机械设计第十章2

合集下载

机械设计(西北工业大学第八版)第十章 齿轮传动

机械设计(西北工业大学第八版)第十章 齿轮传动

抵抗齿面点蚀、胶合、 磨损、塑性变形
抵抗轮齿折断
轮齿具有足够强度和韧性
一. 常用材料:
齿轮常用材料是各种牌号的中碳钢,中、低碳合金钢, 铸钢和铸铁等。一般多采用锻造毛坯或轧制钢材, 齿轮尺寸较大或结构复杂且生产批量大时,可采用铸钢 或铸铁。 表P191表10—1列出了常用齿轮材料及牌号、热处理 方法及硬度。
三. 齿轮传动的类型: 1.按装置型式分:1)开式齿轮传动
2)半开式齿轮传动 3)闭式齿轮传动
2. 按速度的大小分:高速(v15m/s)
低速(v3m/s)
3. 按载荷大小分: 轻载
重载
4. 按齿面的软硬分:硬齿面(HB>350或HRC >38)
软齿面(HB350或HRC38)
四、对齿轮传动的要求: 1. 传动要平稳、准确
k
K
t
t
A
k
rk
k
B
rb
O
单齿啮合的最低点接触应力最大。
通常按节点啮合进行计算 即:将渐开线齿廓在节点啮合当量成一对 圆柱体接触,再按赫兹公式计算。
H ZE
式中:
F L
1


1
1

1
2
2
1
1 N1P r1sin
d1 r1 sin sin 2 d2 2 sin 2

措施:提高材料的硬度,
改善润滑
主动 被动
相对滑动方向
二.设计准则:
具体工作条件下的设计准则: 工作条件 主要失效
软齿面
点蚀
设计准则
设计方法
闭式 传动
保证齿面有足够的接触 按齿面接触疲劳强度设计 疲劳强度 按轮齿弯曲疲劳强度校核

机械设计第十章-齿轮传动

机械设计第十章-齿轮传动
4.加抗胶合添加剂 高速
§10-2 轮齿的失效形式断
失效形式
齿面点蚀 齿面胶合
跑合磨损 齿面磨损 磨粒磨损 跑合磨损、磨粒磨损。
措施:1.减小齿面粗糙度 2.改善润滑条件,清洁环境 3.提高齿面硬度
§10-2 轮齿的失效形式及设计准则
一、轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损 齿面塑性变形
HT250 HT300 HT350
250
170~241
300
187~255
350
197~269
QT500-5 QT600-2
500
147~241
600
229~302
ZG310-570 常化
580 320
156~217
ZG340-640 45 45 40Cr
调质后表 面淬火
650 350
169~229
严重 冲击
挖掘机、重型球磨机、橡胶揉合 机、破碎机、重型给水机、旋转 式钻探装置、压砖机、带材冷轧 机、压坯机等。
1.75
1.85 2.00
注:表中所列值仅适用于减速传动,若为增速传动,应乘以1.1倍 当外部的机械与齿轮装置间通过挠性件相连接时,KA可适当减小。
2.00
2.25 或更大
Kv 1.8
Kβ——齿向载荷分布系数
表10-2 使用系数KA
原动机
载荷 状态
工作机器
发电机、均匀 蒸汽机、 运转的蒸汽机、 燃气轮机 燃气轮机
多缸 单缸 内燃机 内燃机
发电机、均匀传送的带式输送机
均匀 或板式输送机、螺旋输送机、轻
平稳
型升降机、包装机、通风机、均 匀密度材料搅拌机。
1.0

机械设计基础之螺旋传动

机械设计基础之螺旋传动

高度第为一H、螺距为p,螺纹旋合圈数为Z=H/p、螺纹工作高度为h、
承压项面积为A,螺纹工第作二面上的第压二强为 ps。
项 项 则螺纹的耐磨性条件为: 校核耐磨性
ps
F A
F
d 2 hZ
Fp
d 2 hH
[ p]
MPa
若按耐磨性条件设计螺纹中径d2 时,可引用系数
《机械设计(Ⅲ)(零件)》
第十章 螺旋传动
technische universiteit eindhoven
一、概述
第 项1.螺一旋传动结构第、二原理第二 项 项 螺旋传动特点:
螺母 螺杆
结构紧凑,机械增益高; 传动平稳、精度高; 易于自锁; 磨擦磨损大,效率较低
工作原理:
通过螺纹结构,将回转运动转化为轴向直线运动,同时传递能量和力; 回转运动←→直线运动;
项项
螺旋千分尺
螺旋测微器的精密螺纹的螺距是0.5mm,可 动刻度有50个等分刻度,旋转每个小分度, 相当于测微螺杆前进或后退这0.5/50=0.01mm。 所以以螺旋测微器可准确到0.01mm。由于还 能再估读一位,可读到毫米的千分位,故又 名千分尺。
Power Screw
technische universiteit eindhoven
第一 项
第二 第二 项项
螺旋千斤顶
Power Screw
technische universiteit eindhoven
第一 项
第二 第二 项项
立式加工中心
Power Screw
technische universiteit eindhoven
根据用途分类
第一 1、传力螺旋 项 第二 第二 以传递动力为主,要求用较小的转矩

