变压器的温升计算
电力变压器涡流损耗和温升的计算与分析
电力变压器涡流损耗和温升的计算与分析一、本文概述电力变压器作为电力系统的关键设备,其运行效率与稳定性直接影响到电力系统的整体性能。
在变压器的运行过程中,涡流损耗是一个不可忽视的问题,它不仅会降低变压器的效率,而且会导致变压器温度升高,从而影响其使用寿命和安全性。
因此,对电力变压器的涡流损耗和温升进行深入的计算与分析,对于提高变压器的运行效率、优化其设计以及确保其安全稳定运行具有重要意义。
本文旨在探讨电力变压器的涡流损耗和温升的计算方法,并基于理论分析和实际案例,对涡流损耗和温升的影响因素进行深入研究。
文章将首先介绍涡流损耗和温升的基本概念,然后详细阐述其计算方法和相关数学模型。
接着,通过实际案例分析,探讨不同因素(如变压器结构、材料属性、运行环境等)对涡流损耗和温升的影响,并提出相应的优化措施。
本文将对电力变压器涡流损耗和温升的研究趋势和前景进行展望,为电力变压器的设计和运行提供理论支持和实践指导。
二、电力变压器基础知识电力变压器是电力系统中不可或缺的组成部分,其主要功能是通过电磁感应原理,将某一电压等级的交流电能转换为另一电压等级的交流电能。
这一过程中,变压器会遭受多种损耗,其中涡流损耗是重要的一种。
为了有效评估和控制这些损耗,需要对电力变压器的基础知识有深入的了解。
电力变压器主要由铁芯、绕组、绝缘材料和油箱等部分组成。
铁芯是变压器的磁路部分,由硅钢片叠装而成,以减少涡流损耗。
绕组则是变压器的电路部分,通常由绝缘铜线绕制而成。
变压器的工作原理基于电磁感应,当一次侧绕组通入交流电时,产生的磁通在铁芯中产生感应电动势,从而在二次侧绕组中产生电流。
涡流损耗是由于铁芯中的磁通变化而产生的。
当磁通在铁芯中变化时,会在硅钢片中产生感应电流,即涡流。
这些涡流会在硅钢片中产生热量,导致变压器的温度升高。
涡流损耗的大小与铁芯的磁导率、电阻率、硅钢片的厚度以及磁通的变化频率有关。
为了减少涡流损耗,通常会采用以下措施:一是使用高电阻率的硅钢片,以增加涡流的路径长度,从而降低涡流的大小;二是减小硅钢片的厚度,以减少涡流的体积;三是将硅钢片进行绝缘处理,以减少涡流之间的相互影响。
温升计算
压降乘上RMS电流就是损耗,然后用热阻来计算温升,在加上环境温度就是最终的结温,如果不超过datasheet给出的值就OK。
Ploss=0.9*3=2.7W 公式中0.9是VFRt=37℃/WRth=2℃/W不需要加散热器。
电源设计都要考虑效率与散热问题,此公式供大家参考:T=(P/Fm)^0.8 *539/AP : 损耗(热量);Fm: 散热面积;A :散热校正系数,与散热材料有关;T :温升.A的取值范围,要看你所用的散热材料,是用铜,铝还是铁,要查下它们的参数,导热系数,热阻.散热设计是一个比较复杂,也很头痛的事情,相互学习吧.希望有更多的人来参与,讨论.任何器件在工作时都有一定的损耗,大部分的损耗变成热量.小功率器件损耗小,无需散热装置.而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏.因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热.在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果. 散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器.功率器件安装在散热器上.它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间.采用什么方式散热以及散热片要多大,由以下条件决定:1、元件损耗2、元件散热环境3、元件最高允许温度如果要进行散热设计,上面的三个条件必须提供,然后才能进行估算.大部分TO-220三极管,一般中间那个脚是C,它又跟管子本身的金属片相连,也有不相连的.散热片与金属片那个脚相连,所以一些高压,绝缘不良的问题要主意啦,要留有一定的距离,或选好的绝缘材料.以7805为例说明问题.设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计方法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.国际化标准组织ISO规定:确定散热器的传热系数K值的实验,应在一个长( 4±0.2 )m×宽( 4±0.2 )m×高( 2.8±0.2 )m的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置.散热器的传热系数是表示:当散热器内热媒平均温度与室内空气温度的差为1℃时,每㎡散热面积单位时间放出的热量.单位为W/㎡.℃.散热量单位为W.传热系数与散热量成正比.影响散热器传热系数的最主要因素是热媒平均温度与室内空气温度的温差△T,散热器的材质、几何尺寸、结构形式、表面喷涂、热媒温度、流量、室内空气温度、安装方式、片数等条件都会影响传热系数的大小.散热器性能检测标准工况(当△T=64.5℃时),即:热媒进口温度95℃,出口温度70℃,空气基准温度18℃.安规要求:对初/次级距离有三种方式:1.爬电距离达到要求.2.空间距离达到要求.3.采用绝缘材料:a.用大于0.4mm厚的绝缘材料.b.用能达到耐压要求的多层安规绝缘材料距离可小于0.4mm如变压器中用三层黄胶纸.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,热量传递的三种基本方式:导热、对流和辐射.