的自由度确定后,则结 点的力向量、位移向量的分量则可以确定 映射到单元的单元力向量和位移向量分量 的性质和数目也就随之确定。
(e)
杆系有限元分析的基本未知量
三、单元杆端力与单元杆端位移
平面桁架杆单元 单元坐标系统下
杆端力向量
FNi FNj ui u j
结构整体坐标系统下
杆端位移向量
Fxi F yi Fxj Fyj
ui v i u j v j
梁的有限元分析原理
Advantages of 2D Storage 1)Space-saving; 2)Easy to be computerized Disadvantages of 2D Storage Enormous storage is required when local bandwidth is large.
输入基本数据 计算单元刚度矩阵 形成总体刚度矩阵 形成结点荷载向量
3、系统分析
(1)整体刚度矩阵[K]的组装; (2)整体载荷列阵{P}的形成;
引入约束条件 求解方程组,输出结点位移 计算单元应力,输出结果
[K]的存储;约束引入;求解
结束
40
总刚存贮
全矩阵存贮法:不利于节省计算机的存贮 空间,很少采用。K[i,j] 对称三角存贮法:存贮上三角或下三角元 素。 半带宽存贮法 :存贮上三角形(或下三角 形)半带宽以内的元素 。 一维压缩存贮法 :半带宽存贮中仍包含了 许多零元素。存贮每一行的第一个非零元 素到主对角线元素。
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
2
§2. 经典梁单元 (Bernoulli-Euler) Beam : 梁在纯弯曲时的 平面假设 平面-梁-假设 Plane-beam-assumption 梁的各个横截面在变形后仍保持为平
除非ψ是常数(没有弯曲变形),否则, dw/dx-ψ不会为零。这种现象称为剪切闭锁。 shear-locking
17
桥梁结构分析的杆系有限元法及结构模型的建立2015
结构的离散化
确定了结构的全部 节点,也就确定了 结构的单元划分, 然后对结构进行单 元编号和节点编号, 通常单元编号用①, ②,……表示,节 点编号用1, 2,……表示,如图 所示。
6 67
5
4
3
5
4
1
2
1
2
3
单元杆端力与杆端位移的表示方法
• 平面桁架单元的局部坐标和整体坐标:
y
y
x
3
x2
2
y
1
结构分析的杆系有限元法
• 概述 • 有限单元法的概念及应用 • 结构的离散化 • 单元杆端力与杆端位移 • 逆步变换 • 单元刚度矩阵 • 总刚度矩阵 • 边界条件的后处理法 • 线性代数方程组的数值解法
结构分析的含义
• 结构分析的含义,不仅指在一定的已知条件下对结构的变 形和内力等进行计算,而且包括分析构件刚度变化对内力 变化的影响,对结构的几何组成进行分析,以及选择合理 的结构形式等等。
结构分析的有限元法
• 美国20世纪70年代推出的至今仍然是世界销售量最大的 NASTRAN(NAsa STRuctural Analysis,美国国家航空和 宇宙航行局结构分析程序系统)程序与当时西德推出的 ASKA(Automatic System for Kinematics Analysis,运动 分析的自动程序系统)齐名,同为当时最为著名和广泛应 用的程序,但几十年后的现在,ASKA已无法与 NASTRAN相比。原因是ASKA后来没有大规模的资金投 入,使程序不断得到滚动发展(维护)和组织推广、剌激 程序在竞争中不断改进各种功能。
向量
X
e i
Yi e
F
e
Fi e Fje
有限单元法 第2章 杆系结构的有限元法分析
义 & 可以进一步求得单元刚度矩阵为 )
( & # 0# ( $’ $ % 8 . ! 1 # $ ’ 0# # 同时 & 我们可以根据式 $ % 求出等 效 结 点 荷 载 矩 阵 ’ 这 里 要 指 出 的 是 ) 分 布 荷 载 ! .$
! # !! !
! # $! !