机械设计基础 第十章 联接

机械设计基础 第十章 联接

§10—4 螺纹联接的基本类型及 螺纹紧固件
一、螺纹联结基本类型 二、螺纹紧固件
一、螺纹联接的基本类型
1、螺栓联接 a) 普通螺栓联接:
被连接件通孔不带螺纹,被联接件不太厚, 装拆方便。螺杆带钉头,螺杆穿过通孔与螺母配合 使用。装配后孔与杆间有间隙,并在工作中不许消 失,结构简单,可多次装拆,应用较广。
牙根强度弱,加工困难,常被梯形螺纹代替。
梯形螺纹特点: =2=30。比矩形螺纹效率略低。 牙根强度高,易于对中,易于制造,剖分螺母 可消除间隙,在螺旋传动中有广泛应用。
有粗牙普通螺纹M10和M68,请说明在静载 荷下这两种螺纹能否自锁(已知摩擦系数f = 0.1~0.15) 查得: 解: 1、首先求螺纹升角λ 。
粗牙螺纹
细牙螺纹
2、管螺纹 特点:用于管件连接的三角螺纹,=55,螺纹面间 没有间隙,密封性好,适用于压强在1.6MPa以下的 连接。管螺纹广泛用于水、汽、油管路联接中。
管螺纹除普通细牙螺纹外,还有60º 55º 、 的圆柱 管螺纹和60º 55º 、 的圆锥管螺纹。 管螺纹公称直径是管子的公称通径。
L=nP(n=2) L=nP(n=2) L=nP(n=2)
dd d dd 2 2 d2 dd 1 1 d1


P P P

d 1 1 d 1 d d 2 2 d 2 d d d d
hh h
LL L
4)螺 距 P — 相邻两牙在中径圆柱面的母线上对应 两点间的轴向距离。 5)导程(S)— 同一螺旋线上相邻两牙在中径圆柱面 的母线上的对应两点间的轴向距离。 6)线数n —螺纹螺旋线数目,一般为便于制造n≤4。 螺距、导程、线数之间关系:S=nP
M10螺纹: 螺距P=1.5mm,中径d2=9.026mm; M68螺纹: 螺距P=6mm, 中径d2=64.103mm。 M10螺纹升角:

机械设计第十章课后习题答案详解

机械设计第十章课后习题答案详解

10-1证明当升角与当量摩擦角符合时,螺纹副具有自锁性。

当时,螺纹副的效率所以具有自锁性的螺纹副用于螺旋传动时,其效率必小于 50%。

10-2解由教材表10-1、表10-2查得,粗牙,螺距,中径螺纹升角,细牙,螺距,中径螺纹升角对于相同公称直径的粗牙螺纹和细牙螺纹中,细牙螺纹的升角较小,更易实现自锁。

10-3解查教材表10-1得粗牙螺距中径小径螺纹升角普通螺纹的牙侧角,螺纹间的摩擦系数当量摩擦角拧紧力矩由公式可得预紧力拉应力查教材表 9-1得 35钢的屈服极限拧紧所产生的拉应力已远远超过了材料的屈服极限,螺栓将损坏。

10-4解(1)升角当量摩擦角工作台稳定上升时的效率:( 2)稳定上升时加于螺杆上的力矩( 3)螺杆的转速螺杆的功率( 4)因,该梯形螺旋副不具有自锁性,欲使工作台在载荷作用下等速下降,需制动装置。

其制动力矩为10-5解查教材表9-1得 Q235的屈服极限,查教材表 10-6得,当控制预紧力时,取安全系数由许用应力查教材表 10-1得的小径由公式得预紧力由题图可知,螺钉个数,取可靠性系数牵曳力10-6解此联接是利用旋转中间零件使两端螺杆受到拉伸 ,故螺杆受到拉扭组合变形。

查教材表 9-1得,拉杆材料Q275的屈服极限,取安全系数,拉杆材料的许用应力所需拉杆最小直径查教材表 10-1,选用螺纹()。

10-7解查教材表 9-1得,螺栓35钢的屈服极限,查教材表 10-6、10-7得螺栓的许用应力查教材表 10-1得,的小径螺栓所能承受的最大预紧力所需的螺栓预紧拉力则施加于杠杆端部作用力的最大值10-8解在横向工作载荷作用下,螺栓杆与孔壁之间无间隙,螺栓杆和被联接件接触表面受到挤压;在联接接合面处螺栓杆则受剪切。

假设螺栓杆与孔壁表面上的压力分布是均匀的,且这种联接的预紧力很小,可不考虑预紧力和螺纹摩擦力矩的影响。

挤压强度验算公式为:其中;为螺栓杆直径。

螺栓杆的剪切强度验算公式其中表示接合面数,本图中接合面数。

第十章 机械设计之间歇运动机构

第十章 机械设计之间歇运动机构

பைடு நூலகம்ω1
2α1 90° 90° 2φ2
ω2
为减少冲击,进入或退出啮合时,槽中心线与拨销中 心连线成90°角。故有: 2α1=π -2φ2 =π -(2π /z) = 2π (z-2)/2z 代入上式
k =1/2-1/z ∵ 将2α1代入得:
k>0 ∴ 槽数 z≥3
可知:当只有一个圆销时,k=1/2-1/z < 0.5 即槽轮的运动时间总是小于其静止时间。 如果想得到k≥0.5的槽轮机构,则可在拨盘上多装几个 圆销,设装有n个均匀分布的圆销,则拨盘转一圈,槽 轮被拨动n次。故运动系数是单圆柱销的n倍,即: k= n(1/2-1/z) ∵
da =mz 与齿轮不同 P=π m h=0.75m a=m a1=(0.5~0.7)a α=20° b=(1~4)m h1=h’ ≈h/cosα rf =1.5 mm r1 =2 mm 一般取 L=2p
α
o1
h
60°~80 °
r1 rf
齿槽角
§10-2 槽轮机构(马尔它机构)
一、槽轮机构的组成及其工作特点
r
s=Lcosφ=Lcos(π /z) h≥s-(L-R-r) d1≤2(L-s) d2≤2(L-R-r) b=3~5 mm 经验确定 r0=R-r-b
2 h
b
§10-3 不完全齿轮机构
1.工作原理及特点 工作原理:在主动齿轮只做出一个或几个齿,根据运 动时间和停歇时间的要求在从动轮上做出与主动轮相 啮合的轮齿。其余部分为锁止圆弧。当两轮齿进入啮 合时,与齿轮传动一样,无齿部分由锁止弧定位使从 动轮静止。 优点:结构简单、制造容易、工作可靠、从动轮运动 时间和静止时间的比例可在较大范围内变化。 缺点:从动轮在开始进入啮合与脱离啮合时有较大 冲击,故一般只用于低速、轻载场合。 2.类型及应用 类型:外啮合不完全齿轮机构、内啮合不完全齿轮机构