传热的基本计算公式为:Φ=ΚAΔt式中:Φ——热流量,W;Κ——总传热系数,W/(m2·℃);A ——传热面积,m2;Δt——热流体与冷流体之间的温差,℃.散热器材料的选择:常见金属材料的热传导系数:银429 W/mK铜410 W/mK金317 W/mK铝250 W/mK铁90 W/mK热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.5种不同铝合金热传导系数:AA1070型铝合金226 W/mKAA1050型铝合金209 W/mKAA6063型铝合金201 W/mKAA6061型铝合金155 W/mKADC12 型铝合金96 W/mK绝缘系统与温度的关系:insulation class Maximum Temperatureclass Y 194°F (90℃)class A 221°F (105℃)class E 248°F (120℃)class B 266°F (130℃)class F 311°F (155℃)class H 356°F (180℃)摄氏度,华氏度换算:摄氏度C=(华氏度-32)/1.8华氏度F= 32+摄氏度x1.8绝缘系统是指用于电气产品中兩个或數个绝缘材料的组合.基本绝缘:是指用于带电部分,提供防触电基本保护的绝缘.附加绝缘:是为了在基本绝缘失效后提供防触电保护,而在基本绝缘以外另外的单独绝缘.双重绝缘:是由基本绝缘和附加绝缘组合而成的绝缘.加强绝缘:是用于带电部分的一种单一绝缘系统,其防触电保护等级相当于双重绝缘.根据你提供的:热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.则:铝板的热传导能力就是:热功率(W}=250*铝板厚度{M)*铝板宽度(M)/铝板长度(M)/温差(℃)对不?做散热用,最好用6063、6061、6060等铝合金型材,便宜,散热好,但是不绝缘.传热的基本计算公式为:Φ=KAΔtΦ - 热流量,W;Κ - 总传热系数,W/(m2·℃);A - 传热面积,m2;Δt- 热流体与冷流体之间的温差,℃.导热基本定律—傅立叶定律:500) {this.resized=true; this.width=500; this.alt='这是一张缩略图,点击可放大。
干式变压器绕组温升计算方法分析
干式变压器绕组温升计算方法分析傅华强 20031发热与散热的平衡—绕组的稳定温升绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。
绕组的散热是一个复杂过程。
影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。
因而绕组温升计算随其所用绝缘材料和结构的不同而不同。
2 绕组温升计算的数学模型绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。
公式运用的温度范围也是有限定的。
如: τ= K Q XQ = W/SS=∑ αi S i式中:τ—绕组温升;K—系数;X—与散热效果有关的系数,散热越好X的值越小;Q— 绕组的单位热负荷 W/m2W—参考温度下的绕组损耗功率 WS— 等效散热面 m2S i— 绕组散热面 m2αi— 散热系数2.1 不同结构型式的变压器所用的计算公式是不同的。
2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。
2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。
一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。
2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。
变压器设计-温升篇
注:1) 当用热电偶测量绕组的温升时,除了电动机外,这些温升值应 减小10K, 说明:温升测试有两种方法:电阻法和热电偶法,电阻法测的是线圈的 平均温升,热电偶法测的是线圈外层的温升,热电偶测线圈外层的温升 结果加10k为线圈的温升。
5
一
温升相关标准
4. GB 1094.2 《电力变压器 第二部分 温升》 5.4 绕组平均温度的测定 绕组 温度是通过绕组电阻确定的.三相变压器中,最好在中柱进行测量。
R j1 ——外绕组外半径,mm裸露部分(内表面积中间气道处与空气接触表面)的半径,
mm; N ——沿绕组均匀分布的撑条数; bt ——撑条宽度,mm; 如不设撑条时9 ,则式中N =0。
二 温升计算
2. 内绕组表面积计算 内绕组各表面均为非裸露部分的表面积,按下式计算:
K1 ——外绕组温升计算系数,经验设计验证取值 0.4;
2 ——内绕组温升,K;
K 2 ——内绕组温升计算系数,经验设计验证取值 0.44。
12
附GB1094.2 温升试验技术(电阻法)
C3 电源切断瞬间时绕组温度的外推法 测 量仪 器 可选人工读数的或自动记录的,模拟式的或数字式的.在切
断电源即时起大约20m in内应取得相当数量的离散值,作为外推电 源切断瞬间温升的数据.用这些离散值从时间上外推到电源切断瞬间, 从而得到所需的(电源切断瞬间)值.由测 得 的 离散值构成的曲线 如图C2所示,曲线呈现出绕组温度在开始几分钟内变化最快,然后 才逐渐缓慢。对热 时 间 常数大的变压器(容量较小的油浸自冷式), 其油温变化渐近线可认为是一条水平线。对于 热 时 间常数较小的变 压器(特别是对强迫冷却的大型变压器)试验电源切断后要求冷却装 置仍保持继续运行的情况下(见附录A),其油温渐近线,可能有必要 认为是向下倾斜的曲线,在该渐近线上叠加有初始变化较快的部分 (见图C2).