! 第 ! 章 ! 杆系结构的有限元法分析 # #! ! """""""""""""""""""""""""""""""""""""""""""
不适定的 " 第九步 # 求解方程组 " 计算结构的整体结点位移列阵 ## 并 进一步 计算各 单元 的应力 分量及主应力 $ 主向 " 第十步 # 求单元内力 # 对计算成果进行整理 $ 分析 # 用表格 $ 图线标示出所需的位移 及应力 " 大型商业软件 % 如 )* + , + 等 & 一般都具有强大的后处理功能 # 能够 由计算 机自 动绘制彩色云图 # 制作图线 $ 表格乃至动画显示 "
矩阵 ’ $ %进行应力 ( 应变分析 ’ 根据材料力学中应变的定义 & 有 ) ! # # $’ 2 + 2 $ ( ( ( ( $’ $’ $’ . 0 ! ! . " 3 3 .% ". . ! ! ! !! "# ’ ’ 2 # 2 #
第三讲 杆件结构有限元分析
l
0
AE
l du d u dx f x udx 0 dx dx
其中E表示弹性模量,A表示横截面积,方程左端得到单元的刚度矩阵。
建立有限元模型
现考虑一个由5个长度相同(le=1m)横截面积不同的杆件构成的一维杆件,各杆弹性模量都为 E=1.0e10pa,A1=0.5m2,A2=0.4 m2,A3=0.3 m2,A4=0.2 m2,A5=0.1 m2,如图1所示,右端给定位移 u右=0.1,左端固定位移u左,分析杆件内位移分布:
根据虚功原理,方程两边乘以虚位移δu,平衡方程可以写为:
其弱形式为:
l
0
[
d ( A x ) f ( x)] udx 0 dx
l
0
A x
l d u dx f x udx Pj u j 0 dx j
基本方程的最终弱形式
其中,右端最后一项可以看作是节点力情况,所以可以不单独列出,同时 x E 所以上式可以继续写为:
网格尺寸设置
网格划分信息
网格划分
选择calculate → calculate,在弹出的对话框,点击OK,保存,前处理完毕。
工程求解
点击工具栏中“求解计算”按钮,完成模型的求解计算。
后处理
点击工具栏中的“后处理”按钮进入GID,查看计算结果,如下图所示。
结果分析: 本章针对一个变截面一维杆件,通过理论分析和ELAB1.0软件实现两种方式来分析,一方面对有限元
几何模型
将其划分为五个单元六个节点,即每根杆件作为一个单元,每个单元的节点关系如下图所示:
单元拓扑关系
确定杆单元的形函数
考虑其中一个杆单元,其两个端点分别为节点1,节点2,基本变量为节点位移u1,u2::
有限元方法第三章杆系结构有限元
应用实例
某大型桥梁的稳定性分析
采用杆系结构有限元对某大型桥梁进行稳定性分析,评估其在不同载 荷下的变形和承载能力。
高层建筑的抗震性能研究
利用杆系结构有限元模拟高层建筑的抗震性能,分析地震作用下结构 的响应和破坏模式。
汽车悬挂系统的优化设计
通过杆系结构有限元模拟汽车悬挂系统的运动和受力情况,优化悬挂 参数以提高车辆行驶的稳定性和舒适性。
有限元方法第三章杆系结 构有限元
• 引言 • 杆系结构有限元的基本概念 • 杆系结构有限元的建模方法 • 杆系结构有限元的求解方法 • 杆系结构有限元的应用案例 • 结论与展望
01
引言
目的和背景
杆系结构是工程中常见的一种结构形式,广泛应用于桥梁、 建筑、机械等领域。由于其具有复杂的几何形状和受力特性 ,因此需要采用有限元方法进行数值分析。
THANKS
感谢观看
04
杆系结构有限元的求解方法
求解步骤
确定边界条件
根据实际情况,确定杆系结构 的边界条件,如固定、自由、 受压等。
求解线性方程组
将所有单元的平衡方程组合成 一个线性方程组,然后使用数 值方法求解该线性方程组。
建立离散模型
首先将杆系结构离散化为若干 个小的单元,每个单元具有一 定的物理属性。
应用力学平衡方程
杆系结构有限元的优缺点
优点
能够处理复杂的几何形状和边界条件, 适用于大规模问题求解,计算精度可 调,可模拟复杂的结构和场。
缺点
需要针对不同的问题建立不同的模型, 计算量大,需要较高的计算机资源, 对于非线性问题求解较为困难。
03