机械设计第10章机械传动系统及其传动比

机械设计第10章机械传动系统及其传动比

机械设计第10章机械传动系统及其传动比机械传动系统及其传动比案例导入:在实际的机械工程中,为了满足各种不同的工作需要,仅仅使用一对齿轮是不够的。

本章通过带式输送机、牛头刨床、汽车变速箱和差速器、自动进刀读数装置、滚齿机行星轮系等例子,介绍轮系的概念、分类、传动比的分析计算方法。

第一节定轴轮系的传动比计算在实际应用的机械中,为了满足各种需要,例如需要较大的传动比或作远距离传动等,常采用一系列互相啮合的齿轮来组成传动装置。

这种由一系列齿轮组成的传动装置称为齿轮系统,简称轮系。

一、轮系的分类轮系有两种基本类型:(1)定轴轮系。

如图10-1所示,在轮系运转时各齿轮几何轴线都是固定不变的,这种轮系称为定轴轮系。

(2)行星轮系。

如图10-2所示,在轮系运转时至少有一个齿轮的几何轴线绕另一几何轴线转动,这种轮系称为行星轮系。

图10-1 定轴轮系二、轮系的传动比1.轮系的传动比轮系中,输入轴(轮)与输出轴(轮)的转速或角速度之比,称为轮系的传动比,通常用i表示。

因为角速度或转速是矢量,所以,计算轮系传动比时,不仅要计算它的大小,而且还要确定输出轴(轮)的转动方向。

2.定轴轮系传动比的计算根据轮系传动比的定义,一对圆柱齿轮的传动比为nzi12 1 2 n2z1式中:“±”为输出轮的转动方向符号,图10-2行星轮系第十章机械传动系统及其传动比当输入轮和输出轮的转动方向相同时取“+”号、相反时取“-”号。

如图10-1a) 所示的一对外啮合直齿圆柱齿轮传动,两齿轮旋转方向相反,其传动比规定为负值,表示为:i=n1=n2z2 z1如图10-1b)所示为一对内啮合直齿圆柱齿轮传动,两齿轮的旋转方向相同,其传动比规定为正值,表示为:n1z2 i= =n2z1如图10-3所示的定轴轮系,齿轮1为输入轮,齿轮4为输出轮。

应该注意到齿轮2和2'是固定在同一根轴上的,即有n2=n2′。

此轮系的传图10-3定轴轮系传动比的计算动比i14可写为:nnn ni14 1 123 i12i2 3i***** z2z3z4 312上式表明,定轴轮系的总传动比等于各对啮合齿轮传动比的连乘积,其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即m从1轮到k轮之间所有从动轮齿数n的连乘积i1k 1 1 (10-1) nk从1轮到k轮之间所有从主轮齿数的连乘积式中:m为平行轴外啮合圆柱齿轮的对数,用于确定全部由圆柱齿轮组成的定轴轮系中输出轮的转向。

机械设计基础(第10章: 轮系)

机械设计基础(第10章: 轮系)

第10章轮系前面我们己经讨论了一对齿轮传动及蜗杆传动的应用和设计问题,然而实际的现代机械传动,运动形式往往很复杂。

由于主动轴与从动轴的距离较远,或要求较大传动比,或要求在传动过程中实现变速和变向等原因,仅用一对齿轮传动或蜗杆传动往往是不够的, 而是需要采用一系列相互啮合的齿轮组成的传动系统将主动轴的运动传给从动轴。

这种由一系列相互啮合的齿轮(包括蜗杆、蜗轮)组成的传动系统称为齿轮系,简称轮系。

本章重点讨论各种类型齿轮系传动比的计算方法,并简要分析各齿轮系的功能和应用。

10.1 轮系的分类组成轮系的齿轮可以是圆柱齿轮、圆锥齿轮或蜗杆蜗轮。

如果全部齿轮的轴线都互相平行,这样的轮系称为平面轮系;如果轮系中各轮的轴线并不都是相互平行的,则称为空间轮系。

再者,通常根据轮系运动时各个齿轮的轴线在空间的位置是否都是固定的,而将轮系分为两大类:定轴轮系和周转轮系。

10.1.1定轴轮系在传动时所有齿轮的回转轴线固定不变的轮系,称为定轴轮系。

定轴轮系是最基本的轮系,应用很广。

由轴线互相平行的圆柱齿轮组成的定轴齿轮系,称为平面定轴轮系,如图10.1所示。

a)b)图10.1 平面定轴齿轮系包含有圆锥齿轮、螺旋齿轮、蜗杆蜗轮等空间齿轮的定轴轮系,称为空间定轴轮系,如图10.2所示。

图10.2 空间定轴轮系10.1.2 周转轮系轮系在运动过程中,若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个齿轮的固定轴线转动,则称为周转轮系,也叫动轴轮系。

如图10.3所示。

a) 周转轮系结构图b)差动轮系c)行星轮系图10.3周转轮系其中齿轮2的轴线不固定,它一方面绕着自身的几何轴线O2旋转,同时O2轴线,又随构件H绕轴线O H公转。

