人教版九年级数学中考模拟试卷含答案
人教版九年级中考冲刺数学模拟卷5(附答案)
中考数学试卷一、选择题。
(本大题共12小题.每小题3分.共36分.在每小题给出的四个选项中.只有一项是符合题目要求的) 1.计算(﹣5)×3的结果等于( )。
A .﹣2B .2C .﹣15D .152.tan30°的值等于( )。
A.33B .22 C .1 D .23.据2021年5月12日《天津日报》报道.第七次全国人口普查数据公布.普查结果显示.全国人口共141178万人.将141178用科学记数法表示应为( )。
A .0.141178×106 B .1.41178×105C .14.1178×104D .141.178×1034.在一些美术字中.有的汉字是轴对称图形.下面4个汉字中.可以看作是轴对称图形的是( )。
A .B .C .D .5.如图是一个由6个相同的正方体组成的立体图形.它的主视图是( )。
A .B .C .D .6.估计17的值在( )。
A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.方程组⎩⎨⎧=+=+432y x y x 的解是( )。
A .⎩⎨⎧==20y xB .⎩⎨⎧==11y xC .⎩⎨⎧-==22y xD .⎩⎨⎧-==33y x8.如图.▱ABCD 的顶点A .B .C 的坐标分别是(0.1). (﹣2.﹣2).(2.﹣2).则顶点D 的坐标是( )。
A .(﹣4.1) B .(4.﹣2)C .(4.1)D .(2.1)9.计算ba bb a a ---33的结果是( )。
A .3 B .3a +3b C .1 D .b a a-610.若点A (﹣5.y 1).B (1.y 2).C (5.y 3)都在反比例函数y =﹣x5的图象上.则y 1.y 2.y 3的大小关系是( )。
A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 211.如图.在△ABC 中.∠BAC =120°.将△ABC 绕点C 逆时针旋转得到△DEC .点A .B 的对应点分别为D .E .连接AD .当点A .D .E 在同一条直线上时.下列结论一定正确的是( )。
人教版九年级数学中考模拟试卷及答案解析
人教版九年级数学中考模拟试卷考 生须知 1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c 在数轴上对应点的位置如图所示,则正确的结论是(A )2a >-(B )1b > (C )0a c +>(D )0abc >4.下列图案中,是中心对称图形的为(A ) (B ) (C ) (D )bca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点. 若AB = 4,∠APB = 45°,则CD 长的最大值为.EDCBA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.lA图1图2l21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1x x(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.DB参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17-22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分………………………………2分………………………………3分………………………………4分………………………………5分CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-.…………… 1分∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下:……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC .…………… 4分②10n -<≤或3n -≤.…………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1)(2)(3)3.3125.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示.…………… 1分 (2)证明:△ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.…………… 3分 DE BCAC ==, DG AC ∴=.AG CD ∴=.…………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠. ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时,125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。
人教版九年级数学中考模拟试卷及参考答案
第7题图第10题图人教版九年级数学中考模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)一、选择题 (本题共10小题,每小题3分,满分30分) 1.3- 的相反数为 ( )A . 3-B . 3C . 31-D . 31 2.下列图形中是中心对称图形的是( )A .B .C .D .3.把不等式组10630x x +>⎧⎨-≥⎩的解集表示在数轴上正确的是( )A .B .C .D .4.在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE =6,则BC =( ) A .3 B .6C .9D .125.在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是( ) A .平均数是2 B .中位数是2 C .众数是2 D .方差是2 6.若一个正多边形的一个外角是30°,则这个正多边形的边数是( )A .12B .11C .10D .9 7.如图,AB DE ∥,62E ∠=,则B C ∠+∠等于( ) A .138B .118C .38D .628.对于二次函数2241y x x =--+,下列说法正确的是A .当 0x <,y 随x 的增大而增大B .