全液压式实验密炼机加料、压料及传动部分的设计

全液压式实验密炼机加料、压料及传动部分的设计
全液压式实验密炼机加料、压料及传动部分的设计

前言

炼混炼胶料存在质量差、效率低、劳动强度工作环境恶劣等一系列问题。为了克服这一系列的问题密炼机慢慢出现。随着高分子材料的飞速发展和科学技术的不断进步,密炼机的用途越来越广泛,主要用于橡胶的塑炼及混炼,还可以用于塑料、沥青等其它高分子材料的混合以及橡塑共混等,由于其独特的优越性,已经成为橡塑工业中最关键的混炼设备之一。

自密炼机产生以后,在混炼过程中显示了它一系列的优点:混炼时间短,生产效率高,操作容易,较好的克服粉尘飞扬,减少配合剂的损失,改善劳动条件,减轻劳动强度等。随着科技的进步,人们对橡胶混炼的要求越来越高,迫切要求对原来的旧机台进行更新换代,对旧的密炼机技术进行提高和完善。随着世界橡胶工业的全面复苏及轮胎工业的全面崛起,于是密炼机正向着密炼室容量大型化、主电机大功率,转子转速高速化,多级化或无级化的方向发展。一种作为研制开发作用的小型实验密炼机的出现势在必行,其为各种密炼机的发展演示起着至关重要的作用。X(S)M-1全液压式实验密炼机就是顺应密炼机发展,功能演示的一种高性能的密炼机。其具有橡塑共混,同步高速转子转动,尺寸比较小结构比较紧凑,主要适用于实验室等良好的环境的场合下,尺寸结构简洁、经济、实用的众多优点。

本设计总结了X(S)M-1全液压式实验密炼机的设计过程,设计方法和设计理论依据,设计机台的优缺点。

本说明书主要介绍了X(S)M-1全液压式实验密炼机的加料压料装置、传动装置设计计算,还有有关的技术说明。本设计力求使机台性能达到同类机台的先进水平。希望所设计的机台既能准确完成既定的工艺生产要求,又能使机台强度、刚度、耐磨性、寿命等可靠。并注意汲取先前的经验,注意创新改进,使机台结构简单,外形美观,且能提高生产率和降低能耗,另外,还要考虑加工成本和维修方便等。

1.绪论

1.1 密炼机的发展与我国密炼机现状

1.1.1密炼机的发展概述

1.1.2 我国内密炼机现状

国内在20世纪80年代以前,混炼胶加工机械的发展与工业化国家生产的机型、数量、结构形式、自动化程度、可靠性和联动化的水平等都存在很大的差距。通过改革开放,国内引进了许多世界先进的密炼机以及许多相关的制造技术,在此基础上通过消化吸收和改造创新,使我国的设计,生产制造密炼机的技术得到了极大的提高,我国已经生产出400立升容量的密炼机,开发了具有现代水平的XM系列(即F系列)密炼机,XMF系列密炼机。此外,还引进了GKN 系列和GKE系列密炼机技术。我们不但掌握了相切型转子的技术, 同时, 还开发了啮合型转子的技术,以适应不同胶料加工工艺的需要。从转速不同的异步转子发展到二个轮子以固定相位同速运转的同步转子。密炼机转子的转速从单一的低速向高速、多速和无级变速方向发展。随着子午线轮胎生产的发展, 为适应加工子午胎胶料的需要,在驱动装置方面加大了驱动电机的功率。为了解决密炼机压料装置对胶料单位面积压力不稳的问题, 将传统的气压压料装置改为液压压料装置。我国的密炼机生产厂家在对国外密炼机进行引进吸收的基础上,对自己的密炼机产品进行了大量的技术改进和创新,如采用了各种构型的转子(销钉转子、同步转子、可调距转子)、液压上顶栓、液压式转子端面密封、PID 温度自动控制系统、计算机全自动监控等。但是,受国家整体的工业水平的限制,我国的密炼机在产品的可靠性、适应性以及稳定性方面与工业化国家仍有一定的差距。近年来,随着汽车工业及其它各行业的快速发展,尤其是节能与效率方面各种高标准的提出,对密炼机的性能提出了更高的要求。

现代密炼机发展的标志之一是高速,高压,高效能机台。密炼机的机构也在不断的发展,密炼机工作过程及整个机组的机械化,自动化水平也在不断的提高,这种发展是在大大强化捏炼过程,提高机台性能,减轻体能劳动和改善工作环境等。密炼机的出现是炼胶机械的一项重要成果,至今仍然是塑炼和混炼中的典型设备,并且在以后的橡胶工业及轮胎工业仍然有着极其重要的作用。

随着国际形式的发展以及我国加入WTO的国际影响,我国密炼机的发展动向:

1、消化吸收,填补和扩展系列

F系列密炼计和GK系列密炼计,在我国已经有了较长时间的摸索,获得了许多经验和教训,同时经过了多年的消化吸收,因此,设计、生产制造已具备了条件。如果在选材、精加工、热处理以及严格的配套件筛选方面加以重视,生产这些密炼机的风险不大。F系列和GK系列的适应性比较强,用量也比较大,有一定的市场,因市场经济的规律,应填补和扩展并不断的提高质量、提高效率在市场上站稳脚跟。

2、跟踪新材料发展,填补空白

传统的密炼机通常是单一的混炼橡胶或单一的混炼塑料。当今的新材料层出不穷。橡塑共混的改性材料已经越来越多,传统的密炼机趋于普遍,配种多样化,传统的密炼机已经很难适应要求。要跟踪和根据材料的发展,设计制造出与之相应的密炼机填补空白。

3、利用高新技术嫁接,提高智能化水平

密炼机的发展是一部不断嫁接新技术的历史,除主机本身的发展以外,其下辅机从开炼机发展到单螺杆压片机,再到双螺杆压片机;其上辅机从人工加料到机械加料再到功能齐全的全自动上辅机加料,这是利用了高新技术嫁接传统技术成功范例。目前应该考虑一下如下问题:影响胶质量的主要因素是什么?如何在不同配方、不同的条件进行炼胶的控制?如何优化混炼胶质量?

4、跟踪国际前沿,立足自主创新

在橡胶工业近一个世纪的过程中,虽然已完善到高度机械化,联动化和自动化。但却一直没有突破连续化这一功能。混炼胶加工机械向连续化加工发展的趋势发展。连续混炼高质量的分散混炼和分布混炼已基本解决,利用计算机和相关的配套设备实现连续的定量加料已成为可能。不过目前的连续混炼要求使用胶粒或胶粉,使连续混炼机的使用收到很大的限制,因此迟迟不能推广。

5、传动系统多样化

为适应不同的橡胶工艺需求和国产配套条件的制约,密炼机的传动系统采用多种形式。

(1)双速电动机配单速减速机,通过电机的变速使密炼机的转子转速获得双速变化。

(2)单速电动机配变速减速机,通过减速机换档变速使转子获得不同的转速。

(3)变速电机(如: 直流电动机、变频电动机等)配单速减速机,使转子具有无级变速功

6、推进减速机强化、优化设计,采用集中传动结构

针对密炼机负荷性加大、载荷周变频率加快而引起偶发断齿现象,对减速机进行优化设计、强化CAD 设计。在合理地优选材质,严格热处理工艺和中硬齿面的精密加工工艺上下工夫,使减速机整体结构紧凑、耐用、噪声低、操作环境良好。

7、加料装置结构更趋合理、实用

(1)适当加大加料装置风缸直径,更适合我国橡胶厂、轮胎厂风压普遍偏低的情况,使胶料获得较大的压力,以提高炼胶效率。

(2)在风缸下加设支座,使维修和更换密封有较大的空间,更方便。

(3)压铊和胶料接触的表面用堆焊硬质合金或镀硬铬,使之更加耐磨耐蚀。

(4)压铊可以通水冷却,增强对炼胶的冷却效果。

(5)在加料装置与密炼室连接处,采用四块耐磨板衔接,不仅耐磨和便于维修,而且使密炼室的组装定位更加简便可靠。

8、混炼部分的结构不断更新,更趋于先进

(1)转子结构多样化。随着炼胶配方和工艺的发展,对密炼机转子结构也提出了新的不同要求。

(2)转子采用新材质,机械性能优异,铸造性能好、可焊性强。并在转子工作部分表面堆焊高硬度的硬质合金,做精密的整形加工,或表面镀硬铬,使转子具有更好的耐磨耐蚀性能,且自洁性更好。

(3)转子端面密封装置普遍采用拨叉外压式密封结构,保证高压润滑油注入密封端面,精密地调整、研合密封面,使整个端面密封可靠耐用。

(4)改进密炼室组装结构,采用定位耐磨板、定位楔块及销,配有硬度适宜的大螺栓组合,使密炼室整体结构刚性足,坚固耐用,装卸方便。

(5)密炼室采用周围钻孔的冷却结构,内壁堆焊硬质合金,表面耐磨,冷却效果极佳。

9、采用排料迅速、密封可靠的下落式卸料结构〔2〕。

1.2密炼机结构简单介绍

密炼机由转子、混炼室、加料、压料装置、传动装置、液压系统、加热冷

却系统、润滑系统等组成。

1.2.1转子

转子由合金钢铸造的转子体和长轴装配而成。这种结构不仅具有弯曲度小的优点,而且可以再利用。在转子体上堆焊了耐磨硬质合金。两转子和混炼室、耐磨板一样可以进行有效强制循环加热、冷却。

1.2.1.1转子支撑

转子支撑在自动润滑的双列球面滚子轴承上,轴承内孔为锥形孔,便于安装和拆卸。

1.2.1.2转子密封

转子密封采用内压式机械密封。它有一个固定在正面壁上的静耐磨环.