分析周转轮系的结构组成,可知它由下列几种构件所组成:1.行星轮:当轮系运转时,一方面绕着自己的轴线回转(称自转),另一方面其轴线又绕着另一齿轮的固定轴线回转(称公转)的齿轮称行星轮,如图10.3中的齿轮2。

机械设计基础第10章课后答案

机械设计基础第10章课后答案

第十章 联接
10-1 螺纹的主要类型有哪几种?
[解] 类型:矩形螺纹、三角螺纹(普通)、梯形螺纹和锯齿螺纹。

10-2 螺纹联接的种类有哪些?
[解] 类型:螺栓联接、双头螺柱联接、螺钉联接和紧定螺钉连接。

10-3螺纹的主要参数有哪几种?
[解] 螺纹的主要参数:(1)大径d (D );(2)小径d 1(D 1);(3)中径d 2(D 2);(4)螺距p ;
(5)导程s ;(6)螺纹升角;(7)牙型;(8)牙型斜角;(9)螺纹牙的工作高度h 。

螺距和导程的关系: s=np ; 单线时相等。

10-4 螺纹联接常用的防松方法有哪几种?它们防松的原理是怎么样的?
[解] 防松方法:摩擦防松、机械防松、破坏纹副的防松。

防松原理都是防止螺旋副相对转
动。

10-5受拉伸载荷作用的紧螺栓联接中,为什么总载荷不是预紧力和拉伸载荷之和?
[解] 因为螺栓和被联接件都是弹性体。

10-6 螺纹副的效率与哪些因素有关?为什么多线螺纹多用于传动,普通三角螺纹主要用于联接,而梯形、矩形、锯齿形螺纹主要用于传动?
[解] 与线数、螺距和当量摩擦角有关。

因数越多,效率越高。

当量摩擦角v ρ,在摩擦系数一定的情况下,牙型斜角β越大,则当量摩擦角v ρ越大,效率越低,自锁性能越好,所以在螺旋传动中,为了提高效率,采用牙型斜角β小的螺纹,如矩形螺纹、梯形螺旋传动中,为了提高效率,采用了提高自锁性能,应采用牙型斜角大的螺纹,如三角形螺纹。

10-7 螺纹副的自锁条件是什么?
[解] 螺纹副的自锁条件为 v λρ≤。

机械的设计基础第10章 间歇运动机构第十章间歇运动机构-PPT精选文档

机械的设计基础第10章 间歇运动机构第十章间歇运动机构-PPT精选文档
机械设计基础
第十章 间歇运动机构
机械设计基础
第十章 间歇运动机构
圆柱凸轮机构
不完全齿轮机构
主动件连续运动
从动件周期间歇运动
机械设计基础
第十章 间歇运动机构
一、棘轮机构的组成和工作原理
1、组成和工作原理
摇杆顺时针摆动:棘爪推 动棘轮同向转动。
棘爪 摇杆 止回棘爪 棘轮
摇杆逆时针摆动:止回棘 爪防止棘轮反转,棘轮不 动。 棘爪往 复摆动 棘轮单向 间歇运动
Play
机械设计基础
2、棘轮机构转角调节
(1)改变摇杆摆角
第十章 间歇运动机构
(2)在棘轮上加遮板
机械设计基础
3、棘轮机构转向调节
双向棘轮机构
摇杆1 往复摆动
第十章 间歇运动机构
棘爪2在实线位置时, 棘轮3沿逆时针方向 作间歇转动。
棘爪2在虚线位置时, 棘轮3沿顺时针方向 作间歇转动。
机械设计基础
Z 2 = 2Z
机械设计基础
Z 2 τ = 2Z τ > 0
第十章 间歇运动机构
2、槽轮槽数z和拨轮圆销数k
槽轮的槽数 z ≥ 3
=1/2-1/z τ < 0.5
2Z K < Z 2
当只有一个圆销时: τ τ 当有k个圆销时: τ
=K(1/2-1/z) < 1
模数Z 圆销数K
=3 1~ 5
=4~5 1~ 3
≥6 1~ 2
机械设计基础
谢 谢
机械设计基础
(2)按啮合方式分
外啮合棘轮机构
第十章 间歇运动机构
内啮合棘轮机构
棘爪或锲块安装在棘轮外 部,应用广泛。
棘爪或锲块安装在棘轮 内部,结构紧凑,外形 尺寸小。

机械设计基础第五版第十章2

机械设计基础第五版第十章2
功率 P 15Kw,载荷平稳;螺栓材料为45钢, S 450MPa ,
不控制预紧力,安全系数取 S 4 ,试计算螺栓的最小直径。
f 0.15
解:此联接为普通螺栓联接,靠接合面间的摩擦传 递扭矩。
( 1)联轴器传递的转矩
T 9.55106 P 9.55106 15 15104 Nm
n
960
固定零件间的相互位置,传递不大的载荷 圆柱销: 多次装拆后,定位精度会降低。
销 圆锥销: 有1:50的锥度,多次装拆,对定位 精度的影响较小。
销常用材料: 35、45
特殊形式的销:
大端带有外螺纹的圆锥销—便于装拆,可用于盲孔。 小端带有外螺纹的圆锥销—可用螺母锁紧,适用于
有冲击的场合。
图10-42 带槽圆柱销
D—内螺纹大径 Z—参加接触螺纹的圈数,Z H
P
— 螺母材料的许用切应力
铸铁 40Mpa,青铜 30 ~ 40Mpa
10-11 键联接和花键联接
一、键联接的类型: 键用来实现轴和轴上零件的周向定位以传递转矩。
平键 半圆键 键 楔键 切向键
1、平键联接:两侧面是工作面
特点:定心性较好,装拆方便。
K—载荷不均匀系数K=0.7~0.8
z—花键齿数
h—花键牙侧面工作高度
h D d 2C 2
D—外花键大径 d—内花键小径 C—花键齿顶倒角
l —花键齿的接触长度
rm—花键平均半径
rm
D 4
d
p
—许用挤压应力, 如表10-11
动联接:
T kzhlrmp
p —许用压强, 如表10-11
10-12 销 联 接
10-9 螺 旋 传 动
螺杆材料: 一般选用Q275、45、50钢 重要螺杆选用T12、40Cr、65Mn 并进行热处理