当 1x =- 时,y 有最大值 3C .图象的顶点坐标为 ()1,3D .图象与轴有一个交点9.已知圆锥的母线长是4cm ,侧面积是12πcm 2,则这个圆锥底面圆的半径是( ) A .3cm B . 4cm C .5cm D .6cm10.将抛物线241y x x 向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线3y 和x 轴围成的图形的面积S (图中阴影部分)是( ) A .5 B .6C .7D .8第16题图二、填空题 (共6小题,每小题3分,满分18分) 11.分解因式:224a ab -= . 12.计算:20199(1)2sin 30=+-- .13.已知命题:“如果两个角是直角,那么它们相等”,该命题的....是 命题(填“真”或“假”).14.已知一次函数图象经过第一、二、四象限,请写出一个..符合条件的一次函数解析式 .15. 已知点1122(,)(,)A x y B x y 、在二次函数2(1)1y x =-+的图象上,若121x x >>,则12____y y 。
初三数学中考模拟试卷,附详细答案【解析版】
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
新人教版初三年级数学中考模拟测验卷及答案
初三数学模拟测试卷说明:本卷共有六大题,25小题,全卷满分120分。
考试时间120分钟1.下列4个数中,大于-6的数是( ) (A )-5 (B )-6 (C )-7 (D )-82.已知a<b<0,则点A(a-b,b)在( )(A )第一象限(B )第二象限(C )第三象限 (D )第四象限3.长城总长为67000100米,用科学记数法表示为( ) (A )6.7×108 (B )6.7×107(C )6.7×106(D )6.7×1054.下列图形中,能够说明∠1 > ∠2的是( )(A ) (B ) (C ) (D ) 5.将如图所示放置的一个直角三角形ABC ,(∠C=90°),绕斜边AB 旋转一周,所得到的几何体的正视图是下面四个图中的( )(A ) (B )(C )(D )6.在右边的表格中,每一行、列及对角线上的三个整数的和 都相等,则X 的值为( )(A )-3 (B )0(C )2(D )37.如图 ———— 在一个房间的门口装有两个开关,以控制里面的电灯,现在门口随机拉一下开关,房间里面的灯能够亮的可能性为( )(A )12(B )13(C )14(D )238.有一个商店,某件商品按进价加20%作为定价,可是总 是卖不出去,后来老板按定价减价20%以96元出售,很快 就卖掉了,则这次生意的盈亏情况是 ( ) (A )赚6元 (B )亏4元 (C )亏24元(D )不亏不赚 9.如图,在⊙O 中,弦AB=3.6cm ,圆周角∠ACB=30°,则⊙O 的直径等于 ( (A )3.6cm (B )1.8cm (C )5.4cm (D )7.2cm10.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) (A )平均数 (B )加权平均数 (C )中位数 (D )众数二、填空题(本大题共6小题,每小题3分,共18 11.a 的相反数等于2007,则a=______ 12.抛物线y=ax 2+bx+c 如图所示,则它关于y 轴对称的抛物线的解析式是________13.如图。
人教版九年级数学中考模拟试卷及参考答案
人教版九年级数学中考模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°2.下列图形中,是中心对称图形的是()A.B.C.D.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.下列事件中,属于不可能事件的是()A.明天会下雨B.从只装有8个白球的袋子中摸出红球C.抛一枚硬币正面朝上D.在一个标准大气压下,加热到100℃水会沸腾5.在△ABC与△DEF中,下列四个命题是真命题的个数共有()①如果∠A=∠D,=,那么△ABC与△DEF相似;②如果∠A=∠D,=,那么△ABC与△DEF相似;③如果∠A=∠D=90°,=,那么△ABC与△DEF相似;④如果∠A=∠D=90°,=,那么△ABC与△DEF相似;A.1个B.2个C.3个D.4个6.如图,ABCD为平行四边形,BC=2AB,∠BAD的平分线AE交对角线BD于点F,若△BEF的面积为1,则四边形CDFE的面积是()A.3 B.4 C.5 D.67.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.8.下列一元二次方程中没有实数根的方程是()A.(x﹣1)2=1 B.x2+2x﹣10=0 C.x2+4=7 D.x2+x+1=09.如图是一个餐盘,它的外围是由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,已知正三角形的边长为10,则该餐盘的面积是()A.50π﹣50B.50π﹣25C.25π+50D.50π10.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)11.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.2C.3 D.412.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣1 0 1 2 3 …y…﹣2 3 6 7 6 …当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>3二.填空题(共6小题,满分18分,每小题3分)13.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.14.写一个反比例函数的解析式,使它的图象在第一、三象限:.15.函数y=x2﹣2x﹣4的最小值为.16.某生利用标杆测量学校旗杆的高度,标杆CD等于3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m.则旗杆AB的高度为.17.如图,⊙O的半径是,△ABC是⊙O的内接三角形,过圆心O分别作AB,BC,AC的垂线,垂足为E,F,G,连接EF,若OG=1,则EF的长为.18.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC 长是cm.