原子物理第三章量子力学初步答案
量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
原子物理学课后答案

1. 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
000散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:∵偏转角θ与瞄准距离b 有如下关系:ctg b Ze Mv 22o242πεθ=, ∴()21501060.11068.71060.1791091962199o ctg b --⨯⨯⨯⨯⨯⨯⨯=()m 151097.3-⨯=。
2. 已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:代入已知数值:()⎪⎭⎫ ⎝⎛+⨯⨯⨯⨯⨯⨯⨯⨯⨯=--o m 75sin 111060.11068.721060.1792109r 1962199=3.01×10-14 [m].3.若用动能为1兆电子伏特的质子射向金箔。
问 质子与金箔原子核可能达到的最小距离多大?又问如用同样的能量的氘核(氘核带一个+e 电荷而质量是质子的2倍,是氢的一种同位素的原子核。
)代替质子,其与金箔原子核的最小距离多大?解:当散射角为θ的入射粒子与散射核的最短距离公式 中θ=180°时,既得入射粒子与散射核之间可能达到的最小距离:r m =041πε2212Mv q q =041πεkE q q 21,式中q 1、q 2分别为入射粒子和靶核所带的电荷,E k 为入射粒子的动能。
可见,只要入射粒子所带电荷相同,动能相同,则与靶核的最小距离就相同。
故质子与同样能量的氘核与金箔原子核的最小距离相同,均为: r m =9×109×19-619-191060.1101060.1791060.1⨯⨯⨯⨯⨯⨯-=1.14 ×10-134.钋放射的一种α粒子的速度为1.579×107 米/秒,正面垂直入射于厚度为10-7 米、密度为1.932×104 公斤/米3 的金箔。
量子力学教程课后习题答案

量子力学教程课后习题答案量子力学习题及解答第一章量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式,(1)以及,(2),(3)有这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作。
但要注意的是,还需要验证对λ的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=h,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性的电子的能量——动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1.3 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。
原子物理学 课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
量子力学导论第3章答案

第三章一维定态问题3.1)设粒子处在二维无限深势阱中,⎩⎨⎧∞<<<<=其余区域,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。
如b a = ,能级的简并度如何?解:能量的本征值和本征函数为mE yx n n 222π =)(2222b n a n yx +,2,1, ,sinsin2==y x y x n n n n byn axn abyxππψ若b a =,则 )(222222y x n n n n maE yx +=π ay n a x n a y x nn yxππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11''==y x n n )3.2)设粒子限制在矩形匣子中运动,即⎩⎨⎧∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。
如c b a ==,讨论能级的简并度。
解:能量本征值和本征波函数为)(222222222cn b n an m n n n E z yxzy x ++=π ,,3,2,1,, ,sin sin sin 8==z y x z y x n n n c z n b y n a x n abc n n n zy x πππψ当c b a ==时,)(2222222z y x n n n man n n E z y x ++=π ay n a y n a x n a n n n z y x z y x πππψsinsin sin 223⎪⎭⎫ ⎝⎛= z y x n n n ==时,能级不简并;z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。
原子物理3

19世纪末的三大发现 揭开了近代物理的序幕
1895年的X射线 1896年放射性元素 1897年的电子的发现
早期量子论 量子力学
相对论量子力学
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论
德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系
狄拉克把量子力学与狭义 相对论相结合
四、德布罗意波和量子态
v 质量为 m 的粒子以速度 匀速运动时,具有能
量 E 和动量 p ;从波动性方面来看,它具有波长
和频率 ,这些量之间的关系遵从下述公式:
E mc2 h
p mv h
具有静止质量 m0 的实物粒子以速度 v 运动,
则和该粒子相联系的平面单色波的波长为:
的精密度的极限。还表明
px 0 x 位置不确定
x 0 px 动量不确定
pyqy 2
pzqz 2
pxqx 2
这就是著名的海森伯测不准关系式
二、测不准关系式的理解 1、 用经典物理学量——动量、坐标来描写微 观粒子行为时将会受到一定的限制 。 2、 可以用来判别对于实物粒子其行为究竟应 该用经典力学来描写还是用量子力学来描写。
电子的动量是不确定的,应该用量子力学来处理。
例3 电视显象管中电子的加速度电压为10kV,电子 枪的枪口的直径为0.01cm。试求电子射出电子枪后 的横向速度的不确定量。
解: 电子横向位置的不确定量 x 0.01cm
vx 2mx 0.58m s
v 2eU 6 107 m/s m
pdp m
E vp
Et vpt pq
2
mv
原子物理学第三章习题解答