机械设计第十章齿轮设计课后习题答案

机械设计第十章齿轮设计课后习题答案

机械设计第⼗章齿轮设计课后习题答案机械设计第⼗章齿轮设计课后习题答案10-2解(1)齿轮A为主动轮,齿轮B为“惰轮”,也就是说齿轮B既是主动轮⼜是从动轮。

当齿轮B与主动轮A啮合时,⼯作齿⾯是王侧,当齿轮B与从动轮C啮合时,⼯作齿⾯是另⼀侧。

对于⼀个轮齿来讲,是双齿⾯⼯作双齿⾯受载,弯曲应⼒是对称循环,接触⼒是脉动循环,取10-3 答:齿⾯接触应⼒是脉动循环,齿根弯曲应⼒是对称循环。

在作弯曲强度计算时,应将图中查出的极限应⼒值乘以0.7. 10-4 答:⼀般齿轮材料主要选⽤锻钢(碳钢或全⾦钢)。

对于精度要求较低的齿轮,将齿轮⽑坯经正⽕或调质处理后切齿即为成,这时精度可达8级,精切合⾦钢主要是渗碳后淬⽕,最后进⾏滚齿等精加⼯,其精度可达7,6级甚或5级。

对于尺⼨较⼤的齿轮,可适⽤铸钢或球墨铸铁,正⽕后切齿也可达8级精度。

10-5提⾼轮齿抗弯疲劳强度的措施有:增⼤齿根过渡圆⾓半径,消除加⼯⼑痕,可降低齿根应⼒集中;增⼤轴和⽀承的则度,可减⼩齿⾯局部受载;采取合适的热处理⽅法使轮世部具有⾜够的韧性;在齿根部进⾏喷丸、滚压等表⾯强度,降低齿轮表⾯粗糙度,齿轮采⽤正变位等。

提⾼齿⾯抗点蚀能⼒的措施有:提⾼齿⾯硬度;降低表⾯粗糙度;增⼤润滑油粘度;提⾼加⼯、发装精度以减⼩动载荷;在许可范围内采⽤较⼤变位系数正传动,可增⼤齿轮传动的综合曲率半径。

10-6解(1)选⽤齿轮的材料和精度等级,由教材表10-1可知,⼤⼩齿轮材料均为45号钢调质,⼩齿轮齿⾯硬度为250HBS,⼤齿轮齿⾯硬度为220HBS.选精度等级为7级。

(2)按齿⾯接触疲劳强度设计。

1、⼩齿轮传递的转矩2、初选载荷系数:初选Kt=1.83、确定齿宽系数:⼩齿轮不对称布置,据教材表10-7选⽤4、确定弹性影响系数:据教材表10-6查得5、确定区域载荷系数:按标准直齿圆柱齿轮传动设计ZH=2.56、齿数⽐:7、确定接触许⽤应⼒:循环次数查教材图10-19曲线I得查教材10-21(d)得8、由接触强度计算⼩齿轮的分度圆直径齿轮的使⽤系数:载荷状况以轻微冲击为依据查教材表10-2得KA=1.25齿轮的圆周速度由教材图10-8查得:Kv=1.12对于软齿⾯齿轮,假设,由教材表10-3查得齿宽齿宽与齿⾼⽐由教材表10-4查得,由教材图10-13查得:,接触强度载荷系数:10、校正直径:取标准值m=2.5mm11、齿轮的相关参数:12、确定齿宽:圆整后,取b2=50mm,b1=55mm.(3)校核齿根弯曲疲劳强度。

机械设计第十章习题答案

机械设计第十章习题答案

机械设计第十章习题答案机械工程学系资料机械设计第十章习题答案10-1 试分析图10-47所示的齿轮传动各齿轮所受的力(用受力图表示的里的作用位置及方向)。

解:受力图如下:机械工程学系资料注:斜齿轮各个受力方向1. 径向力指向各自的轴心;2. 轴向力的方向按主动轮螺旋线方向和转向,右旋用右手,左旋用左手,四肢弯曲方向与主动轮转向一致,拇指即为主动轮轴向力方向;3. 圆周力的方向在主动轮上,与运动方向相反;从动轮上,与运动方向相同。

10-6 设计铣床中的一对圆柱齿轮传动,已知1 = 7.5 kW,1 = 1450 r/min ,1 = 26 ,2 = 54 ,寿命= 12022年h ,小齿轮相对其轴承的支撑为不对称布置,并画出大齿轮的机构图。