第9章电力变压器的运行
K1
I 12 t1
I
2 2
t
2
I
2 n
t
n
t1 t2 tn
0.32 8 0.82 4 0.52 8 0.514
848
查图9-6a曲线得过负荷倍数得K2=1.33。
第四节 变压器的事故过负荷
系统发生局部故障或变电所的某台变压器故障被切除,使部分 不能切除的负荷转移到其它变压器上时,这些变压器的负荷会 超过正常过负荷值很多,称为事故过负荷或短期急救负载。
T e P(t 98)d t T e P(9898) T 0
2)平均相对老化率:变压器在一定的时间间隔T内实际所损失 的寿命与恒温98℃运行时的正常寿命损失T的比值。
T e P(t 98)d t
0
1
T e P(t 98)d t
T
T0
当λ>1 时,变压器的老化大于正常老化,预期寿命缩短;
第9章电力变压器的运行
2021年7月30日星期五
电力变压器是发电厂和变电所中重要的一次设备之一,随 着电力系统电压等级的提高和规模的扩大,升压和降压的层次 增多,系统中变压器的总容量已达发电机装机容量的7~10倍。 可见电力变压器的运行是电力生产中非常重要的环节。本章着 重介绍电力变压器运行中的基本理论。
三、等值空气温度 1. 平均温度δav不能表示变化的温度对绝缘老化的影响 变压器的绝缘老化速度与绕组温度呈指数函数非线性关系,在 高温时绝缘老化的加速远远大于低温时绝缘老化的延缓。
2. 等值空气温度
等值空气温度δeq :指某一空气温度,如果在一定时间间隔内 维持此温度和变压器所带负荷不变,变压器所遭受的绝缘老化 等于空气温度自然变化时的绝缘老化。
油浸电力变压器温升计算设计手册
设计手册油浸电力变压器温升计算目 录1概述第 1 页热的传导过程 第 1 页温升限值第 2 页 1.2.1 连续额定容量下的正常温升限值 第 2 页 1.2.2在特殊使用条件下对温升修正的要求第 2 页 1.2.2.1 正常使用条件第 2 页 1.2.2.2 安装场所的特殊环境温度下对温升的修正 第 2 页 1.2.2.3 安装场所为高海拔时对温升的修正 第 3 页2层式绕组的温差计算第 3 页层式绕组的散热面(S q c )计算 第 3 页层式绕组的热负载(q q c )计算 第 3 页层式绕组的温差(τq c )计算 第 4 页 层式绕组的温升(θqc )计算第 4 页3饼式绕组的温升计算第 4 页饼式绕组的散热面(S q b )计算第 4 页 3.1.1饼式绕组的轴向散热面(S q bz )计算第 4 页 3.1.2 饼式绕组的横向散热面(S q b h )计算第 5 页 饼式绕组的热负载(q q b )计算 第 5 页饼式绕组的温差(τq b )计算第 5 页 3.3.1 高功能饼式绕组的温差(τq g )计算 第 5 页 3.3.2普通饼式绕组的温差(τq b )计算第 6 页饼式绕组的温升(θq b )计算第 7 页4油温升计算第 8 页箱壁几何面积(S b )计算 第 8 页箱盖几何面积(S g )计算第 9 页版次 日期签 字旧底图总号底图总号日期 签字 油 浸 电 力 变 压 器温 升 计 算共 页第 页02 01油箱有效散热面(S yx )计算第 9 页 4.3.1 平滑油箱有效散热面(S yx )计算 第 9 页 4.3.2管式油箱有效散热面(S yx )计算第10 页 4.3.3 管式散热器油箱有效散热面(S yx )计算 第12 页 4.3.4 片式散热器油箱有效散热面(S yx )计算 第14 页目 录油平均温升计算第19 页 4.4.1 油箱的热负载(q yx )计算 第19 页 4.4.2油平均温升(θy )计算第19 页顶层油温升计算第19 页5强油冷却饼式绕组的温升计算第21 页强油导向冷却方式的特点第21 页 5.1.1 线饼温度分布 第21 页 5.1.2 横向油道高度的影响 第21 页 5.1.3 纵向油道宽度的影响 第21 页 5.1.4 线饼数的影响 第21 页 5.1.5 挡油隔板漏油的影响 第21 页 5.1.6流量的影响第21 页 强油冷却饼式绕组的热负载(q q p )计算 第22 页强油冷却饼式绕组的温差(τq p )计算 第23 页 强油冷却饼式绕组的温升(θq p )计算 第23 页 强油风冷变压器本体的油阻力(ΔH T )计算第23 页 5.5.1油管路的油阻力(ΔH g )计算第23 页 5.5.1.1 油管路的摩擦油阻力(ΔH M )计算 第23 页 5.5.1.2 油管路特殊部位的形状油阻力(ΔH X )计算 第24 页 5.5.1.3 油管路的油阻力(ΔH g )计算 第25 页 5.5.2线圈内部的油阻力(ΔH q )确定第26 页 5.5.2.1 线圈内部的摩擦油阻力(ΔH q m )计算 第26 页 5.5.2.2 线圈内部特殊部位的形状油阻力(ΔH qT )计算第27 页油 浸 电 力 变 压 器温 升 计 算共 页第 页02 025.5.2.3 线圈内部的油阻力(ΔH q )计算第27 页 5.5.3 额定油流量(Q r )下的变压器本体的油阻力(ΔH T r )计算 第27 页 强油风冷的实际油流量(Q )计算第28 页 5.6.1 冷却回路的总油阻力(ΔH Z )计算 第28 页 5.6.2 强油风冷的实际油流量(Q )计算第28 页 强油风冷冷却器的冷却容量(P FP )计算第29 页 5.7.1 强油风冷油平均温升(θ’yp )的初步确定 第29 页 5.7.2 单台冷却器的冷却容量(P ’FP )的初步确定 第29 页 5.7.3 风冷却器工作的数量(N FP )确定第29 页 5.7.4 强油风冷却器单台实际冷却容量(P FP )计算第30 页 强油风冷油平均温升(θyP )计算 第30 页 强油风冷冷却器的技术数据第31 页强油水冷冷却器工作的数量(N SP )确定第38 页1 概述 热的传导过程变压器运行时,绕组、铁心、钢铁结构件中均要产生损耗,这些损耗将转变为热量发 散到周围介质中,从而引起变压器发热和温度升高。