1.2.2加料、压料装置

加料装置主要由右墙板、后墙板、上下墙板和加料门等组成。压料装置安装在加料装置顶部,上顶栓与胶料接触部位堆焊了一层硬质合金,并可进加料和冷却。为了缩短加料时间,设计尺寸较大的加料口。加料、压料安装在前墙壁和密炼室上。

1.2.3卸料装置和液压控制系统

卸料装置主要由卸料门、旋转油缸、锁紧装置等组成。卸料门的开关由旋转油缸驱动,卸料门在关闭位置由锁紧油缸通过锁紧块锁紧。在炼胶过程中胶料对下顶栓产生的压力主要由锁紧滑块支撑,锁紧接触面为斜面接触并堆焊了硬质合金,可长期使用,便于维修。卸料门顶部与胶料接触部位堆焊了一层硬质耐磨合金,边缘有冷却孔,可以由通过卸料门轴内孔引入的介质组成循环回路,进行加热和冷却。在排料时,旋转油缸可将卸料门打开大约180度。卸料门、锁紧装置的动作由液压系统驱动。液压系统分为主回路、保压和事故手动泵回路。主回路和保压回路均由电机油泵驱动。主回路油压为90bar,流量为39L/min,保压回路油压为40 bar,流量为3.9L/min..在机器断电情况下,电动油泵不能正常工作,可由手动泵将卸料门打开。

1.2.4传动装置

传动装置由直流电机、弹性联轴器、减速机和齿轮联轴器组成。转子转速

可由电器控制电动机进行无级调速。

1.2.5加热冷却系统

胶料过程温度的变化对炼胶质量具有重要意义。密炼室、转子、下顶栓都具有用于加热、冷却通道,它与温度控制系统相连即可控制胶料温度。温度控制系统有两中控制方法供用户选择。一种是电加热控制方法,一种是蒸汽加热控制方法。电加热、蒸汽加热系统有两个独立的回路,一个回路单独加热和冷却,另一个回路给密炼室和下顶栓冷却加热。该系统分别调节回路介质的流量和平衡温度。每个回路都有必要的测试和调节元件。这个自动加热、冷却系统作为一个单独的集成单元装在密炼机的控制系统中。

1.2.6润滑系统

密炼机的使用寿命和运转的可靠性,首先取决于对它的保养,其中最重要的一点是对所有运动部件进行正确的润滑。所有润滑点都需要密封润滑剂或密封润滑介质。润滑剂由润滑油泵驱动,这些油泵的出口都可以单独调节润滑油输出量。润滑油罐内必须经常保持一定量润滑油,并需经常检查,绝对不允许油泵空转。如果在润滑管道内进入了空气,则润滑点得不到连续润滑,设备很可能会出现损坏,并且空气也很难从管道中排出。安装润滑管道时,必须避免灰尘和污物进入其中。如果空气已经进入润滑管道,说明油罐内的润滑油不满了,那么必须将空气从润滑系统中排出。为了确保油泵能正常运转和整个设备可靠运行,只能使用不会产生任何化学腐蚀且绝对纯净的润滑油。往油罐进油时,润滑油需过滤,一定不要任何杂物混进去〔3〕。

1.3 密炼机加料部分的简单介绍

20 世纪80年代,国外许多密炼机生产厂家研制出不同形式的液压压料装置,使整机动作全部实现液压化,包括加料门的启闭、卸料门的开启及锁紧或松锁都是由液压驱动来完成的。液压压料装置的一般结构特点:压砣与连杆(连杆相当于气动式中的活塞杆)相连,连杆的另一端与横梁相连,横梁的两端(或四角)与两个油缸(或四个油缸)的活塞杆铰接。油缸体铰接在机体上(或固定在框架上),油缸活塞杆上下移动带动横梁和连杆上下运动,实现了压砣的升降。压砣对物料的压力由油压决定。为使压砣上、下运动平稳,横梁在导向柱

(或导向框)中运动。

1.3.1液压压料装置的形式

1.3.1.1德国W&P公司液压压料装置

1993年德国W&P 公司生产的密炼机液压式压料装置的结构示意图见图1-1。压砣通过连杆与横梁相连接,横梁两端与两个油缸的活塞杆铰接,油缸体下端与密炼机机体铰接固定。油缸活塞杆上、下运动时带动压砣上升或下降,导向柱对横梁起导向作用,使压砣平稳升降。

图1-1W&P 液压压料装置

Fig1-1 W&P hydraulic pressure ram equipment

1.3.1.2 英国FRANCIS SHAW 公司液压压料装置

英国FRANCIS SHAW公司K系列密炼机也采用液压压料装置,其结构示意图见图1-2。其结构特点是:四个油缸的活塞杆与H 形构架相连接,在H 形构架的中间连接连杆和压砣,压砣的平稳升降靠H型构架沿着导向框运动来实现。

图1-2K型密炼机液压压料装置

Fig1-2 K type mixer of hydraulic pressure ram equipment

图1-3 SKINNER二油缸液压压料装置

Fig.1 -3 SKINNER two cylinders hydraulic pressure ram equipment

1.3.1.3美国SKINNER 公司液压压料装置

美国SKINNER公司液压压料装置其特点是:导向柱用导向框代替(与W&P 公司相比较),两个油缸斜对角放置,不仅使压砣运行更加平稳,而且使油缸的安装位置避开了加料装置的检修孔。SKINNER公司也有用四个油缸带动压砣升降的,其结构示意图见图1-4,四个油缸使压砣运行平稳,同时油缸的体积也较小。

图1-4SKINNER 公司四油缸液压压料装置

Fig.1-4SKINNER COMPANY four cylinders hydraulic pressure ram

equipment

1.3.1.4 意大利POMINI 公司液压压料装置

意大利POMINI公司液压压料装置的结构示意图如图1-5 。其结构特点是:油缸固定在导向框的上部,压砣下行时油缸无杆端进油,在压力相同的情况下,与其它形式的液压压料装置比较,压砣对物料的压力较大。缺点是整机的高度较高。

图1-5POMINI公司液压压料装置

hydraulic pressure ram equipment1.3.1.5 中国大连冰山橡塑股份有限公司(“大橡塑”)

“大橡塑”于2001年研制生产液压式压料装置的密炼机,其结构形式如图1-6 所示,横梁导向靠导向柱。

图1-6“大橡塑”密炼机液压压料装置

Fig1-6 “big rubber” and realistic”mixer of hydraulic pressure ram

equipment

1.3.2 液压站

液压站是为液压式密炼机各部件动作提供动力,由高、中压油泵,电磁阀,控制阀等组成,高压控制系统选用电/ 液比例伺服阀作为主要控制阀。该阀与高性能的可编程序控制器(PLC)相配合,可以控制上顶栓油缸,带动压砣高速上升、下降,变更油缸油压等功能。中压控制卸料、锁紧,加料门油缸的动作〔4〕。

1.3.3 液压压料装置的优点

(1)无级调压灵活可靠

新的炼胶工艺在一个炼胶周期内,压铊对物料的压力需数次变化,液压式压料装置密炼机较气动式压料装置密炼机要灵活可靠,改变的速度快,压力准确,而且对物料的压力高,满足工艺要求,从而可提高炼胶质量。

(2)压铊升降速度快

一般情况下,一个炼胶周期为4min左右,由于液压压料装置压砣上下运动的时间较气动的短20% 左右,270L 密炼机的压砣上升或下降的时间只有3-4s,从而可缩短炼胶周期,提高生产效率。