解:1. 选择齿轮类型、精度等级、材料(1 )选用直齿圆柱齿轮传动(2 )铣床为工作母机,速度不高,故选用6级精度(GB__-88 )。

(3 )材料选择由表10-1选择小齿轮材料为20CrMnTi(渗碳后淬火),60HRC ,大齿轮材料为40Cr(调质后表面淬火),53HRC 。

2. 按齿面接触强度设计1 ≥32 1+12((1 )确定公式中的各计算值1 )试选载荷系数= 1.4 机械工程学系资料2 )计算小齿轮传递的力矩1 = 9.55 × 106 ×7.__1 1= 9.55 × 106 ×= __.55 Nmm3 )小齿轮作不对称布置,查表10-7 ,选取= 0.94 )由表10-5查得材料的弹性影响系数= 189.85 )确定区域系数= 2.56 )计算接触疲劳强度用重合度系数1 = arcos [ 29.241°2 = arcos [ 25.024°= =26 × tan29.241° tan20° +54 × tan20.024° tan20°21 tan tan ′ +2 tan tan ′22cos2+211cos1+2] = arcos26cos20°26+2 ×1=] = arcos54cos20°54+2 ×1== 1.694 = 7 )齿数比u =2 14 3=4 1.6943= 0.877= 2.088 )计算接触疲劳许用应力由小齿轮20CrMnTi ,渗碳后淬火,得1机械工程学系资料= 1300 MPa由大齿轮40Cr ,调质后淬火,得2 = 1300 MPa9 )计算应力循环次数1 , 21 = 60 1 j = 60 × 1450 × 1 × 12022年= 1.044 ×1092 =1= 5.02 × 10810 )确定接触疲劳寿命系数由图10-23 ,查表得:1 = 0.95 ,2 = 0.9511 )计算接触疲劳许用应力取失效概率1% ,安全系数S = 1 [ ] 1 = 1368.42 MPa [ ] 2 = 1368.42 MPa得[ ] = 1368.42 MPa (2 )计算1 ≥ =331 lim 1=0.95 ×13001=2 lim 2=0.95 ×13001=2 1+12 ×1.4 __.550.8×2.08+1 2.08× (2.5 ×189.8 ×0.87921368.42机械工程学系资料= 28.71 mm 圆周速度v = m/s(3 )计算齿宽bb = × 1 = 0.8 × 28.71 = 22.97 mm(4 )计算齿宽和吃高比1 160 × 1000=×28.71 __ ×1000= 2.18=1 1=28.7126= 1.10齿宽h = 2.25 = 2.48 mm 因而= 9.26(5 )计算载荷系数1 )使用系数= 1.252 )动载系数由v = 2.18 m/s ,6级精度,取= 1.04 3 )齿间载荷分配系数直齿轮及修行齿轮,取= 1 ,= 14 )齿向载荷分布系数由= 0.8 ,硬齿面,非对称布置,6级精度,b = 22,97 mm ,线性插值得= 1.284 ,由= 9.26 ,= 1.284得=机械工程学系资料1.26载荷系数K = = 1.25 × 1.04 × 1 × 1.284 = 1.67(6 )按实际载荷系数算得分度圆直径1 = 1 = 28.71 × =1.4331.6730.45 mm(7 )计算模数mm = = 1.17mm3. 按齿根弯曲强度设计由弯曲疲劳强度的计算公式m ≥32 11(1 )确定公式各变量的值1 )由小齿轮:渗碳淬火钢1 = 850 MPa 由大齿轮:调制后表面淬火2 = 720 MPa2 )取弯曲疲劳寿命系数1 = 0.91 , 2 = 0.93 3 )计算弯曲许用应力取安全系数S = 1.4 ,由[ ] = 得[ ]1 = MPa1 1=0.91 ×8501.4= 552.5机械工程学系资料[ ]2 = MPa4 )计算[ ]2 2=0.93 ×7201.4= 478.29由图10-17 ,10-18查取齿形系数得1 = 2.60 ,1 = 1.5950.0082181.26 = 1.6380.6932 = 2.296 ,2 = 1.712 1 1[ ]1 = 0.__-__2 2[ ]2= 0.008128可见大齿轮的数值大一些,取较大值5 )计算载荷系数K = = 1.25 × 1.04 × 1 ×6 )计算弯曲疲劳强度重合度系数由10-5得=0.25 + 0.75= 0.25 +0.751.694=2 )试算模数3≥ 2 11=32 ×1.638 __.55 ×0.6390.8 × 26 ×0.008128= 1.194 mm(机械工程学系资料4. 结果分析和选择对比两种计算方法,可以看出齿根弯曲疲劳强度m ≥ 1.194mm及按齿面接触算得的模数m ≥ 1.17 ,故可取m ≥ 1.194 mm ,将模数标准化圆整,取m =2 mm 。

《机械设计基础》第十章 联接

《机械设计基础》第十章 联接

二、螺纹联接的防松
在静载荷和工作温度变化不大的情况下,拧紧的螺纹联接件因满足 自锁性条件,一般不会自动松脱。 但在冲击、振动和变载的作用下,预紧力可能在某一瞬间消失,联 接仍有可能松脱。高温的螺纹联接,由于温差变形差等原因,也可能发 生松脱现象。
螺纹防松的根本问题在于防止螺纹副转动。 螺纹防松的措施 1、摩擦防松 弹簧垫圈 对顶螺母 尼龙圈锁紧螺母
用于较厚的被联接件或为了结构紧凑必须采用盲孔的 联接。装配时一端拧入被联接件的螺纹孔中,另一端 穿过被联接件的通孔,再拧上螺母。允许多次拆装而 不损坏联接零件。
3、螺钉联接 (screw)
螺钉直接旋入被联接件的螺纹孔中,省去了螺母,结构 上比双头螺柱简单。但这种联接不宜经常拆装,以免被 联接件的螺纹孔磨损而导致修复困难。
当推动滑块沿斜面等速上升时,可得水平推力 F=Qtg(λ+ρ′)
d 2 Qd 2 tg( ) 2 2 驱动力矩用来克服螺旋副的摩擦阻力和升起重物。
驱动力矩 T F
螺纹副的效率是有效功与输入功之比。若按螺旋传动一圈计算,输入 功为2πT,此时升举滑块(重物)所作的有效功为QS,故螺旋副效率为
§10-1 螺 纹
(screw thread)
一、螺纹的形成
将一个直角三角形沿底边与 一圆柱体底面圆周复合而绕在圆 柱体上,则其斜边在圆柱体表面 形成一条螺旋线。取一平面图形, 使它沿着螺旋线运动,运动时保 持此图形通过圆柱体的轴线,就 得到螺纹。按平面图形的形状, 螺纹分为三角形、矩形、梯形、 锯齿形等。
例10-1 试计算粗牙普通螺纹M10和M68的螺纹升角;说明在静载荷下这 两种螺纹能否自锁(已知摩擦系数f=0.1~0.15) 解:(1)螺纹升角 由表10-1查得M10的螺距P=1.5mm,中径d2= 9.026mm;M68的P=6mm,d2=64.103mm。 对于M10 arc tg 对于M68 arc tg