变压器试验基本计算公式
变压器试验基本计算公式一、电阻温度换算:不同温度下的电阻可按下式进行换算:R=Rt(T+θ)/(T+t)θ:要换算到的温度;t:测量时的温度;Rt:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。
二、电阻率计算:ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃三、感应耐压时间计算:试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算:t=120×fn/f,公式中:t为试验时间,s;fn为额定频率,Hz;f为试验频率, Hz。
如果试验频率超过400 Hz,持续时间应不低于15 s。
四、负载试验计算公式:通常用下面的公式计算:Pk =(Pkt+∑In2R×(Kt2-1))/Kt式中:Pk为参考温度下的负载损耗;Pkt为绕组试验温度下的负载损耗;Kt为温度系数;∑In2R为被测一对绕组的电阻损耗。
三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y”或“Yn ”联结的绕组:Pr=1.5In2Rxn=3 In2Rxg;“D”联结的绕组:Pr=1.5In2Rxn=In2Rxg。
式中:Pr为电阻损耗;In为绕组的额定电流;Rxn为线电阻;Rxg为相电阻。
五、阻抗计算公式:阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。
阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。
ekt=(Ukt ×In)/(Un×Ik)×100%, ek=1)-(K)/10S(Pe22Nkt2kt %式中:ekt为绕组温度为t℃时的阻抗电压,%;U kt 为绕组温度为t℃时流过试验电流Ik的电压降,V;Un为施加电压侧的额定电压,V;In为施加电压侧的额定电流,A;ek为参考温度时的阻抗电压,%;P kt 为t℃的负载损耗,W;Sn为额定容量,kVA;Kt为温度系数。
变压器温度计算
1 引言工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。
下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。
2 热阻法热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。
有了厂家提供的热阻数据,简单、实用何乐而不为。
高频变压器可采用这一方法。
而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。
热阻法的具体计算公式如下:式中,温升ΔT(℃)变压器热阻Rth(℃/w)变压器铜损PW(w)变压器铁损PC(w)3 热容量法源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。
这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。
这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。
不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。
若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。
上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。
热容量法的计算模式如下:式中,温升ΔT(℃)变压器质量Gt(g)变压器铜损PW(w)变压器铁损PC(w)T—加热时间常数(s)At—变压器散热面积(cm2)Ct——变压器比热(w·s/℃·g)CC——铁心比热(w·s/℃·g)GC——铁心质量(g)cw——导线比热(w·s/℃·g)Gw——导线质量(g)cis——绝缘材料比热(w·s/℃·g)Gis——绝缘材料质量(g)Gt——变压器质量(g)4 散热面积法散热面积法基于热量全部由变压器表面积散发出去,这种算法有三种类型:4.1 统算法不管变压器的铁损铜损统统加起来,让他从变压器表面积散发出去,环型变压器常采用这一形式。
变压器设计公式范文
变压器设计公式范文变压器设计是电力系统中非常重要的一环,通过变压器可以实现电压的升降,从而适应不同电气设备的需求。
变压器设计需要考虑多个因素,包括额定功率、额定电压、效率、温升和尺寸等。
本文将介绍变压器设计的基本公式和相关注意事项。
一、基本公式1.变比公式变压器的变比公式可以用如下公式表示:N1/N2=U1/U2=I2/I1其中,N1和N2分别表示一次侧和二次侧的匝数,U1和U2分别表示一次侧和二次侧的电压,I1和I2分别表示一次侧和二次侧的电流。
2.功率公式电力变压器的功率可以用如下公式表示:P = √3 x U x I x cosφ其中,P表示功率,U表示电压,I表示电流,φ表示功率因数。
二、设计的基本要点1.额定功率计算额定功率是指变压器能够长时间、稳定地传输的功率。
额定功率的计算通常是根据负载功率和变压器的额定电压进行估算的。
功率计算公式如下:P=UxI其中,P表示功率,U表示电压,I表示电流。
2.额定电压选择额定电压选择需要根据实际需求和系统的电压水平来确定。
通常,一次侧的额定电压会根据电力系统的电压等级来选择。