三.解答题(共7小题,满分66分)19.(8分)解方程:2x2﹣3x+2x=1.20.(8分)如图,在Rt△ABC中,∠C=90°,AB=4,BC=3,求AC的长及∠B的正弦值、余弦值和正切值.21.(10分)已知反比例函数的图象过点A(﹣2,2).(1)求函数的解析式.y随x的增大而如何变化?(2)点B(4,﹣2),C(3,)和D()哪些点在图象上?(3)画出这个函数的图象.22.(10分)在⊙O中,AB为直径,C为⊙O上一点.(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=28°,求∠P的大小;(2)如图②,D为的中点,连接OD交AC于点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=12°,求∠P的大小.23.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)24.(10分)如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?25.(10分)已知二次函数y=ax2﹣4ax+3a.(1)该二次函数图象的对称轴是x=;(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,求当1≤x≤4时,y的最小值;(3)若该二次函数的图象开口向下,对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据特殊角的三角函数值求解.【解答】解:∵sin A=,∠A为锐角,∴∠A=30°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.【分析】根据旋转180°后与原图重合的图形是中心对称图形,进而分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、明天会下雨是随机事件,故A不符合题意;B、从只装有8个白球的袋子中摸出红球是不可能事件,故B符合题意;C、抛一枚硬币正面朝上是随机事件,故C不符合题意;D、在一个标准大气压下,加热到100℃水会沸腾是必然事件,故D不符合题意;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】根据相似三角形的判定定理判断即可.【解答】解:①如果∠A=∠D,=,那么△ABC与△DEF相似;故错误;②如果∠A=∠D,=,那么△ABC与△DEF相似;故正确;③如果∠A=∠D=90°,=,那么△ABC与△DEF相似;故正确;④如果∠A=∠D=90°,=,那么△ABC与△DEF相似;故正确;故选:C.【点评】本题考查了相似三角形的判定和判定,熟记相似三角形的判定定理是解题的关键.6.【分析】首先证明AD=2BE,BE∥AD,进而得出△BEF∽△DAF,即可得出△ABF,△ABD,的面积,用面积的和差即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴BA=BE,∵BC=2AB,∴AD=BC=2BE,BE∥AD,∴△BEF∽△DAF,∴==,∴=()2=,∵△BEF的面积为1,∴S△ABF=2S△BEF=2,S△ADF=4S△BEF=4,∴S△ABD=S△ABF+S△ADF=6,∴S四边形DCEF=S△BCD﹣S△BEF=S△ABD﹣S△BEF=5,故选:C.【点评】此题是相似三角形的判定和性质,主要考查了平行四边形的性质,同高的三角形的面积比是底的比,用相似三角形的性质得出S△ABF=2S△BEF=2,S△ADF=4S△BEF=4是解本题的关键.7.【分析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点评】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.8.【分析】根据方程和根的判别式逐个判断即可.【解答】解:A、(x﹣1)2=1,x﹣1=±1,即方程有两个实数根,故本选项不符合题意;B、x2+2x﹣10=0,△=22﹣4×1×(﹣10)=44>0,方程有两个实数根,故本选项不符合题意;C、x2+4=7,x2=3,x=,方程有两个实数根,故本选项不符合题意;D、x2+x+1=0,△=12﹣4×1×1=﹣3<0,方程无实数根;故选:D.【点评】本题考查了根的判别式和一元二次方程,能熟记根的判别式的内容是解此题的关键.9.【分析】由扇形面积减去三角形面积求出弓形面积,三个弓形与一个等边三角形面积之和即为餐盘面积.【解答】解:该餐盘的面积为3(﹣×102)+×102=50π﹣50,故选:A.【点评】此题考查了正多边形和圆,熟练掌握扇形面积公式是解本题的关键.10.【分析】由题意可求反比例函数解析式y=,将x=3,1,﹣1代入解析式可求函数值y的值,即可求函数的图象不经过的点.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.11.【分析】连接OP.根据勾股定理知PQ2=OP2﹣OQ2,因为OQ是定值,所以当OP⊥AB时,线段OP 最短,即线段PQ最短.【解答】解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣4,0)、B(0,4),∴OA=OB=4,∴AB=4∴OP=AB=2,∴PQ=.故选:A.【点评】本题考查了切线的判定与性质、坐标与图形性质以及矩形的性质等知识点.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角来解决有关问题.12.【分析】由二次函数图象上点的坐标(1,6)和(3,6),利用二次函数的性质可得出二次函数图象的对称轴,进而可得出顶点坐标,结合二次函数图象的顶点坐标,即可找出y<6时x的取值范围.【解答】解:∵当x=1时,y=6;当x=3时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),∴当y<6时,x<1或x>3.故选:D.【点评】本题考查了二次函数的图象、二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是:(1)由点的坐标,利用二次函数的性质找出二次函数图象的顶点坐标.二.填空题(共6小题,满分18分,每小题3分)13.