机械设计第十章课后题答案

机械设计第十章课后题答案

一、课本10-2 解:(1)B 轮是惰轮,齿根弯曲应力是对称循环变应力。

查图10-21d),接触疲劳极限应力MPa 580lim =H σ,弯曲疲劳极限应力MPa 3084407.0=⨯=FE σ。

许用应力为:MPa 58015801][lim =⨯==S K H HN H σσ;MPa 2964.13081][=⨯==S K FE FN F σσ (2)B 轮是主动轮,齿根弯曲应力是脉动循环变应力。

查图10-21d),接触疲劳极限应力MPa 580lim =H σ,弯曲疲劳极限应力MPa 440=FE σ。

许用应力为:MPa 58015801][lim =⨯==S K H HN H σσ;MPa 3144.1440][===S K FE FN F σσ 如齿轮的工作寿命不是无限寿命时,上述两种情况下的许用应力值均相应增大。

二、课本10-7 解:该齿轮传动的承载能力由齿面接触强度所限定。

1.计算按齿面接触强度所限定的转矩,由式(10-21)得:()2311][12⎪⎪⎭⎫ ⎝⎛⋅+≤E H H d z z u K u d T σεφα1)小齿轮分度圆直径 mm 95.145229cos 246cos 11='︒⨯==βz m d n 。

2)齿宽系数 096.195.1451601===d b d φ。

3)查图10-26,765.01=αε,925.02=αε端面重合度 685.1925.0765.021=+=+=αααεεε。

4)齿数比 5.42410812===z z u 。

5)由表10-6查得材料的弹性影响系数 21MPa 8.189=E z 。

6)由图10-30查得区域系数 455.2=H z 。

7)小齿轮合金钢调质260HBS ,由图10-21d 查得小齿轮的接触疲劳极限MPa 5801lim =H σ;大齿轮碳钢调质220HBS ,由图10-21d 查得大齿轮的接触疲劳极限MPa 5202lim =H σ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b d d1
小齿轮的齿宽-大齿轮的齿宽≈5~10mm
二、齿轮的许用应力
lim K N [ ] S
1. S-疲劳强度安全系数: S F、S H
接触疲劳强度安全系数 S H 1 齿根弯曲疲劳强度安全系数 S F 1.25 ~ 1.5
2. K N-考虑应力循环次数影响的寿命系数:K FN 、K HN
1279 MPa [ H ] 1400 MPa
接触疲劳强度满足要求
例4 设计题

设计带式输送机减速器的 高速级齿轮传动。已知输 入功率P=10kW,小齿轮 转速n1=960r/min,齿数 比u=3.2,由电动机驱动, 工作寿命15年(每年工作 300天),两班制,带式 输送机工作平稳,转向不 变。
解题步骤



确定已知条件P,n1,u(i)以及工作条件(工作时间、 工作机和原动机的有关情况等)。 选定齿轮类型、精度等级、材料及齿数。 确定齿轮的许用接触应力和许用弯曲应力。 选定小齿轮的齿数z1,z2=u*z1。 软齿面齿轮则按照齿面接触强度进行设计。

计算传递的转矩T; 初选有关系数(载荷系数K,齿宽系数) 计算小齿轮分度圆直径
T1 n1 94999 750 P 7.46kW 6 6 9.55 10 9.55 10


2
图示定轴轮系,已知z1=z3=25,z2=20,齿轮1的 转速为450r/min,工作寿命为Lh=2000h。齿轮1 为主动且转向不变:

齿轮2齿面上某点的接触应力循环次数N1和齿根弯曲 应力循环次数的N2各为多少?
三、验算齿根弯曲应力
齿轮齿数z1=29,z2=129,查表10-5
YFa1 2.53 Ysa 1 1.62
插值: YFa 2 2.18 2.14 2.18 (129 100 ) 2.16
Y sa 2
150 100 1.83 1.79 1.79 (129 100 ) 1.81 150 100
弯曲疲劳强度试验疲劳极限
接触疲劳强度试验疲劳极限
接触疲劳强度试验疲劳极限
接触疲劳强度试验疲劳极限
三、齿轮精度的选择 3、4、5、6、7、8、9、10、11 高 低 各类机器所用齿轮传动的精度等级范围
机器名称 汽轮机 金属切削机床 航空发动机 轻型汽车 载重汽车 精度等级 3~6 3~8 4~8 5~8 7~9 机器名称 拖拉机 通用减速器 锻压机床 起重机 农业机械 精度等级 6~ 8 6~ 8 6~ 9 7~10 8~11
直齿轮传动设计例题
直齿轮强度计算公式
齿面接触疲劳强度 齿根弯曲疲劳强度
校 核 公 式 设 计 公 式
H ZE ZH
2 KT1 ( u 1) [ H ] u d d 13
F
2 KT1YFa Y Sa [ F ] 2 2 d m z1
3
d1
2 KT1 u 1 Z H Z E d u H