杆系结构有限元的建模方法
建模步骤
确定研究问题
杆梁结构的有限元分析原理
杆梁结构的有限元分析原理杆梁结构是一种常见的工程结构,广泛用于建筑、桥梁、机械等领域。
为了研究杆梁结构的力学性能和设计优化,常用的方法之一是有限元分析。
有限元分析是一种数值计算方法,通过将连续结构离散化为一个个有限的单元(元素),再通过计算单元之间的相互作用来近似表示整个结构的力学性能。
下面将逐步介绍杆梁结构的有限元分析原理。
1.离散化:首先,将杆梁结构离散化为一个个的单元,通常可以选择线性单元、二次单元等。
线性单元简单且计算效率高,而二次单元更准确但计算开销较大。
根据具体工程需求和分析要求,选择合适的单元进行离散化。
每个单元由节点和单元梁组成。
2.建立本地坐标系:为了方便计算,对于每个单元,可建立本地坐标系。
本地坐标系是以单元的一个节点为原点,并建立与该节点有关的坐标轴。
通过本地坐标系可以方便地描述单元内部的各种力和力矩。
3.单元刚度矩阵计算:对于每个单元,需要计算其刚度矩阵。
刚度矩阵描述了单元内部的相互作用,包括节点间的弯曲刚度和剪切刚度等。
通过根据材料的力学特性和几何信息,可以得到单元刚度矩阵。
4.装配全局刚度矩阵:将所有单元的刚度矩阵按照它们的几何关系组装成全局刚度矩阵。
全局刚度矩阵描述了整个杆梁结构的力学行为。
5.施加边界条件和加载情况:根据具体问题的边界条件和加载情况,在全局刚度矩阵中添加与之对应的约束和加载项。
边界条件通常涉及到约束的位移和力的平衡,加载情况则涉及到外界施加在结构上的力。
6.求解杆梁结构的位移:通过求解全局刚度矩阵与位移的乘积等式,可以得到结构的位移。
位移是描述结构变形的重要参数,可以用来计算应力、应变和变形等。
7.计算应力和应变:通过已知的位移以及杆梁的几何信息,可以计算单元内部的应力和应变。
应力和应变是评估杆梁结构受力情况的重要指标,在结构设计和安全评估中具有重要作用。
8.结果后处理:最后,可以通过后处理技术对有限元分析的结果进行处理和展示。
例如,可以绘制位移云图、应力云图等,以方便工程师对结构的力学性能进行评估和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e
下面考察该简单问题的FEA求解过程。 (1) 离散化
两个杆单元,即:单元①和单元②
(2) 单元的特征及表达
对于二结点杆单元,设该单元的位移场为 么它的两个结点条件为
,那
设该单元的位移场具有模式(考虑两个待定系数)
利用结点条件,可以确定系数a0和a1,即
将系数a0和a1代入
,可将
表达成结点位移(u1, u2)的关系,即
其中, 为整体坐标系下的单元刚度矩阵, 为 整体坐标系下的结点力,即
由最小势能原理(针对该单元),将 对待定的 结点位移向量 取一阶极小值,有整体坐标系中 的刚度方程
对于本节给出的杆单元,具体有
4.3.3 空间问题中杆单元的坐标变换
就空间问题中杆单元,局部坐标系下的结点位移还 是 而整体坐标系中的结点位移为
这时由全部结点位移[0 u2 u3]分段所插值 出的位移场为全场许可位移场。
由最小势能原理(即针对未知位移u2和u3求 一阶导数),有
可解出
(5) 计算每个单元的应变及应力
在求得了所有的结点位移后,由几何方程
可求得各单元的应变
由方程 可求得各单元的应力
(6) 求结点1的支反力
就单元 ①的势能,对相应的结点位移求极值,可以 建立该单元的平衡方程,即
其中
由一维问题几何方程和物理方程,则该单元 的应变和应力为
其中
单元的势能
其中 叫做单元刚度矩阵。
叫做单元结点外载。
在得到“特征单元”的单元刚度矩阵和单元 结点外载后,就可以计算该单元的势能,因 此,计算各单元的矩阵 和 是一个关 键,下面就本题给出了个单元的 和 。
具体就单元①,有 单元①的结点位移向量
(5) 单元的刚度方程
由最小势能原理(针对该单元),将 结点位移向量 取一阶极小值,有
对待定的
这就是单元的刚度方程,由最小势能原理的性质 (系统的势能最小可推导出力的平衡方程和力的边 界条件)可知,上式的物理含义是:该单元的力的 平衡关系。