(3)生产单位重量的胶料所消耗的能源少

在每次混炼过程中,气动式压料装置压铊要升降3- 4 次,需放出大量的压缩空气,消耗大量的气能。压缩空气由电能转化,设备一年耗电量可计算出来;同理,液压压料装置压砣升降用压力油,压力油由油泵产生,一台设备一年耗电量可计算出来;两者耗电量相比,差别很大,液压压料装置可节约80% 的电能。据国外杂志介绍,当一台320L 密炼机用0.6MPa压缩空气时,将气动压料装置改为液压压料装置一年可节约电费3 万美元。用0.8MPa 压缩空气,气

动压料装置改为液压压料装置一年可节约电费4 万美元。

(4)可省去购买空压机费用

采用液压压料装置,加料门气缸也改为油缸,整机全液压驱动。空压机也不需要了,可省去购买空压机的费用,另外操作空压机的工人也省去了。

(5)省去了气动控制元件及气控管路

(6)气动压料装置放气时有很大噪声,造成环境污染。用液压压料装置噪声很低。

(7)适用于子午轮胎胶料生产

子午轮胎胶料很硬,胶料中含油量很少,混炼困难。液压压料装置对物料的压力高压铊浮动量小,主电机功率高,能适应子午轮胎胶料混炼工艺要求。液压压料装置液压站较复杂,需要提高维修电工、钳工的素质。实践证明:通过培训,用户是可以完全掌握的,况且关键的液压件都是进口件,不易出现故障。液压压料装置密炼机售价较气动压料装置密炼机要高。但总体而言,运行中省却了空压机和运行费用。从长远看,塑炼,混炼单位重量胶料的成本肯定比气动的低,况且液压式较气动式压料装置的密炼机炼胶质量好,生产效率高,适用于子午胎炼胶工艺要求,故液压压料装置密炼机在当前为生产子午胎的厂家首选。

2.压料装置的设计与计算

压料装置主要有油缸、上顶栓、导向装置等组成,上顶栓在油缸的驱动下,提升后可以通过自动加料机构加料,当上顶栓压下后可将胶料封闭在密炼室内,并施加一定的压力,使胶料的混炼在一定的空间内进行。上顶栓的压力对胶料的混炼质量和生产率都有直接关系,因此,压料装置也是密练机的重要组成部分之一。

2.1X(S)M-1全液压式实验密炼机加料部分的基本参数

1.密炼机总容量:1升

2.液压缸为:GB7938-87系列公称压力为16MPa内径为40mm活塞行程为250mm活塞直径为16mm

3.上顶栓压力:P=1Mpa(最高)

4.传动方式:双出轴

5.液压油压力:10MPa

2.2驱动方式的选取

压料装置主要有气缸、液压缸、电动三种形式。随着橡胶工业的发展电动形式由于在能源方面的考虑已经慢慢被淘汰。现在主流压料装置主要采用的是气动和液动形式。轮胎工业不断发展, 为了降低轮胎价格,在轮胎生产过程中, 降低设备运行成本成了降低轮胎生产成本的一个重要环节。大部分密炼机都是气压式上顶栓。炼胶时密炼机上顶栓动作要消耗大量的气能。为了降低此环节的能耗, 科研人员成功研制了密炼机液压上顶栓新装置。它与气动上顶栓相比:

1、是本设计的密炼机是用于实验室的密炼机需要比较精密的传动,液动上顶栓密封易于气动;

2、是有效提高了上顶栓对胶料的压力与稳定性,提高了炼胶质量;

3、是运行速度快,炼胶时间短,从而提高了生产效率;

4、是不需压缩空气,节约了能源;

5、是液压上顶栓设计合理,即使液压油泄漏也不会漏入喂料斗或密炼室。操作与维修十分方便,更换液压缸仅需几分钟,还可与气动上顶栓互换。

综合以上优点,我们选取了液压缸。

2.3加料压料装置

2.3.1加料装置

加料部分由前、后板及两侧板组成。前板设加料门口表面镀铬以增加表面光洁度和美观。前门转轴的密封采用密封条加弹簧的结构,后门采用压板方式,便于后门的压紧和密封。其门轴处采用铜制套环,其具有耐磨密封的作用。侧板上设有安全销,以防上定栓在检修时落下伤人。由于我们设计翻转式密炼机的初衷是减轻工人的劳动强度,设备简单,安装、维修方便,抛弃以前加料斗式加料装置,采用简单的加料门式加料装置,这样降低成本,结构简单。我设计的这种加料方式是手动打开的,加料时,打开前门45度,直接想其内投料即可。

2.3.2 压料装置

压料部分由上顶栓、导向装置及双作用单缸液压油缸组成。上顶栓的升降及加压条采用单油缸形式,安装在加料口的竖直上端。上顶栓与胶料接触的表面制成与密炼室内表面圆弧基本相同的形状,以便于胶料的活动。上顶栓的升降与加压采用液压式双作用单油缸结构。为使上顶栓升降运动顺畅,采用了导向装置,这种导向机构是通过所选用的电磁液压缸上的电磁感应在指示灯上显示出来,结构简单、准确、美观大方。上顶栓的压力采用先进的比例调节阀进行自动调节。

2.3.3上顶栓尺寸的确定

上顶栓的截面面积的尺寸应略小于密炼室的截面面积的尺寸,即保证上顶栓与密炼室口部内径之间留有空隙,这一空隙应适宜:太大,密封不好,各种小料飞扬,使工作环境变的恶劣,这不是我们设计实验环境的初衷;太小,容易被胶料咬住,使的活塞杆承受更大的作用力,其寿命减短,也不利于上顶栓的平稳的升降。我们将上顶栓各边间隙定为0.5mm,即上顶栓的尺寸是51mm×126mm。

2.3.4液压缸的确定

本着简化设计过程和价格便宜,维护、维修的过程的方便,我们尽量在设计过程中采用标准件。在该压料装置中,我们将取液压缸为标准件.

2.3.4.1对活塞杆的直径计算:

由于液压缸没有速比的要求,初步选定活塞杆的直径d,由机械手册第二卷查得:

D d )5

131(-= (2-1) D :液压缸的内径 D=40mm ;

所以这里d 选取16mm;

2.3.4.2 活塞杆的强度计算〔5〕:

由于活塞杆只受受轴向的拉力或者轴向的推力,可以近似的用直杆承受拉压力的简单计算公式(1-3-27)〔2〕进行计算:

][4106

2σπσ≤?=-p d N/mm 2 (2-2)

P -活塞杆的作用力,N 液压缸的工作压力为 P =10MPa

d -活塞杆的直径,mm

][σ-材料的许用应力,N/mm 2 对于中碳钢的][σ=400 N/mm 2

22

2/96.200410mm N p d =?=πσ

很显然][σσ<因此杆的强度满足要求。

2.3.5对上顶栓的杆的稳定性校核杆的材料:Q235-A

杆的柔度: 25.1004==d

l μλ (2-3) 式中: μ- 长度系数,将杆两端简化,一端固定,一端只轴向移动,有 械设计手册查得长度系数μ=1

l 杆的长度,取401mm.

d 杆的直径,取16mm

当1λλ≥时,为大柔度杆,1λ值为:

γ

σπλE =1 (2-4) 式中: E- 材料的弹性模数,对于Q235-A ,取206GPa.

p σ- 材料的强度极限,对于Q235-A ,取200MPa.

78.100 1=?=γ

σπλE

当λλλ21>>时,为中柔度杆,λ2值为:

2s

a b σλ-=

(2-5) 式中: a- 与材料有关的常数,对于Q235-A ,取304MPa.

b- 与材料有关的常数,对于Q235-A ,取1.12MPa.

s σ-与材料有关的常数,对于Q235-A ,取235MPa.

18.942=-=b a ?