第三章习题解答3-1 电子的能量分别为10eV 10eV、、100eV 和1000eV 时,试计算其相应的德布罗意波长。
长。
解:根据公式22kh hc p mc E l ==代入相关数据10eV 10eV、、100eV 100eV、、1 000eV 得6124020.51110keV nmE l=×´´因此有:(1)当1 1.26610,0.3910K E eV nm eV l ===时 (2)当1 1.266100,0.123100K E eV nm eV l ===时 (3)当1 1.2661000,0.0391000K E eV nm eVl ===时3-23-2 设光子和电子的波长均为0.4nm 0.4nm,试问(,试问(,试问(11)光子的动量与电子的动量之比是多少?(比是多少?(22)光子的动能与电子的动能之比是多少?)光子的动能与电子的动能之比是多少?解:由题意知由题意知光子的动量光子的动量h p l= , 光子的能量cE h h n l==电子的动量电子的动量 h p l= , 电子的能量2e E m c = \(1) 121pp =(2) 126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm ×====´´×3-33-3 若一个电子的动能等于它的静止能量,若一个电子的动能等于它的静止能量,试求:试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有故有2200()m c m m c \=-由此推得000222211m m m m vc b===--22330.86644v v c c c\=Þ== (2)03hp m cl ==20 1.240.001433 5.11hcnm nm m c l \===´3-43-4 把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
量子力学 第三章习题与解答