二次侧的额定电压一般根据用户的需求来确定。
3.匝数计算变压器的匝数计算涉及到一次侧和二次侧的电压和电流。
匝数的计算可以通过变比公式或额定功率公式得到。
4.功率因数功率因数是指电流与电压之间的相位关系。
在变压器的设计过程中,需要考虑功率因数对变压器性能的影响。
通常,功率因数一般会控制在0.8至1之间,以提高系统的效率。
5.效率计算变压器的效率是指输出功率和输入功率之间的比值。
通常,变压器的效率应在85%以上。
效率的计算公式如下:效率=输出功率/输入功率x100%6.温升计算变压器在工作过程中会产生一定的损耗,从而导致温度升高。
为了确保变压器的稳定运行和寿命,需要对变压器的温升进行合理计算和控制。
温升计算的公式如下:温升=PxR其中,P表示损耗,R表示热阻。
7.尺寸计算变压器的尺寸计算需要考虑绕组的大小、冷却装置的布置以及外壳的设计等。
变压器试验计算公式汇总
变压器试验计算版第一部分直流电阻的计算第二部分绝缘特性的计算第三部分工频外施耐压试验的计算第四部分空载试验的计算第五部分负载试验与短路阻抗的计算第六部分零序阻抗的计算第七部分温升试验的计算第八部分声级测定的计算第九部分计算案例一、直流电阻的计算1.电阻(Ω)=电阻率(Ω/m)×长度(m)/截面积(mm2)2.电阻温度的换算铜 R T=R t×(235+T)/(235+t)铝 R T=R t×(225+T)/(225+t)R T:需要被换算到T℃的电阻值(Ω)R t:t℃下的测量电阻值(Ω)T :温度,指绕组温度(℃)t :温度,指测量时绕组的温度(℃)3.绕组相电阻与线电阻的换算R a=1/2(R ab+R ac-R bc)R b=1/2(R ab+R bc-R ac)R c=1/ 2(R bc+R ac-R ab)D接,且a-y、b-z、c-xR a=(R ac-R p)-(R ab R bc)/(R ac-R p) R b=(R ab-R p)-(R ac R bc)/(R ab-R p)R c=(R bc-R p)-(R ab R ac)/(R bc-R p)R p=(R ab+ R bc + R ac)/2R ab=R a(R b+R c)/(R a+R b+R c)R L=2R p/3R AB、R BC、R AC、R ab、R bc、R ac、:绕组线电阻值(Ω)R a、R b、R c、 R AN、R BN、R CN:绕组相电阻值(Ω)R p:三相电阻平均值(Ω)4.三相绕组不平衡率计算β=(R MAX-R min)/R(三相平均值)β:三相绕组电阻值的不平率(%)R MAX:测量电阻的最大值(Ω)R min:测量电阻的最小值(Ω)5.测量直阻时所需的直流电流计算I Y =1.41×K×i oI D =1.22×K×i oK :系数,取3-10i o :空载电流,A6.试品电感的计算L=ф/I=K×I×n×S/(l×I)=K×n×S×μ/lL:试品电感(H)K:k=0.4π×10-6 (H/m)S:铁心截面(cm2)l:铁心回路长度(m)μ:导磁系数n :匝数7.测量直阻对所需充电稳定时间的计算T=L/RT : 充电时间常数(S)当I1=I O时,t≥5T时才能稳定L : 试品测量绕组电感(L) I1 :测量充电电流(A)R :试品测量绕组电阻(R) I O :试品空载电流(A)8.试品磁场强度的计算H=nI/lH :磁场强度(A/m) I :流经绕组的电流(A)n :匝数 l :铁心回路长度(m)二、绝缘特性的计算1.吸收比的计算吸收比=R60s/R15S S:秒2.极化指数的计算极化指数=R10min/R1min min:分3.位移电流衰减时间的计算T d=RC×10-6T d :衰减时间(S)R :绝缘电阻值,MΩC :变压器的几何电容值(PF)4.吸收电流的估算I a(t)=BCUt-nI a(t):吸收电流(A)B :因数,与绝缘材料的性质、状态、温度有关C :绝缘体的等效电容n :常数,0<n<15.绝缘电阻值不同温度的换算R2=R1×1.5(t1-t2)10R2 : 温度为t2℃时的绝缘电阻值R1:温度为t1℃时的绝缘电阻值6.绝缘介质损耗的计算P=UIcosφ=ωCU2tanσP :绝缘内部消耗的功率U :施加于绝缘介质两端的电压C :绝缘介质的等效电容7.介质损耗不同温度下的换算tanσ2=tanσ1×1.3(t2-t1)/10tanσ2 :温度为t2℃时的tanσ值tanσ1 :温度为t1℃时的tanσ值三.工频外施耐压试验的计算1.同步发动机组未带电抗器不自激的计算X c>X d+X2+X kX c :折算到发电机端的负载容抗Xc=1/ωc (Ω)C :试品电容X d :发电机的同步阻抗(Ω)X2 :发电机的逆序阻抗(Ω)X k :试验变压器的短路阻抗(Ω)2.同步发电机带电抗器不自激的计算X c>(X d+X2)X L /(X d+X2+ X L) + X kX L :并联补偿电抗器的感抗(Ω)3.试验变压器容升的计算△U=I1/I N[e r cosφ1±e x sinφ1+1/2(e x cosφ1±e r sinφ1)2]△U :电压变化%值I1 :试验变压器低压侧电流(A)I N :试验变压器低压侧额定电流(A)e r :试验变压器短路阻抗的有功分量 e r=P kt/10S N (%)e x :试验变压器短路阻抗的无功分量 e x=U xt2 - e r2 (平方根)cosφ1:电压与电流的功率因数,等同于变压器介损测量值tanφsinφ1 :sinφ=1-tanφ(cosφ1)2 (平方根)4.补偿电抗器容量选择的计算S C<S X≤S G+S CS X :补偿电抗器50HZ的容量(KVA)S C :被试变压器在工频耐压时的试验容量,S C=U2ωcS G :发电机容量(KVA)5.