σλ

很明显, 78.10025.10018.94<<即21λλλ≤≤

属于中等柔度的压杆。

对于中等柔度的压杆:

cr a b σλ=-

(2-6) 所以 MPa b a cr 13.191=-=λσ

中柔度杆的临界力c p (N )为:

A p c c ?=σ

(2-7) 式中,c σ——活塞杆的临界应力

A ——杆的横截面积

22

12564mm D A ==π

KN A p c c 92.3840=?=σ

杆的稳定性校核:

工作载荷:即上顶栓对胶料的总压力KN p c 8256=

安全系数:

15.2==p p n c γ

式中:n- 安全系数,

对于钢材,稳定安全系数0.35.1--=y n

很明显,n 满足要求.因此,杆是稳定的。

3.传动部分的设计计算

3.1高速级传动的设计和计算

(一)原始数据

电机型号: Z4-132-3

电机功率: P=12KW

电机转速: m i n

/1500r n m = 转子最大转速: n=120min r

三级圆柱齿轮减速器

(二)主参数的确定

1、传动比的确定 5.12120

1500===n n i m 由于减速器的输出轴为双轴同步转速。因此,第三级传动的传动比为1 三级圆柱齿轮减速器(321,,i i i )

155.12321??==i i i i

分配总传动比,及各级传动比如何取值,是设计中的重要问题。 传动比分配的合理,可使传动装置得到较小的外廓尺寸或较轻的重量,以实现降低成本和结构的紧凑的目的;也可以使传动零件获得较低的圆周速度以减小动载荷或降低传动精度等级;还可以得到较好的润滑条件。要同时达到这几方面的要求比较困难,因此应按设计要求考虑传动比分配方案,满足某些主要要求。

2、分配传动比时考虑以下原则[6]:

各级传动比的传动比应在合理范围内,不超过允许的最大值,以符合各种传动形式的工作特点,并使结构比较紧凑。

1)应注意使各级传动件尺寸协调,结构匀称合理。例如,由带传动和单级圆柱齿轮减速器组成的传动装置中,一般应使带传动的传动比小于齿轮传动的传动比。如果带传动的传动比过大,就有可能使大带轮半径大于减速器中心高,

使带轮与底架相碰。

2)尽量使传动装置外廓尺寸紧凑、重量较轻。

3)尽量使各级大齿轮浸油深度合理(低速级大齿轮浸油稍深,高速级大齿轮能浸到油)。在卧式减速器设计中,希望各级大齿轮直径相近,以避免为了各级齿轮都能浸到油,而使某级大齿轮浸油过深造成搅油损失增加。通常二级圆柱齿轮减速器中,低速级中心距大于高速级,因而为了使两级大齿轮直径相近,应使高速级传动比大于低速级。

4)要考虑传动零件之间不会干涉碰撞。

对各类减速器,考虑上述某些原则,下面给出分配传动比的参考数据:对同轴式二级圆柱齿轮减速器,为了使两级在齿轮中心距相等情况下,能达到两对齿轮的接触强度相等的要求,在两对齿轮配对相同,齿宽系数2.1/21=d d ??的条件下,其传动比分配推荐按同轴式曲线选用。这种传动比分配的结果,2d 会略大于4d ,高速级大齿轮浸油深度较大,搅油损失略有增加。

分配的各级传动比只是初选定的数值,实际传动比要由传动件参数准确计算,例如齿轮传动为齿数比,带传动为带轮直径比。因此,工作机的设计转速,要在传动件设计计算完后进行核算,如不在允许误差范围内,则应重新调整传动件参数,甚至重新分配传动比。设计要求未规定转速的允许误差时,传动比一般允许在)53(-±%范围内变化。

根据以上分配原则初定传动比:

1i =2.5 2i =5 3i =1

初选定齿轮齿数及螺旋角:

第一级:选小齿轮齿数241=Z 则2Z =2.5?24=60

第二级:选小齿轮齿数3Z =20 则4Z =5?20=100

第三级:选小齿轮齿数5Z =30 则6Z =1?31=30

选取螺旋角。初定螺旋角 14=β

3.2 传动齿轮的设计

3.2.1一级传动齿轮设计计算

1.选取精度等级、材料

1)精度等级为7级精度;

2)小齿轮的材料为40Cr 调制处理,齿面硬度为280HRS ,齿心硬度为350HBS 。大齿轮的材料为45钢调制处理,硬度为240 HRS ,两者的硬度差40HBS 。

2. 按齿面接触强度设计计算:

由设计计算公式(10-9a )[6]进行试算,即

3212111]

[)1(32.2H d E t t i Z i T K d σΦ±≥ (3-1) 确定公式内的各计算数值

试选定载荷系数6.1=t K

由图10-30[6]选取区域系数H Z =2.433。

由图10-26[6]查得5.01=αε ,9.02=αε则4.121=+=αααεεε。

1)计算接触疲劳许用应力

取实效率为1%,安全系数1=s ,由公式(10-12) [6]得

MPa S

K H HN H 99011009.0][1lim 11=?==σσ MPa S

K H HN H 1045110095.0][2lim 22=?==σσ MPa S K S K H H h H H H H 5.1017)(2

])[]([][2lim 2lim 1lim 1lim 21=+=+=σσσσσ (3-2) 计算小齿轮传递的转矩

KW p p 94.11955.01212=?=?=η

η:为传动效率

mm N T ??=??=451106.71500

94.11105.95 由表10-7[6]选定齿宽系数8.0=d φ

同上由表10-6[6]查得材料的弹性影响系数21

8.189a MP Z E =

由图10-21d [6]按齿面硬度得齿轮的接触疲劳强度极限,大小齿轮的接触疲劳强度极限为MPa H H 11002lim 1lim ==σσ

同上由公式10-13[6]计算应力循环次数

911048.61530082115006060?=??????=???=h L j n N 9921016.23/1048.6?=?=N (3-3)

查得接触疲劳寿命系数9.01=H N K ;95.02=HN K

2)计算

(1)计算小齿轮分度圆直径t d 1,代入以上数值代入公式(4-1)得: mm t d 3865.375.10175.652.18.0)8.18944.2(5.31064.76.1232.213

22

4=≈????????≥ (2)计算圆周速度v s m n d v t 956.21000601

1=?=π (3)计算齿宽及模数

齿宽 mm d b t d 12.3065.378.01=?=?=φ

模数 52.124

14cos 11=?=t n d m 齿高 mm m h nt 42.352.125.225.2=?==

8.842.312.30==h b

计算纵向重合度βε

522.1tan 318.01==βεφβZ d (3-4) 计算载荷系数K

已知使用系数1=A K 根据

s m v 956.2=,7级精度,由图10-8[6]查得动载荷系数为12.1=v K 由表10-4[6]查得

βH K 的计算公式直齿轮的相同。

故 94.11016.0)6.01(26.005.132

2=?+++=-b K d d H φφβ

由图10-13[6]查得77.1=βF K

由表10-3[6]查得2.1==ααF H K K 故载荷系数

379.277.12.112.11=???==βαH H V A K K K K K 按实际的载荷系数校正所算得的分度圆直径,由公式(10-10a) [6]公式得 mm K K d d t t 97.426.1379.265.373311=== (3-5) 计算模数

74.124

14cos 97.42cos 11=??==Z d m n β 3.按齿根弯曲强度设计根据公式(10-17) [6]得 []F a d Sa

Fa n z F Y Y KT m σεφββ211cos 2≥

(3-6)

1)确定计算参数

(1)计算载荷系数

579.492.24.112.11=???==βαF F V A K K K K K

(2)根据纵向重合度522.1=βε,图10-28[6]查得螺旋角影响系数88.0=βY 。

(3)计算当量齿数

28.26cos 31

1==βZ Z V

7.65cos 32

2==βZ Z V

(4)查取齿形系数

由表10-5[6]查得592.21=Fa Y ;211.22=Fa Y

(5)查取应力校正系数

由表10-5[6]查得596.11=Sa Y ;774.12=Sa Y

(6)计算大小齿轮的]

[F Sa

Fa Y Y σ并加以比较由公式(10-12) [6]

01099.0][1

1

1=F Sa Fa Y Y σ

01007.0][2

2

2=F Sa Fa Y Y σ

(3-7) 小齿轮的数值较大.

2)设计计算

03

.22465.18.001099

.0)14(cos 88.01064.7579.42224=????????≥ m

取分度圆直径为42.97mm

53.2014cos 11=?

=n

m d Z

因此,取m=2.5 Z 1=21 则Z 2=53

4、几何尺寸计算

1)计算中心距

βcos 2)(21n

m Z Z a +==95.36mm

液压传动课程设计

液压传动课程设计说明书 设计题目:半自动液压专用铣床液压系统工程技术系机械设计制造及其自动化4班 设计者 指导教师 2016 年12 月1 日

摘要 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以半自动液压专用铣床液压系统为例,介绍液压系统的设计计算方法。设计一台多用途大台面液压机液压系统,适用于可塑材料的压制工艺,如冲压、弯曲翻边、落板拉伸等。要求该机的控制方式:用按钮集中控制,可实现调整,手动和半自动,自动控制。要求该机的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺要求进行调整。主缸工作循环为:快降、工作行程、保压、回程、空悬。顶出缸工作循环为:顶出、顶出回程(或浮动压边)。 关键字:液压; 快进; 工进; 快退

前言 本课程是机械设计制造及其自动化专业的主要专业基础课和必修课,是在完成《液压与气压传动》课程理论教学以后所进行的重要实践教学环节。本课程的学习目的在于使学生综合运用《液压与气压传动》课程及其它先修课程的理论知识和生产实际知识,进行液压传动的设计实践,使理论知识和生产实际知识紧密结合起来,从而使这些知识得到进一步的巩固、加深和扩展。通过设计实际训练,为后续专业课的学习、毕业设计及解决工程问题打下良好的基础。 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查,学生必须发挥主观能动性,积极思考问题,而不应被动地依赖教师查资料、给数据、定方案。