第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----••⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm hc m eV eVm h -⨯-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。
上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。
证明:轨道量子化条件是:⎰=nh pdq 对氢原子圆轨道来说,mvr mr p p r ===•φφ2,0 所以有:⋯⋯=====⋅=⎰3,2,1,22n n mvhn r S nhmvr pd λππφ 所以,氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波长。
椭圆轨道的量子化条件是:h n dr p hn d p rr==⎰⎰φφφ其中⎰+==+∴==••rr r n n n nh d p dr p mr p r m p φφφφφ其中,)(,2而 )()(2φφφφd mrdr r m d p dr p r ••+=+⎰⎰22()dr d h dsm r dt mr dt mv dt mvds ds h dt dt r ds nφφλλ••=+====∴=⎰⎰⎰⎰⎰⎰因此,椭圆轨道也正好包含整数个德布罗意波波长。
3.5 带电粒子在威耳孙云室(一种径迹探测器)中的轨迹是一串小雾滴,雾滴德线度约为1微米。
当观察能量为1000电子伏特的电子径迹时其动量与精典力学动量的相对偏差不小于多少?解:由题知,电子动能K=1000电子伏特,610-=∆x 米,动量相对偏差为p p /∆。
根据测不准原理,有2h x p ≥∆∆,由此得:xh p ∆≥∆2 经典力学的动量为:51009.3222-⨯=∆≥∆∴=mKx h p p mK p 电子横向动量的不准确量与经典力学动量之比如此之小,足见电子的径迹与直线不会有明显区别。
3.6 证明自由运动的粒子(势能0≡V )的能量可以有连续的值。
证明:自由粒子的波函数为:)(Et r p hi Ae -⋅+=ψ ……(1)自由粒子的哈密顿量是:222∇-=mh H (2)自由粒子的能量的本征方程为:ψψE H = (3)把(1)式和(2)式代入(3)式,得:ψE Ae mh Et r p hi=∇--⋅+][2)(22即:2222()222222()222x y z ip x p y p z Et hh d d d A e m dx dy dzp E E m p E mψψψ+++--∇++==∴=自由粒子的动量p 可以取任意连续值,所以它的能量E 也可以有任意的连续值。
3.7 粒子位于一维对称势场中,势场形式入图3-1,即,0,,00{=<<=><V L x V V L x x(1)试推导粒子在0V E <情况下其总能量E 满足的关系式。
(2)试利用上述关系式,以图解法证明,粒子的能量只能是一些不连续的值。
解:为方便起见,将势场划分为Ⅰ‚Ⅱ‚Ⅲ三个区域。
(1) 定态振幅方程为0)(2)()(22)(2=-+x x x V E hdx d ψμψ 式中μ是粒子的质量。
Ⅰ区:)(20022222E V hdx d -==-μαψαψ其中 波函数处处为有限的解是:是一任意常数A Ae x x ,)(1αψ=。
Ⅱ区:E h dx d 2222220μβψβψ==+其中 处处有限的解是:是任意常数。
γγβψ,),sin()(2B x B x +=Ⅲ区:)(20022222E V h dx d -==-μαψαψ其中 处处有限的解是:是任意常数。
D De x x ,)(3αψ-= 有上面可以得到:,1),(1,1332211αψψγββψψαψψ-=+==dxd x ctg dx d dx d 有连续性条件,得:γβαγββαctg L ctg =+=-)({解得:221)(αβαβαββ-+-=L tg因此得:)/(21αβπβ--=tg n L 这就是总能量所满足的关系式。
(2) 有上式可得:)22(L n tg βπαβ-= 偶数,包括零奇数=⋯⋯-=⋯⋯=n Ltgn Lctg 22{ββ亦即2)(2)(LtgL L LctgL L ββαββα=-=令v L u L ==αβ,,则上面两方程变为:1222u uv utg v utg =-⋯⋯=⋯⋯() ()另外,注意到v u 和还必须满足关系:)(3/222022⋯⋯=+h L V v u μ所以方程(1)和(2)要分别与方程(3)联立求解。
3.8 有一粒子,其质量为m ,在一个三维势箱中运动。
势箱的长、宽、高分别为c b a 、、在势箱外,势能∞=V ;在势箱内,0=V 。
式计算出粒子可能具有的能量。
解:势能分布情况,由题意知:0,0;0,0;0,0;,0;,0;,0x y z x y z V x a V y b V z c V x x a V y y b V z z c=≤≤=≤≤=≤≤=∞<>=∞<>=∞<>和和和在势箱内波函数),,(z y x ψ满足方程:0)]([22222222222=++-+∂+∂+∂ψψψψz y x V V V E hmz y x 解这类问题,通常是运用分离变量法将偏微分方程分成三个常微分方程。
令)()()(),,(z Z y Y x X z y x =ψ代入(1)式,并将两边同除以)()()(z Z y Y x X ,得:E hm V h m dz Z d Z V h m dy Y d Y V h m dx X d X z y x 22222222222)21()21()21(-=-+-+- 方程左边分解成三个相互独立的部分,它们之和等于一个常数。
因此,每一部分都应等于一个常数。
由此,得到三个方程如下:皆为常数。
其中z y x z y x z zy y x x E E E E E E E E h mV h m dz Z d Z E hmV h m dy Y d Y E h mV h m dx X d X ,,,221221221222222222222++=-=--=--=-将上面三个方程中的第一个整数,得:0)(2222=-+X V E hmdx X d x x ……(2) 边界条件:0)()0(==l X X可见,方程(2)的形式及边界条件与一维箱完全相同,因此,其解为:⋯⋯===3,2,1,2sin 22222x x x x n n n a h E x an a X πππ 类似地,有)(2sin sin sin 8),,(3,2,1,2sin 23,2,1,2sin 22222222222222222cnb n a n m h Ec z n b y n a x n abc z y x n n ch E zcn c Z n n bh E yb n b Y z yxzy x z z z z n y y y y n ++==∴⋯⋯===⋯⋯===ππππψππππππ可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的波函数之积。
而粒子的能量相当于三个一维箱中粒子的能量之和。
对于方势箱,c b a ==,波函数和能量为:222222223,2sinsin sin 8),,(zy x z y x n n n n n ma hE a z n a y n a x n a z y x ++===ππππψ。