电容分压器分压比的计算K c=(C2+C1)/C1K c :分压比C1 :高压臂电容(F)C2 :低压臂电容(F)6.变压器漏抗的计算X S=(U H/I H)×U K%X S :变压器漏抗(Ω)U H :变压器额定电压(V)U H :变压器额定电流(A)U K :变压器短路阻抗(%)四.空载试验的计算1.空载损耗的计算P o1=P o〃- P WV - P sP o1:空载损耗(W)P o〃:实测损耗(W)P WV :仪表损耗(W)P s :测量电缆损耗(W)2.空载电流的计算I o=(I ao+I bo+I co)/3I rI o :空载电流(%)I ao、I bo、I co :三相实测空载电流(A)I r :励磁绕组额定电流(A)3.空载损耗校正的计算P o =P o1[1+(U1- U r)/U1]P o :校正后的空载损耗值(W)P o1 :校正前的空载损耗值(W)U1 :平均值电压表测量值(V)U r:有效值电压表测量值(V)4.空载试验电源容量的计算S o=0.01× K ×i o ×S nS o :试验电源容量(KVA)K :系数,1≤K≤10,基本取K≥5可满足波形要求。
大型变压器温升试验补偿计算
大型变压器温升试验补偿计算1 引言在变压器试验中,被试品为感性负载,尤其是大型变压器温升试验往往导致试验设备容量不够、设备利用率不高、不节能等问题。
通过理论计算来指导试验的方法可减少许多盲目性的工作,为试验的顺利进行提供了便利。
被试变压器名牌数据:SZ12500/22-6.6,冷却方式为ONAN,联结组标号:Dyn11,额定电压组合:22000/6600V, 额定电流:328/1093.5 A,P0=12500W,PK=86361W,P 总=98861W,UK=9.3%。
按标准规定,此变压器的温升试验在-7.5%分接上进行,该分接电压为20350V,UK=8.26%,即实际施加的电压、电流分别为1680.9V、354.6A。
2 根据变压器(简化)等值电路图,求出温升试验分接参数rK , XK , ZK 的值,计算如下:I1 为温升试验分接相电流。
图1由于温升试验加的是总损耗(忽略激磁电流、变压器附加、试验线路等损耗、)引起的变压器电阻、电感误差,通过上面求出的参数计算出试验所需的电流和功率因数角:P 为施加的总损耗。
通过上述计算可估算出电源容量:由于功率因素较低,电源需提供较大的无功,从而经常导致发电机(中间变压器、调压器)过电流, 无法进行温升的试验,因此,采用电容进行无功补偿是有效的解决办法。
3 在被试变压器一次侧采用并联电容的方法试验所用发电机容量:900kVA,额定电压为6.3/3.15kV,额定电流为82.5/165A。
图2发电机选择额定电压3.15kV 位置,诺达到发电机的额定电流和所需的试验电压,则此时发电机的功率因数应为:按发电机长期允许电流165A 计算,提供负载功率100kW 则功率因数角应从φ1 = 85.2° 减少至φ2 = 78.83° ,此时需要补偿的电容量::由于电容器无功功率的补偿量与施加到电容器的电压平方成正比:由该式所知,如果试品施加的电压较低,电容器的利用率就较低,所以电容器的选择就很困难,从上式可知,采用中间变压器以提高电容器的端电压的方法是有效的途径。
变压器的温升计算
第六章变压器的温升计算第一节变压器的发热和冷却过程 无论油浸式变压器或是干式变压器,它们在运行的过程中,由于有铁耗与铜耗在,这些损耗都将转换成热能而向外发散,从而引起变压器不断发热和温度升高。
具体而言,铁耗和铜耗所产生的热量将首先使铁芯和绕组的温度逐步升高。
最温度上升很快,但随着铁芯和绕组温度的升高,它们对周围的冷却介质(如油或空气有一定的温度差(又叫温差或温升),这时绕组及铁芯就将一部分热量传到周围的介质去,从而使周围的介质温度升高,此时,由于绕组及铁芯有一部分热传给周围介质本身温度上升的速度将逐渐减慢。
经过一段时间后,绕组及铁芯温度最终达到稳定态,而不再升高,这时绕组和铁芯继续产生的热量将全部散到周围介质中去。
这就热平衡状态,上述过程是受“传热学”的规律所决定的。
在热稳定状态(热平衡)下,热流体所经过的路径是很复杂的。
在油浸变压器中般可有下列几个特点: (1)绕组及铁芯的损耗所产生的热量,将由绕组及铁芯的内部最热点,依靠传导传到绕组及铁芯与油接触的表面。
因而表面温度总比内部最热点的温度要低 图6—1表示了绕组的内部沿辐向方向的温差分布情况. 变压器在做绕组的温升试验及计算时,只能得出绕组的平均温升,而绕组的最比平均温升一般要高出10~15℃.如前所述,最热点温升对确定变压器的负载能力言,是很重要的数据,目前虽可以利用光纤测温等方法来测量绕组最热点的温度,装置费用昂贵,迄今尚未被广泛采用。
(2)当绕组及铁芯内部的热量传到表面以后,此时,绕组及铁芯表面的强度就会的温度要高些,从而将有一部分热量传到绕组及铁芯表面附近的油中,并使油的温渐上升。
一般绕组平均温度比油的平均温度要高出20~30℃(这就是说,绕组对油的平升一般为20~30℃),通常在设计时,根据经验把绕组对油沮升控制为不超过25K较 (3)当绕组及铁芯附近的油被加热之后,就会自动向上流动,而冷却后的冷油则流动,这就是抽的对流作用(油的热传导性能很差,主要靠对流),从而使整个变压器箱中的油温升高.另外,热油总向上流动,冷油向下流动,故油箱上部的油总比下沮要高些。
变压器温升测量
变压器绕组温升一、变压器绕组温升测量方法变压器温升测量有电阻法与热电偶法。
电阻法是利用被测绕组阻值在发热后增大,通过测量电阻的微小变化来确定绕组温升。
电阻法其主要特点是测量精度高,性能稳定,所测得的温升为绕组的平均温升,而采用变压器表面布点的热电偶法则只能对变压器表面温升进行测量,并不能代表变压器整个绕组的温升情况,而且此种方法测量误差较大,对环境要求极高,只能作为变压器温升测试过程中的辅助手段,起到粗略的温度监测作用。