液压传动课程设计液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =;动力滑台采用平导轨,静摩擦系数μs =,动摩擦系数μd =。液压系统执行元件选为液压缸。 负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =,得出液压缸在各工作阶段的负载和推力,如表1所列。

液压课程设计(理工大学)

目录 0.摘要 (1) 1.设计要求 (2) 2.负载与运动分析 (2) 2.1负载分析 (2) 2.2快进、工进和快退时间 (3) 2.3液压缸F-t图与v-t图 (3) 3.确定液压系统主要参数 (4) 3.1初选液压缸工作压力 (4) 3.2计算液压缸主要尺寸 (4) 3.3绘制液压缸工况图 (5) 4.拟定液压系统的工作原理图 (7) 4.1拟定液压系统原理图 (7) 4.2原理图分析 (8) 5.计算和选择液压件 (8) 5.1液压泵及其驱动电动机 (8) 5.2阀类元件及辅助元件的选 (10) 6.液压系统的性能验算 (10) 6.1系统压力损失验算 (10) 6.2系统发热与温升验算 (11) 7.课设总结 (12)

0.摘要 液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。在数控加工的机械设备中已经广泛引用液压技术。作为机械制造专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型是十分必要的。 液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的出发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。 关键词:钻孔组合机床卧式动力滑台液压系统

1.设计要求 设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环式:快进→工进→快退→停止。机床的切削力为25000N ,工作部件的重量为9800N ,快进与快退速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1 。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 2.负载与运动分析 2.1负载分析 (1)工作负载: T F =25000N (2)摩擦负载: 摩擦负载即为导轨的摩擦阻力 静摩擦阻力:Ffs = 0f ?G=1960N 动摩擦阻力:Ffd =d f ?G=980N (3)惯性负载:Fa = t v g G ??=500N (4)液压缸在个工作阶段的负载。 设液压缸的机械效率cm η =0.9,得出液压缸在各个工作阶段的负载和推力,如表1所示。 表1液压缸各阶段的负载和推力 工况 计算公式 外负载F/N 液压缸推力 F0= F / cm η/N 启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快进 F=Ffd 980 1089 工进 F=Ffd +T F 25980 28867 反向启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快退 F=Ffd 980 1089

液压传动课程设计题目2

1.汽车板簧分选实验压力机(立式),液压缸对工件(汽车板簧)施加的最大压 力为3万N,动作为:快进→工进→加载→保压→慢退→快退,快进速度14mm/s,工进速度0.4mm/s,要求液压缸上位停止、下行时、保压后慢退不能失控。最大行程600mm。试完成: (1)系统工况分析; (2)液压缸主要参数确定; (3)拟定液压系统原理图; (4)选取液压元件; (5)油箱设计(零件图);* (6)油箱盖板装配图、零件图;* (7)集成块零件图; 2.钻孔动力部件质量m=2000kg,液压缸的机械效率ηw=0.9,钻削力Fc=16000N 工作循环为:快进→工进→死挡铁停留→快退→原位停止。行程长度为150mm ,其中工进长度为50mm。快进、快退速度为75mm/s,工进速度为1.67 mm/s。导轨为矩形,启动、制动时间为0.5s。要求快进转工进平稳可靠,工作台能在任意位置停止。 3.单面多轴钻孔组合机床动力滑台液压系统,要求设计的动力滑台实现的工作 循环是:快进——工进——快退——停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1=

3=0.1m/s,工进速度2=0.88×10-3m/s;快进行程L1=100mm,工进行程 L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 4.卧式钻孔组合机床液压系统设计:设计一台卧式钻孔组合机床的液压系统, 要求完成如下工作循环:快进→工进→快退→停止。机床的切削力为25×103 N,工作部件的重量为9.8×103 N,快进与快退速度均为7 m/min,工进速度为0.05 m/min,快进行程为150 mm,工进行程为40 mm,加速、减速时间要求不大于0.2 s,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为 0.1。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 5.某厂需要一台加工齿轮内孔键槽的简易插床,插头刀架的上下往复运动采用 液压传动。工件安装在工作台上,采用手动进给。 其主要技术规格如下: 1)加工碳钢齿轮键槽,插槽槽宽t=12mm,走刀量S=0.3mm/行程; 2)插头重量500N; 3)插头工作行程(下行)的速度为13m/min。 试设计该插床的液压系统及其液压装置。 6.设计一台钻镗专用机床,要求孔的加工精度为二级,精镗的光洁度为▽6。加 工的工作循环是工件定位、夹紧——动力头快进——工进——快退——工件松开、拔销。加工时最大切削力(轴向)为20000N,动力头自重30000N,工作进给要求能在20-120mm/min内进行无级调速,快进、快退的速度均为6m/min,动力头最大行程为400mm,为使工作方便希望动力头可以手动调整进退并且能中途停止,动力滑台采用平导轨。 要求:1)按机床工作条件设计油路系统,绘系统原理图。 2)列出电磁铁动作顺序图。

液压传动课程设计

湖南工业大学 课程设计 资料袋 机械工程学院学院(系、部) 2015 ~ 2016 学年第一学期 课程名称液压传动指导教师陈义庄职称教授 学生姓名 xx 专业班级 xx 学号 xx 题目组合机床切削的液压系统 成绩起止日期2015年 12 月 22 日~2015年12 月 30日 目录清单

《液压与气压传动》课程设计 设计说明书 题目名称:组合机床切削的液压系统 学院(部):机械工程学院 专业:机械工程 学生姓名:xx 班级:xx学号xx 指导教师姓名:xx

目录 0.设计任务书 (2) 1.设计要求及工况分析 (3) 2.主要参数的确定 (6) 3.液压系统图的拟定 (9) 4.液压元件的计算与选择 (10) 5.液压系统的性能验算 (13) 6. 参考资料 (15) 7.设计总结 (16)

课程设计任务书 2015 —2016学年第 1学期 机械工程学院(系、部)机械工程专业xx班级 课程名称:液压与气压传动 设计题目:组合机床切削的液压系统 完成期限:自 2015年 12 月 22 日至 2015 年 12月 30 日共 1 周 指导教师: xx 2015 年12 月 10 日 系(教研室)主任: 2015 年12 月 10 日

1. 设计要求及工况分析 1.1设计要求 要求设计的机床动力滑台液压系统实现的工作循环是“快进→工进→快退→停止”。主要性能参数与性能要求如下:最大切削力F=30000N ,移动部件总重量G =3000N ;行程长度400mm (工进和快进行程均为200mm ),快进、快退的速度均为4m/min ,工作台的工进速度可调(50~1000)mm/min ;启动、减速、制动时间△t=0.5s;该动力滑台采用水平放置的平导轨。静摩擦系数fs =0.2;动摩擦系数fd =0.1;液压系统中的执行元件是液压缸。 1.2负载与运动分析 (1)工作负载 由设计要求可知最大工作的负载F=30000N (2)惯性负载 F m =( G g )(?v ?t )=(30009.8)(4 60?0.5 )=40.82≈41N (3)摩擦负载 因为采用的动力滑台式是水平导轨,因此作用在上面的正 压力N=G=3000N 。 静摩擦阻力 F fs =f s ?N =0.2?3000=600N 动摩擦阻力 F fd =f d ?N =0.1?3000=300N 取液压缸的机械效率ηm =0.90,得出的液压缸在各工作阶段的负载如表1.2.1

液压传动课程设计

液压与气压传动课程设计 班级机制1211 姓名 学号2012116102 指导老师邬国秀

目录 一.设计要求及工况分析 (3) 1.负载与运动分析 2.负载循环图.速度循环图 二.确定液压系统主要参数 (4) 1.初选液压缸工作压力 2.计算液压缸主要尺寸 三.拟定液压系统原理图 (7) 1.选择基本回路 2.组成液压系统 四.计算和选择液压件 (9) 确定液压泵的规格和电动机功率 五.附表与附图 (11) 六.参考文献 (13)

(一)、设计要求及工况分析 设计要求 1、设计一台专用铣床,工作台要求完成快进--工作进给--快退--停止的自动工作循环。铣床工作台重量4000N ,工件夹具重量为1500N ,铣削阻力最大为9000N ,工作台快进、快退速度为4.5m /min ,工作进给速度为0.06~1m /min ,往复运动加、减速时间为0.05s 工作采用平导轨,静、动摩擦分别为fs =0.2,fd =0.1,?工作台快进行程为0.3m 。工进行程为0.1m ,试设计该机床的液压系统 1、负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30000N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N G F S FS 110055002.0=?==μ 动摩擦阻力 N G F d fd 55055001.0=?==μ (3) 惯性负载 N 842 N 05×60 . 0 8 . 9 5500 i ? = ? ? = t g G F υ 4.5 =