当发生面沿基圆柱 作纯滚动时,与基 圆柱母线成一夹角 bb的直线在空间的 轨迹则为斜齿圆柱 齿轮的渐开螺旋面。 bb -基圆螺旋角
N'
k0
k
k'
k'0

直齿轮与斜齿轮的接触线
接触疲劳寿命系数KHN
弯曲疲劳寿命系数KFN
⑤查图10-18,10-19,
K FN 1 K FN 2 K HN 1 K HN 2 1
⑥计算许用接触应力和许用弯曲应力
[ H ]1 [ H ]2
H lim Z N
SH
1400 MPa
[ F ]1 [ F ]2
d 1 mz1 3 20 60mm
2
b d d 1 1 60 60mm
由于大齿轮的许用接触应力小,所以代入 [H]2=650MPa
2 650 60 60 3 Tmax 2 1.6 3 1 189.8 2.5 94999Nmm 2
③ i=z2/z1=129/29=4.4 ④计算应力循环次数
N 1 60 n1 jLh 60 730 1 16 300 5 10.5 10 8
n2 1 8 N 2 60n 2 jLh N 1 10.5 10 n1 i 10.5 10 8 / 4.4 2.38 10 8
解题步骤

根据给定的材料、热处理方式、工作时间等确定许 用接触应力和许用弯曲应力;


根据工作条件、齿轮安装等确定载荷系数;
查有关图表,确定ZH、ZE的值,根据已知条件验算 齿面接触应力; 查有关图表,确定YFa、YSa的值,根据已知条件验 算齿根弯曲应力;

解题过程
一、确定许用应力 已知条件:
FEYN
SF
850 1 654.6MPa 1.3
二、确定载荷系数K
1.确定使用系数KA

工作机为起重机械,载荷有中等冲击,原动机 为电动机,查表10-2 KA =1.5 齿轮圆周速度
2.确定动载系数Kv
d 1 n1 2.5 29 730 v 2.77 m / s 60 1000 60 1000



按接触疲劳强度,求该齿轮传动能传递的功率。
例1 解答
解: H Z E Z H 2 KT1 u 1 [ H ] 2 u bd1
[ H ] T1 Z Z E H
z 2 60 u 3 z1 20
bd12 u 2K u 1
大、小齿轮材料皆为20CrMnTi,渗碳淬火,齿面硬度为 58~62HRC。
分析:硬齿面齿轮传动
齿轮材料为合金钢,热处理方法为渗碳淬火,取硬度为 60HRC
①查图10-21e,取
H lim1 H lim 2 1400 MPa
②查图10-20e,取
F lim1 F lim 2 850 MPa
671MPa [ F ]2 654.6MPa
齿根弯曲强度不满足要求
四、验算齿面接触疲劳强度
ZH=2.5
H ZH ZE
ZE=189.8
2 KT1 (u 1) 2 2 327054 5.4 2.5 189.8 2 2 bd1 u 42 (2.5 29) 4.4
10.6 齿轮传动的设计参数、许用 应力和精度选择
齿轮传动设计参数的选择
齿轮的许用应力
齿轮精度的选择
一、齿轮传动设计参数的选择
1. 压力角的选择 一般齿轮选用标准压力角 20°。 航空工业齿轮选用25°压力角。
2. 齿数的选择
在中心距一定时,在满足弯曲强度的条件下,可取 较多的齿数和较小的模数。 闭式传动:z1=20~40。 开式传动:z1=17~20。
斜齿圆柱齿轮传动的特点 斜齿圆柱齿轮的基本参数 斜齿圆柱齿轮的正确啮合条件 斜齿圆柱齿轮的几何尺寸计算 斜齿圆柱齿轮的当量齿轮

直齿轮齿廓曲线的生成

当发生面沿基圆柱作 纯滚动时,平行于齿 轮的轴线的直线kk‘在 空间的轨迹为直齿圆 柱齿轮的齿面。
N'
k'
k
k'0
k0
斜齿轮齿廓曲线的生成
齿面接触强度计算
Helical gears
左旋和右旋斜齿轮
b
Right hand ----R.H.
b
Left hand ----L.H.
本节内容
斜齿圆柱齿轮有关知识回顾 斜齿圆柱齿轮轮齿的受力分析 计算载荷
齿根弯曲疲劳强度计算
齿面接触疲劳强度计算
例题
一、斜齿圆柱齿轮有关知识回顾
b 42 7 .5 h 5.625
查图 10-13并插值
பைடு நூலகம்
K Fb 1.15
5. 确定载荷系数K
K H K A K v K Ha K Hb 1.5 1.06 1.1 1.17 2 K F K A K v K Fa K Fb 1.5 1.06 1.1 1.15 2
查图10-8 , 齿轮精度等级6级,Kv =1.06
1.06
3. 确定齿间载荷分布系数Ka
P 25 6 T1 9.55 10 9.55 10 327054Nmm n1 730
6
K A Ft 2 K AT1 2 1.5 327054 322N / mm b bd1 42 2.5 29 100N / mm
齿根弯曲强度计算
2 KT1 2.53 1.62 2 2 327054 F 1 YFa1YSa1 bd1m 42 2.5 29 2.5 704 MPa [ F ]1 654.6MPa
F2
YFa 2YSa 2 2.16 1.81 F1 704 YFa1YSa1 2.53 1.62
查表 10-3
KHa=KFa=1.1
4. 确定齿向载荷分布系数Kb
K Hb
b2=42mm
硬齿面齿轮非对称布置,6级精度
b 42 d 0 .6 d 1 29 2.5
查表 10-4
K Hb 1.17
K Fb
h m ( c 2 ha ) 2 .5 ( 0 .25 2 1) 5 .625 mm
两支承相对于小齿轮非对称布置: 0.7~1.15(1.1~1.65)
小齿轮悬臂布置:0.4~0.6
齿宽系数d的选择

也可以先选定a ,用下式计算d
d b b a a 0.5d 1 (1 u ) 0.5(1 u )
a取值:0.2 0.25 0.30 0.40 0.50 0.60 0.80 1.0 1.2
相关文档
最新文档