电阻法的计算公式为:)()(121112t t t X R R R t --+-=∆ 式中: R1——试验开始时的绕组阻值(冷阻) ,Ω;R2- - 试验结束时的绕组阻值(热阻),Ω;X - - 绕组材料系数,对铜绕组取234.5,对铝绕组取225;t1- - 试验开始时的环境温度,℃;t2-- 试验结束时的环境绕组温度,℃t ∆-- 试验结束时的绕组温升,℃二、测量实验实验器材: 1,双显示数字电表 2,变压器一台3,交流稳压电源4,秒表5,双探头热电 偶点温度计实验步骤:1,先将变压器置于一个稳定的环境中进行预处理,使其和环境达到热平衡,预处理时间24小时。
2,将样品立放于一个涂有无光黑漆的胶合板上,尽量靠近试验角各边壁 ;,进行必要的测试连接,如连接输入导线、输出导线、负载阻抗等 ;在初级绕组绝缘表面中心的位置布置热电偶,用于监测绕组温度变化情况 ;在距样品中心水平 400mm 、垂直 400mm 的位置布置环境温度测点;3 试验开始时,利用双显示数字电表测量样品初级绕组的阻值 R1 及对应的环境温度 t1。
4 将样品的初级绕组连接到额定电源上,并用一个能在额定输出电压以及额定功率因数下能产生额定输出的阻抗做负载,然后将电源电压升高至标准规定值,整个试验期间保持该电压不变,直至样品工作温度达到稳定。
当初级绕组表面布置的热电偶所监测到的温度稳定在 某一范围内,视作为样品温度达到稳定状态,记录所用时间。
变压器过负载状态下绕组热点温升计算的指数方程方法
中图分类号 :TM41 文章编号 :1 74—2583(201 8)06—0081—03 DOI:1 O.1 93394.issn.1 674-2583.201 8.06.025 中文引用格式 :王恩龙,李 玉梅 .变压器过负载状态 下绕组热点温升计算的指数方程方 法[J].集成 电路应 用,201 8,35(06):81—83.
变压 器 的热 特性 进行 如 下假 设 【 · 。 (1)变压器油箱 内的油温从底部到顶部线性
基 金 项 目 : 国家 民委西北 民族 大学 中央 高校基本 科研业 务费资金 资助项 目 (31920170019) 。 作者简介 : 王恩龙 ,西北 民族 大学 ,研 究方 向:电力系 统 自动化 。
1 引言 变压器 超额 定值运 行时 ,绕组 中 的电流将 与 负
载成正比超过额定按电流 ,导致绕组热点温升显著提 高 ,加速 固体 绝 缘 的 老化 程 度 ,使 变 压 器 运行 承受 一 定程度的危害 J。依据 “6度原则” ,绕组热点温度 每升高 6 K,变压器运行寿命将减少 一半 。变压器过 负载 能 力 的 提 高 ,不 仅 能 够 有 效 地 避 免 因过 负 载 引 起 的设备损坏 ,还能够给电网负荷调度留出时间 ,保证 电 网运行 的稳 定性 。
l创新应用 A ppl ications
变压器过负 载状 态 下绕 组热点 温升 计算 的指数 方程 方法
王恩龙 ,李玉梅 (西北民族大学 。甘肃 780080)
摘要 :为控制电力变压器过 负载运行状态下 的危 害 ,提高 电力变压器的过负载能力 ,对 电力变压 器过负载状态下绕组热点温 升进行计算。通过实例分析 ,证 明电力变压器过负载状态下绕组热点 温升计算的指数方程方法可有效地用于 电力变压器过负载能力的分析与控制。 关键词 :电力变压器 ;过 负载 ;绕组热点
国标变压器油温计算公式
国标变压器油温计算公式
国标变压器油温计算公式是用于估算变压器油温的一种常用方法。
变压器油温是变压器正常运行条件下的重要参数,能够反映变压器的工作状态和绝缘性能。
根据国标相关规范,变压器油温可以通过以下公式进行计算:
变压器油温 = 环境温度 + (负载损耗 × t1 + 不均压损耗 × t2) / (载荷容量 × c1 + 不均压容量 × c2)
其中,环境温度指的是变压器周围环境的温度,负载损耗是指变压器在负载条件下产生的热损耗,不均压损耗是指变压器由于不均衡负载而产生的热损耗;t1、t2、c1、c2是根据具体变压器型号和参数进行计算得出的系数。
通过此公式计算得出的变压器油温是一种估算值,能够在很大程度上反映变压器油温的实际情况。
然而,实际的变压器油温还受到其他因素的影响,例如变压器的负载率、冷却系统的工作情况等。
因此,在实际应用中,还需结合变压器的具体情况和设备运行经验进行综合评估和判断。
总的来说,国标变压器油温计算公式是一种估算变压器油温的方法,通过考虑环境温度、负载损耗和不均压损耗等因素来进行计算。
在实际使用中,需要注意结合其他因素进行综合评估,以确保变压器的正常运行和安全性能。
变压器允许温升值
变压器允许温升值变压器各个部门有不同的允许温升,不同的运行工况也有不同的允许温升。
决定允许温升的因素有:变压器的运行预期寿命、变压器的安全运行、变压器的检测技术。
绕组允许温升:绕组的允许温升是指整个绕组的平均温升,由电阻法测得,允许温升与绝缘耐热等级有关。
油浸式变压器属A级绝缘,由于传统的绕组温升测量法为电阻法,测得的温升为平均温升,A级绝缘允许的平均温升为65K。
平均温升与绕组最热点温升之差假使为13K。
在年平均温度为20℃时,A级绝缘绕组最热点温度为20+65+13=98℃,此时A级绝缘具有正常寿命。
干式变压器各种绝缘的允许平均温升:A级为60K,E级为75K,B级为80K,F级为100K,H级为125K,C级为150K。
冬季绕组温升低于平均温升,绕组可延长寿命,夏季的绕组温升高于平均温升,绕组要牺牲寿命。
如超名牌容量也要牺牲寿命,但超名牌容量运行时,油浸式变压器A级绝缘绕组最热点温度不能超过140℃,即使牺牲的寿命不多,也不允许超过140℃,因超过140℃时油要分解出气体而影响绝缘强度。