(4) 运动时间 快进 s v L t 3.360 /5.4102503 111=?==- 工进 s v L t 9060/1.0101503 222=?==- 快退 s v L L t 3.560 /5.4104003 3213=?=+=- 设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。 表1液压缸各阶段的负载和推力 2、 根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F -t 和速度循环图υ-t ,见附图 (二) 确定液压系统主要参数 1.初选液压缸工作压力 所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p 1=4MPa 。

液压传动课程设计

课程设计说明书 (2016-2017学年第二学期) 课程名称液压传动与控制技术课程设计 设计题目卧式组合钻床动力滑台液压系统 院(系)机电工程系 专业班级14级机械设计制造及其自动化x班 姓名陈瑞玲 学号20141032100 地点教学楼B301 时间2017年5月25日—2017年6月22日成绩:指导老师:蓝莹

目录 液压传动与控制技术课程设计任务书 (3) 1.概述 (4) 1.1 课程设计的目的 (4) 1.2 课程设计的要求 (4) 2. 液压系统设计 (4) 2.1 设计要求及工况分析 (4) 2.1.1设计要求 (4) 2.1.2 负载与运动分析 (5) 2.2 确定液压系统主要参数 (7) 小结 (17) 参考文献 (18)

液压传动与控制技术课程设计任务书

1.概述 1.1 课程设计的目的 本课程是机械设计制造及其自动化专业的主要专业基础课和必修课,是在完成《液压与气压传动》课程理论教学以后所进行的重要实践教学环节。本课程的学习目的在于使学生综合运用《液压与气压传动》课程及其它先修课程的理论知识和生产实际知识,进行液压传动的设计实践,使理论知识和生产实际知识紧密结合起来,从而使这些知识得到进一步的巩固、加深和扩展。通过设计实际训练,为后续专业课的学习、毕业设计及解决工程问题打下良好的基础。 1.2 课程设计的要求 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查。 (3) 设计中要正确处理参考已有资料与创新的关系。任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。另外任何新的设计任务又总有其特定的设计要求和具体工作条件。 (4) 学生应按设计进程要求保质保量的完成设计任务。 2. 液压系统设计 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式组合钻床动力滑台液压系统为例,介绍液压系统的设计计算方法。 2.1 设计要求及工况分析 2.1.1设计要求 要求设计的动力滑台实现的工作循环是:快进→工进→快退→停止。

液压与气压传动测试实验报告书-2015

实验报告 课程名称:液压与气压传动 实验项目:液压与气压传动测试实验实验班级: 学号,姓名:, 总页数:11 指导教师:李益林刘涵章实验时间:2015.3. ~2015-7. 机电学院液压与气压传动实验室

目录 目录 (2) 实验一液压泵拆装 (3) 1.CB—B10型齿轮泵流量计算 (3) 2.YB1-10双作用叶片泵排量计算 (3) 3.思考题 (4) 实验二液压泵性能测试 (5) 一、叶片泵测试与计算 (5) 二、画P—Q特性曲线图 (5) 实验三液压阀拆装 (6) 实验四溢流阀性能测试 (7) 一、溢流阀测试数据记录及处理 (7) 二、画启闭特性曲线图 (7) 实验五节流阀进油路节流调速回路的速度负载特性测试 (8) 一、测试数据记录及处理 (8) 实验六调速阀进油路节流调速回路的速度负载特性测试 (9) 一、测试数据记录及处理 (9) 画负载特性曲线图 (10) 实验七基本液压传动系统工作原理图绘制 (10) 1.观察S001液压传动系统试验台,标出各种液压元件的名称。 (10) 2.观察S001液压传动系统试验台,完成填充。 (11) 3.液压元件图形符号描述传动系统示意图。 (11)

实验一液压泵拆装 1.CB—B10 型齿轮泵流量计算 1)计算齿轮轴齿数:Z = 个。 2)测量齿顶圆直径D= mm. 3)测量齿轮齿宽: B = mm,CM. 4)计算齿轮模数:m = D / ( Z+ 2 ) = mm,CM. 标准模数m : 数值计算后,应向下面标准模数值靠近取值(mm)。 5)当转速n= 1450 r/min 的电机,泵的容积效率取ηv= 85% 时,计算齿轮泵排量 V = 2π·Z·m2 ·B (mL/r)(齿宽、模数用厘米单位代入计算。) 6)因为实际齿槽容积比齿轮体积稍大一些,通常取V = 6.66Zm2 B 7)计算齿轮泵流量q v = 6.66·Z·m2·B· n·ηv·10-3 (L/min) (齿宽、模数用厘米单位代入计算。) 2.YB1-10双作用叶片泵排量计算 1)YB1-10双作用叶片泵铭牌参数: 额定压力= Map ,额定转速= 转/分, 排量= 毫升/转。 2)测量定子内表面大圆弧直径D =mm,半径R = CM。 3)测量定子内表面小圆弧直径d =mm,半径r = CM。 4)测量定子宽度:B = mm,CM。 5)测量叶片厚度:δ = mm,CM。 6)计算叶片数: Z = 片。 7)叶片倾角:θ= 13 度。 8)叶片泵转速:n = r/min。(取>1000 ~<1450 ) 9)叶片泵工作区环形体积:V1 = 2π(R2 - r2)B 10)叶片所占容积:V2 = 2·[(R - r)/cosθ]·B·δ·Z 11)双作用叶片泵理论排量V t = V1- V2(mL/r),即

液压系统课程设计任务书

学号: 课程设计任务书 2013~2014 学年第二学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目: 二、课程设计内容 液压传动课程设计一般包括以下内容: (1) 明确设计要求进行工况分析; (2) 确定液压系统主要参数; (3) 拟定液压系统原理图; (4) 计算和选择液压件; (5) 验算液压系统性能; (6) 结构设计及绘制零部件工作图; (7) 编制技术文件。 学生应完成的工作量: (1) 液压系统原理图1张; (2) 部件工作图和零件工作图若干张; (3) 设计计算说明书1份。 三、进度安排

四、基本要求 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查,学生必须发挥主观能动性,积极思考问题,而不应被动地依赖教师查资料、

给数据、定方案。 (3) 设计中要正确处理参考已有资料与创新的关系。任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。另外任何新的设计任务又总有其特定的设计要求和具体工作条件,因而不能盲目地抄袭资料,必须具体分析,创造性地设计。 (4) 学生应按设计进程要求保质保量的完成设计任务。 液压传动课程设计原始资料 一、课程设计内容(含技术指标) 设计中等复杂程度的机床液压传动系统,确定液压传动方案,选择有关液压元件,设计液压缸的结构,编写技术文件并绘制有关图纸。 1、设计一台卧式单面多轴钻孔组合机床液压动力滑台的液压系统。已知参数:切削负载FL=30500N,机床工作部件总质量m=1000kg,快进、快退速度均为5.5m/min,工进速度在20~100mm/min范围内可无级调节。滑台最大行程400mm,其中工进行程150mm,往复运动加、减速时间≤0.2s,滑台采用平导轨,其摩擦系数fs=0.2,动摩擦系数fd=0.1。滑台要求完成“快进-工进-快退-停止”的工作循环。 2、设计一台卧式单面多轴钻孔组合机床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:轴向切削力为32000N,移动部件总重量为10810N,工作台快进行程为150mm,工进行程为100mm,快进、快退速度为7m/min,工进速度为60mm/min,加、减速时间为0.2s,导轨为平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 3、设计一台专用卧式钻床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:最大轴向钻削力为14000N,动力滑台自重为15000N,工作台快进行程为100mm,工进行程为50mm,快进、快退速度为 5.5m/min,工进速度为51—990mm/min,加、减速时间为0.1s,动力滑台为平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 4、设计一台专用卧式铣床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:铣头驱动电动机功率为8.5kw,铣刀直径为70mm,转速为350r/min,

液压集成回路课程设计说明书

液压课程设计 说明书 设计题目液压集成回路及集成块设计 系别 专业班级 学生姓名 学号 指导教师 日期

目录 一、液压站 二、集成块连接装置 1、通用集成块组结构 2、集成块的特点 3、集成块装置设计步骤 4、集成块设计注意事项 5、过渡板 三、液压集成块设计 1、底板及供油块设计 2、底盖及测压块设计 3、中间块设计 4、集成块零件图的绘制 四、设计任务 五、心的体会 六、参考资料