4.3.2 平面问题中杆单元的坐标变换
在工程实际中,杆单元可能出于整体坐标系中的任 意一个未知,如上图所示,这需要将原来在局部坐 标系中所得到的单元表达等价地变换到整体坐标系 中,这样,不同位置的单元才有公共的坐标基准, 以便对各个单元进行集成和装配。
• 所有物理量的表达(所有力学量都用结点位
移来表达)
其中
• 单元的平衡关系
上式的实质(物理含义)是对应于单元体内的力 平衡和单元结点上的力平衡。 (3) 装配集成
• 整体平衡关系
其中
(4) 处理BC并求解结点位移 目的是获得满足位移边界条件的许可位移场。
其中,qu为未知结点位移,qk为已知结点位移, Pu为未知结点力(即支反力),Pk为已知结点力。
有
则结点1的外力为:
(7) 讨论
如果我们在处理位移边界条件之前,先对总势能取 极值,有
在上述方程的基础上,再处理位移边界条件(BC), 即令u1=0,即可从上述方程求出u2,u3和P1,其求解 的值与前面的结果完全相同。
这就给我们提供了一个方便,即,可以先 进行各单元的装配集成,以形成该系统的 整体极值方程,类似于上页的式子,最后 才处理位移边界条件,同时也可以通过该 整体方程直接求出支反力。这样可以适应 更多的边界条件工况,更具有通用性。
将上页方程代入以下两个方程表达式:
(1) (2)
可以先由(1)式直接求出未知结点位移:
(5) 求支反力 在求出未知结点位移qu后,由上页的(2)式可求出支反力
(6) 其它力学量的计算 单元和整体的应变及应力
4.3 杆单元及坐标变换
4.3.1 局部坐标系中的单元描述
局部坐标系中的杆单元
上图所示的杆单元,设有两个端结点(Node1和 Node2),结点位移向量 和结点力向量 为
利用函数插值、几何方程、物理方程以及势能计
算公式,可以将单元的所有力学参数(场变量)
(
和 )用结点位移向量来表
示。
(1) 单元位移场ue(x)的表达
由于有两个结点位移条件,可假设该单元的位移场 为具有两个待定系数的函数模式,即
其中a0和a1为待定系数。 由该单元的结点位移条件
可求出上页的a0和a1,则
4.2 有限元分析的基本步骤和表达式
从上面的简单实例中,可以总结出有限元分析的基本思路 (以杆单元为例):
基本步骤及相应的表达式
(1) 物体几何的离散化
为具有特征的单元。
(2) 单元的研究(所有力学信息都用结点位移来表 达)
• 单元的结点描述 • 单元的位移(场)模式(唯一确定性原则,
完备性原则) 为几何位置坐标。
可重新写成
其中,
叫做单元的形状函数矩阵,即
(2) 单元应变场
的表达
由弹性力学中的几何方程(这里为一维问题)有
其中
叫做单元的几何函数矩阵,即
(3) 单元应力场
的表达
由弹性力学中的物理方程,有
其中, 为该单元的弹性模量, 的应力函数矩阵,即
叫做单元
(4) 单元势能 的表达
其中, 叫做单元的刚度矩阵,即
上图中局部坐标系中的结点位移
上图中整体坐标系中的结点位移
对于结点1,整体坐标系下的结点位移 和
其合成的结果应完全等效于 ;对于结点2,结点
位移 和
合成的结果应完全等效于
,
即存在以下的等价变换关系
写成矩阵形式
其中 为坐标变换矩阵,即
下面推导整体坐标系下的刚度方程,由于单元的势 能是一个标量(能量),不会因坐标系的不同而改 变,因此,将结点位移 的坐标变换关系代入单 元势能 公式,有
杆梁结构的有限元分析原理
本章提到的
FEM即 有限元方法(Finite Element Method) FEA即 有限元分析(Finite Element Analysis) 4.1 一个简单结构FEA求解的完整过程
一个阶梯形状的二杆结构如图所示,其材料的弹性 模量和结构尺寸如下:
该结构由两根杆件组成,作为一种直觉,需 要研究相应的“特征结构”,即杆单元,将 该“特征结构”抽象为具有两个结点的单元, 如下图所示。
单元①的刚度矩阵
单元①的结点外载 其中P1为结点1的支反力。
具体就单元②,有 单元②的结点位移向量 单元②的刚度矩阵 单元②的结点外载
(3) 装配集成以得到系统的总体势能 计算整体的势能
(4) 处理位移边界条件并求解 由图可知,其边界条件为左