所以油浸式变压器A级绝缘的最热点温度不能超过140℃是从变压器安全运行出发的。
大容量变压器有时有几种冷却方式,例如ONAN/ONAF,变压器额定容量一般是指ONAF下的允许值,当风扇失去电源后,冷却效率下降,如仍按ONAF冷却方式下容量运行时,绕组平均温升必将升高,故ONAN冷却方式下必须降低容量运行,使绕组平均温升不超过65K。
另外,双绕组或三绕组变压器中,二个或三个绕组应同时达相同的温升,当一个绕组达65K平均温升时另一个或二个绕组低于65K,则这样的设计是不经济的。
油浸式变压器还应使油面顶层与几个绕组平均温升同时达允许温升是较为经济的。
即油面顶层温升达55K,绕组平均温升达65K为经济的方案。
在设计阶段,就合理选取每一绕组的电流密度,在保持负载损耗不超过标准值时使各个绕组的温升接近65K,同时油面顶层也达55K。
变压器线圈允许温升单位k和℃的关系
变压器线圈允许温升单位k和℃的关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!变压器线圈允许温升单位k和℃的关系引言变压器是电力系统中至关重要的设备之一,用于将电能从一个电路传输到另一个电路,通常用于变换电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器的温升计算方法探讨
1 引言
我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。
工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。
对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。
但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。
老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。
进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。
下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。
2 热阻法
热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。
有了厂家提供的热阻数据,简单、实用何乐而不为。
高频变压器可采用这一方法。
而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。
热阻法的具体计算公式如下:
式中,
温升ΔT(℃)
变压器热阻Rth(℃/w)
变压器铜损PW(w)
变压器铁损PC(w)
3 热容量法
源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。
这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、
绝缘材料消耗掉。
这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。
不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。
若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。
上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。
热容量法的计算模式如下:
式中,温升ΔT(℃)
变压器质量Gt(g)
变压器铜损PW(w)
变压器铁损PC(w)
T—加热时间常数(s)
At—变压器散热面积(cm2)
Ct——变压器比热(w·s/℃·g)
CC——铁心比热(w·s/℃·g)
GC——铁心质量(g)
cw——导线比热(w·s/℃·g)
Gw——导线质量(g)
cis——绝缘材料比热(w·s/℃·g)
Gis——绝缘材料质量(g)
Gt——变压器质量(g)
4 散热面积法
散热面积法基于热量全部由变压器表面积散发出去,这种算法有三种类型:
4.1 统算法
不管变压器的铁损铜损统统加起来,让他从变压器表面积散发出去,环型变压器常采用这一形式。
有两种公式:
1)第一种形式:
α——变压器散热系数(w/cm2·℃)
At——变压器散热表面积cm2
2)第二种形式:
4.2 热交换法
热交换法的理论认为若铁心的温度与线圈的温度不同,为达到温度平衡铁心与线圈之间必需进行热交换,热交换有三种形式,一是铁心温度高线圈温度低,铁心向线圈传热,二是铁心温度低线圈温度高,线圈向铁心传热,三是铁心温度与线圈温度相等,互不传热,这样计算方法与统算法相似,只不过他要先计算出铁心与线圈的温度后才能下结论,统算法是不管三七二十一,铁心与线圈温度是多少只有一种算法,
1)计算线圈与铁心初始温升比
2)计算线圈与铁心间热平衡系数k
3)计算修正前温升Δτw0
Aw——线圈散热面积(cm2)
铁心散热面积AC与线圈散热面积AW之比αw0——线圈散热系数(w/cm2·℃)
散热面积的计算也有三种,第一种认为变压器底部的面积是不能散热的,是将变压器底部表面积不计入变压器的散热面积,第二种是认为变压器底部虽不能散热,但底部是安装在金属底板也会散热,因次将底部的面积计算进去,第三种是变压器表面不规则时为了计算方便要用等效散热面积去代替,例如环型变压器,采用直径等于变压器外径,高度等于变压器高度的一个圆柱体的表面积来代替变压器的散热面积,这三种计算方法的散热面积是不同的,所引起的误差要折算到散热系数中,这样才能使计算下.。