一液压站 液压站是有液压油箱、液压泵装置及液压控制装置三大部分组成。液压油箱装有空气滤清器、滤油器、液面指示器和清洗孔等。液压泵装置包括不同类型的液压泵、驱动电机及其它们之间的联轴器等。液压控制装置是指组成液压系统的各阀元件及其联接体。 机床液压站的结构型式有分散式和集中式两种类型。 二集成块连接装置 1 通用集成块组结构 集成块组,是按通用的液压典型回路设计成的通用组件。它由集成块、底块和顶盖用四只长螺栓垂直固紧而成。 液压元件一般安装在集成块的前面、后面和右侧面、左侧面不安放元件,留着连接油管,以便向执行元件供油。为了操纵调整方便,通常把需要经常调节的元件,入调速阀、溢流阀、减压阀等,布置在右侧面和前面。 元件之间的联系借助于块体内部的油道孔。根据单元回路块在系统中的作用可分为调压、换向、调速、减压、顺序等若干种回路。每

块的上下两面为叠积结合面,布有公用的压力油孔P、回油孔O、泄漏油孔L和连接螺栓孔。 2 集成块的特点 从集成块的组成原理图可以看出,集成块由板式元件与通道体组成,元件可以根据设计要求任意选择,因此,集成块连接装置广泛地应用在机床及组合机床自动线中,其工作压力为0.3×106~3.5×107Pa,流量一般在30~60l/min,集成块与其它的连接方式相比有以下特点: (1)可以采用现有的板式标准元件,很方便地组成各种功能的单元集成回路,且回路的更换很方便,只须更换或增、减单元回路 就能实现,因而有极大的灵活性。 (2)由于是在小块体上加工各种孔道,故制造简单,工艺孔大为减少,便于检查和及时发现毛病。如果加工中出了问题,仅报废 其中一小块通道体,而不是整个系统报废。 (3)系统中的管道和管接头可以减少到最少程度,使系统的泄漏大为减少,提高了系统的稳定性,并且结构紧凑,占地面积小,装配与维修方便。 (4)由于装在通道体侧面的各液压元件间距离很近,油道孔短,而且通油孔径还可选择大一些,因而系统中管路压力损失小,系 统发热量也小。 (5)有利于实现液压装置的标准化、通用化、系列化,能组织成批生产。由于组成装置的灵活性大,故设计和制造周期大为缩短,

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

液压系统的课程设计说明书

目录 引言 (2) 第一章明确液压系统的设计要求 (2) 第二章负载与运动分析 (3) 第三章负载图和速度图的绘制 (4) 第四章确定液压系统主要参数 (4) 4.1确定液压缸工作压力 (4) 4.2计算液压缸主要结构参数 (4) 第五章液压系统方案设计 (7) 5.1选用执行元件 (7) 5.2速度控制回路的选择 (7) 5.3选择快速运动和换向回路 (8) 5.4速度换接回路的选择 (8) 5.5组成液压系统原理图 (9) 5.5系统图的原理 (10) 第六章液压元件的选择 (12) 6.1确定液压泵 (12) 6.2确定其它元件及辅件 (13) 6.3主要零件强度校核 (15) 第七章液压系统性能验算 (16) 7.1验算系统压力损失并确定压力阀的调整值 (17) 7.2油液温升验算 (18) 设计小结 (19) 参考文献 (21)

引言 液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。 液压传动是用液体作为来传递能量的,液压传动有以下优点:易于获得较大的力或力矩,功率重量比大,易于实现往复运动,易于实现较大范围的无级变速,传递运动平稳,可实现快速而且无冲击,与机械传动相比易于布局和操纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。 液压传动的基本目的就是用液压介质来传递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。而所有的基本回路的作用就是控制液压介质的压力和流量,因此液压基本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。所以基本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。 第一章明确液压系统的设计要求 要求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。要求实现的动作顺序为:启动→快进→工进→快退→停止。液压系统的主要参数与性能要求如下:轴向切削力F t=20000N,移动部件总质量G=10000N;快进行程l1=100mm,工进行程l2=50mm。快进、快退的速度为5m/min,工进速度0.1m/min。加速减速时间△t=0.15s;静摩擦系数f s=0.2;动摩擦系数f d=0.1。该动力滑台采用水平放置的平导轨,动力滑台可在任意位置停止。

液压与气压传动课程设计说明书

一、设计题目及其要求 1、1题目: 设计一台汽车变速箱体孔系镗孔专用组合机床的液压系统。要求该组合机床液压系统要完成的工作循环是:夹具夹紧工件~工作台1快进~工作台2工进~终点停留~工作台快退~工作台起点停止~夹具松开工件。该组合机床运动部件的重量(含工作台基多轴箱)为20000N,快进、快退速度为6m/min,一工进的速度为800~1000mm/min,二工进的速度为600~800mm/min,工作台的最大行程为500mm,其中工进的总行程为300mm,工进是的最大轴向切削力为20000N,工作台采用山字形~平面型组合导轨支撑方式,夹具夹紧缸的夹紧行程为25mm,夹紧力在20000~14000N之间可调,夹紧时间不大于一秒钟。 依据以上题目完成下列设计任务: 1)、完成该液压系统的工况分析,系统计算并最终完成该液压系统工作原理图的工作; 2)、根据已完成的液压系统工作原理图选择标准液压元件; 3)、对上述液压系统钟的液压缸进行结构设计,完成液压缸的相关计算何部件装配图设计,并对其中的1~2个非标零件进行零件图设计。 1、2明确液压系统设计要求 本组合机床用于镗变速箱体上的孔,其动力滑台为卧式布置,工件夹紧及工进拟采用液压传动方式。 2、夹紧时间不大于一秒钟,按一秒计算。 3、属于范围数值取中间值。 二、工况分析 2、1 动力滑台所受负载见表2-1,其中 静摩擦负载:= Ffsμ×20000N=3600N s ? =G 动摩擦负载:= Ffdμ×20000N=2400N d ? =G

F /KN 惯性负载: N N t v g G F 10202 .01 .08.920000=?=??= α 式中 s μ、d μ,分别为静、动摩擦因数,考虑到导轨的形状不利于润滑油的储存,分别取s μ=、d μ=。 v ?,启动或者制动前后的速度差,本例中v ?=s t ?,启动或者制动时间,取t ?= 2、2 由表1-1和表2-1可分别画出动力滑台速度循环图和负载循环图如图2-1和2-2 6 图2-2

液压传动与控制实验报告

液阻特性实验 一、 实验目的 1、验证油液经细长孔、薄壁孔时的液阻特性指数α是否符合理论值; 2、通过实验获得感性认识,建立对于理论分析所获结论的信心,进而了解到油液流经任何形式的液阻都有符合理论值的液阻特性指数。深入地理解液阻特性,合理设计液压传动系统,对于提高系统效率、避免温升有着重要意义。 二、实验内容及说明 实验内容是:测定细长孔、薄壁孔的液阻特性,绘制压力流量—曲线。 说明如下: 油液流经被测液阻时产生的压力损失p ?和流量V q 之间有着如下关系: α V q R p ?=? 式中:α— 液阻特性指数; p ?— 液阻两端压差 R — 液阻,与通流面积、形状及油液性质和流态有关 细长孔:L = 285 mm ,d = 2 mm 薄壁孔:L = 0.3 mm ,d = 2.6 mm ,L ≤ d/2 分别令被测液阻通过流量V q 为2 L/min ,3 L/min ,或其它数值,测得相应的压差p ?,理论计算和简单的推导过程如下: αV11q R p ?=?, α V2 2q R p ?=?, αα V2 V121q q p p =??, 等式两边同时取对数:

V2V1 V2 V121lg lg lg q q q q p p ααα ==??, 则有:V2 V12 1 lg lg q q p p ??=α 三、实验系统原理图及实现方法 1、所需的实验系统如图1所示: 图1 液阻特性实验系统原理图 这个系统需要在具体的实验平台上实现。 2、实验平台简介 实验平台是一套多功能液压实验系统,图2所示为薄壁孔液阻特性实验所用的液压实验平台照片,图中橙色细管部分为被测薄壁孔液阻装置,两端的压力表用于测量液阻两端压差。图3为该平台液压系统原理图照片,要实现薄壁孔液阻特性实验,需要调节实验平台面板上的一系列开关,本实验用液压泵2,打开针阀开关8(逆时针旋转至极限位置),关闭针阀开关9、10(顺时针旋转至极限位置)即可,用调速阀5进行调速,顺时针旋转调速阀手柄,流量增加,溢流阀3用于调定系统压力,瞬时针旋转溢流阀手柄,压力增加。

小型液压机液压系统课程设计

$ 攀枝花学院 学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号: vvvvvvvv < 所在院(系):机械工程学院 专业: 班级: 指导教师: vvvvvv 职称: vvvv # 2014 年 06 月 15 日 攀枝花学院教务处制

》 攀枝花学院本科学生课程设计任务书

目录 前言 (1) 一设计题目 (2) 二技术参数和设计要求 (2) 三工况分析 (2) 四拟定液压系统原理 (3) . 1.确定供油方式 (3) 2.调速方式的选择 (3) 3.液压系统的计算和选择液压元件 (4) 4.液压阀的选择 (6) 5.确定管道尺寸 (6) 6.液压油箱容积的确定 (7) 7.液压缸的壁厚和外径的计算 (7) 8.液压缸工作行程的确定 (7) [ 9.缸盖厚度的确定 (7)

10.最小寻向长度的确定 (7) 11.缸体长度的确定 (8) 五液压系统的验算 (9) 1 压力损失的验算 (9) 2 系统温升的验算 (11) 3 螺栓校核 (11) 总结 (13) : 参考文献 (14)

前言 液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。利用有压的液体经由一些机件控制之后来传递运动和动力。相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

液压传动实验报告.

《液压传动》实验报告 流体传动与控制研究所 编 流体传动与控制实验室 学院: 姓名: 班级: 学号: 指导老师: 武汉科技大学机械自动化学院 二0 年月

一、实验目的 1.熟悉齿轮泵、叶片泵、柱塞泵等。 2.弄清齿轮泵、叶片泵、柱塞泵的内部结构及工作原理。 二、实验内容: 齿轮泵、叶片泵、柱塞泵的拆装。 三、实验思考题 1.容积式泵工作的必要条件(泵工作三要素)是什么? 2.什么是齿轮泵、叶片泵、柱塞泵的困油现象?在结构上是如何解决的?实验报告要求 1.叙述齿轮泵的结构及工作原理。 2.叙述叶片泵的结构及工作原理。 3.叙述柱塞泵的结构及工作原理。

一、实验目的 1.熟悉换向阀、压力阀、调速阀等。 2.弄清三位四通电磁换向阀、先导式YF型溢流阀、调速阀的结构及工作原理。 二、实验内容 1.单向阀的拆装 2.换向阀的拆装 3.溢流阀的拆装 4.减压阀的拆装 5.顺序阀的拆装 6.节流阀的拆装 7.调速阀的拆装 三、实验思考题 1.对单向阀性能有那些要求? 2.对电磁换向阀性能有那些要求? 3.溢流阀有那些用途? 4.先导式溢流阀在工作中阀芯阻尼孔堵塞,会出现什么现象? 四、实验报告要求 1.叙述三位四通电磁换向阀的结构及工作原理。 2.叙述先导式YF型溢流阀的结构及工作原理。 3.叙述调速阀的结构及工作原理。

实验三、液压泵容积效率实验 一、实验目的 了解液压泵的主要性能,熟悉实验设备和实验方法,测绘液压泵的性能曲线,掌握液压泵的工作特性。 二、实验器材 YZ-01(YZ-02)型液压传动综合教学实验台。 1台 泵站 1台 节流阀 1个 流量传感器 1个 溢流阀 1个 油管、压力表 若干 三、实验内容及原理 1. 液压泵的流量——压力特性 测定液压泵在不同工作压力下的实际输出流量,得出流量——压力特性曲线 ()p f q q =。 实验原理见图一。 实验中,压力由压力表4直接读出,各种压力时的流量由流量计7直接读出。实验中可使溢流阀5作为安全阀使用,调节其压力值为5MPa ,用节流阀6调节泵出口工作压力的大小,由流量计测得液压泵在不同压力下的实际输出流量。给定不同的出口压力,测出对应的输出流量,即可得出该泵的()p f q q =。 2. 液压泵的容积效率——压力特性 测定液压泵在不同工作压力下,它的容积效率——压力的变化特性()p f V V =η。 因为:() 0) ()()(q q q q V 空载流量输出流量理论流量输出流量理= = η 所以:理q q V = η 由于:)(p f q q = 则:)()(p f q p f V q V ==理 η 式中:理论流量 理q :液压系统中,通常是以泵的空载流量来代替理论流量(或者 nv =理q ,n 为空载转速,v 为泵的排量) 。 实际流量q :不同工作压力下泵的实际输出流量。

液压课程设计模版

一、液压传动课程设计的目的: 1、综合运用《液压传动》课程及其它先修课程的理论和工程实际知识,以课 程设计为载体,通过液压功能原理及液压装置的设计实践,使理论和工程实际知识密切地结合起来,从而使这些知识得到进一步巩固、加深和扩展,并培养分析和解决工程实际问题的设计计算能力。 2、使学生掌握根据设计题目搜集有关设计资料和文献的一般方法和途径,提高学生综合利用设计资料的能力,为独立从事液压传动设计建立良好的基础。 3、在设计实践中学习和掌握方案论证及拟定方法,掌握液压回路的组合方法及液压元件的选用原则、结构形式,深化对液压系统设计特点的认识和了解。 二、液压课程设计题目: 设计一台上料机液压系统,要求驱动它的液压传动系统完成快速上升一慢速上升一停留一快速下降的工作循环。其结构示意图如图1所示。其垂直上升工作的重力为 7OO0J,滑台的重量为500C N,快速上升的行程为450mm其最小速度为55mm/ s;慢速上升行程为200mm其最小速度为13mm/s;快速下降行程为450mm速度要求55mm/s。滑台采用V型导轨,其导轨面的夹角为90,滑台与导轨的最大间隙为2mm启动加速与减速时间均为0.5s,液压缸的机械效率(考虑密封阻力)为0.9。

目录 1前言 (1) 2负载分析 (2) 2.1负载与运动分析 (2) 2.2 负载动力分析 (2) 2.3负载图和速度图的绘制 (4) 3设计方案拟定 (5) 3.1液压系统图的拟定 (5) 3.2液压系统原理图 (6) 3.3 液压缸的设计 (6) 4主要参数的计算 (9) 4.1初选液压缸的工作压力 (9) 4.2计算液压缸的主要尺寸 (9) 4.3活塞杆稳定性校核 (9) 4.4计算循环中各个工作阶段的液压缸压力,流量和功率 (10) 5液压元件的选用 (11) 5.1确定液压泵的型号及电动机功率 (11) 5.2选择阀类元件及辅助元件 (12) 6液压系统的性能验算 (13) 6.1压力损失及调定压力的确定 (13) 6.2验算系统的发热与温升 (14) 致谢 (16) 参考文献 (17)

液压传动试卷①(含答案)

液压传动与控制 1图示液压系统,已知各压力阀的调整压力分别为:p Y1=6MPa,p Y2=5MPa,p Y3=2MPa,p Y4=1.5MPa,p J=2.5MPa,图中活塞已顶在工件上。忽略管道和换向阀的压力损失,试问当电磁铁处于不同工况时,A、B点的压力值各为多少?(“+”代表电磁铁带电,“-”代表断电) 2MPa 5MPa

2 图5所示为专用钻镗床的液压系统,能实现“快进→一工进→二工进→快退→原位停止”的工作循环(一工进的运动速度大于二工进速度)。阀1和阀2的调定流量相等,试填写其电磁铁动作顺序表。(以“+”代表电磁铁带电,“-”代表断电) 2 进给 退回

三判断分析题(判断对错,并简述原因。) 1 叶片泵通过改变定子和转子的偏心距来实现变量,而柱塞泵是通过改变斜盘倾角来实现变 量。错。单作用叶片泵和径向柱塞泵通过改变定子和转子的偏心距来实现变量,而斜盘式轴向柱塞泵通过改变斜盘倾角来实现变量。 2 单活塞杆液压缸称为单作用液压缸,双活塞杆液压缸称为双作用液压缸。错。只能输出单方向液压力,靠外力回程的液压缸,称为单作用液压缸;正、反两个方向都可输出液压力的液压缸为双作用液压缸。 3 串联了定值减压阀的支路,始终能获得低于系统压力调定值的稳定工作压力。 错。串联了定值减压阀的支路,当系统压力高于减压阀调定值时,才能获得低于系统压力的稳定工作压力。 4 与节流阀相比,调速阀的输出流量几乎不随外负载的变化而变化。对。由于调速阀内的定差减压阀正常工作时,能保证节流阀口的压差基本不变,因此调速阀的输出流量几乎不随外负载的变化而变化。 5 采用双泵供油的液压系统,工作进给时常由高压小流量泵供油,而大泵卸荷,因此其效率比单泵供油系统的效率低得多。错。采用双泵供油的液压系统,快进时两个泵同时给系统供油,执行元件运动速度较快;工作进给时常由高压小流量泵供油,而大流量泵卸荷,执行元件输出力大但速度慢。由于工进时大泵卸荷,因此其效率比单泵供油系统的效率高。 6 定量泵—变量马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大调至零。错。定量泵—变量液压马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大调至最小。 四简答题 1 在进口节流调速回路中,溢流阀正常溢流,如果考虑溢流阀的调压偏差,试分析: 1)负载恒定不变时,将节流阀口开度减小,泵的工作压力如何变化? 2)当节流阀开口不变,负载减小,泵的工作压力又如何变化? F

相关文档
最新文档