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【分析】反比例函数y=(k是常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为:y=等.【点评】此题主要考查了反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.【分析】将二次函数配方,即可直接求出二次函数的最小值.【解答】解:∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.16.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出=,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:如图所示:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴=,即:=,∴=,∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).故答案为:13.5 m.【点评】此题主要考查了相似三角形的应用,主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.17.【分析】连接OA,根据勾股定理求出AG,根据垂径定理求出AC,根据垂径定理得到EF是△ABC 的中位线,根据中位线定理计算即可.【解答】解:连接OA,∵OG⊥AC,OA=,OG=1,∴AG==2,∵OG⊥AC,∴AC=2AG=4,∵OE⊥AB,OF⊥BC,∴AE=EB,BF=FC,∴EF=AC=2.故答案为:2.【点评】本题考查的是三角形中位线定理、垂径定理和勾股定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半,垂直弦的直径平分这条弦,并且平分弦所对的两条弧.18.【分析】先根据四边形内角和定理判断出∠2+∠B=180°,再延长至点E,使DE=BC,连接AE,由全等三角形的判定定理得出△ABC≌△ADE,故可得出△ACE是直角三角形,再根据四边形ABCD 的面积为24cm2即可得出结论.【解答】解:延长CD至点E,使DE=BC,连接AE,∵∠BAD=∠BCD=90°,∴∠2+∠B=180°,∵∠1+∠2=180°,∠2+∠B=180°,∴∠1=∠B,在△ABC与△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠EAD=∠BAC,AC=AE,S△AEC=S四边形ABCD∵∠BAD=90°,∴∠EAC=90°,∴△ACE是等腰直角三角形,∵四边形ABCD的面积为24cm2,∴AC2=24,解得AC=4或﹣4,∵AC为正数,∴AC=4.故答案为:4.【点评】本题考查的是全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形及等腰直角三角形,再根据三角形的面积公式进行解答即可.三.解答题(共7小题,满分66分)19.【分析】由原方程变形为x2+2x+x2﹣3x+3=4,则(x+)2=4,所以x+=2或x+=﹣2,然后分别解两个无理方程,再进检验确定原方程的解.【解答】解:x2+2x+x2﹣3x+3=4,(x+)2=4,x+=2或x+=﹣2,当x+=2时,则=2﹣x,化为整式方程得x=1,当x+=﹣2,则=﹣x﹣2,化为整式方程得x=﹣,经检验,原方程的解为x=1.【点评】本题考查了解无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.解无理方程,往往会产生增根,应注意验根.20.【分析】根据勾股定理求出AC,根据锐角三角函数的定义解答.【解答】解:由勾股定理得,AC==,sin B==,cos B==,tan B==.【点评】本题考查的是勾股定理、锐角三角函数的定义,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.【分析】(1)利用待定系数法求反比例函数的解析式;(2)根据反比例函数图象上点的坐标特征,将B、C、D三点分别代入进行验证即可;(3)根据该反比例函数所在的象限、以及该函数的单调性画出图象.【解答】解:设该反比例函数的解析式为y=(k≠0),则2=,解得,k=﹣4;所以,该反比例函数的解析式为y=﹣;∵﹣4<0,∴该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;(2)由(1)知,该反比例函数的解析式为y=﹣,则xy=﹣4.∵﹣2×4=﹣8≠﹣4,3×(﹣)=﹣4,2×(﹣)=﹣4,∴点B(4,﹣2)不在该函数图象上,点C(3,)和D()在该函数图象上;(3)反比例函数的图象过点A(﹣2,2),由(1)知,该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;所以其图象如图所示:【点评】本题考查了反比例函数的图象与性质、待定系数法求反比例函数的解析式以及反比例函数图象上点的坐标特征.经过函数的某点一定在该函数的图象上.22.【分析】(1)连接OC,根据三角形的外角的性质求出∠POC,根据切线的性质得到∠OCP=90°,根据三角形内角和定理计算即可;(2)根据垂径定理得到OD⊥AC,根据圆周角定理,三角形的外角的性质计算即可.【解答】解:(1)连接OC,∵OA=OC,∴∠A=∠OCA=28°,∴∠POC=56°,∵CP是⊙O的切线,∴∠OCP=90°,∴∠P=34°;(2)∵D为的中点,OD为半径,∴OD⊥AC,∵∠CAB=12°,∴∠AOE=78°,∴∠DCA=39°,∵∠P=∠DCA﹣∠CAB,∴∠P=27°.【点评】本题考查的是垂径定理,切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.23.【分析】(1)由cos∠FHE==可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BC tan60°=;Rt△ANH中,求得HN=AH sin45°=;根据EM=EG+GM可得答案.【解答】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.24.【分析】(1)由路程=速度×时间,可得BP的值;(2)由路程=速度×时间,可得AQ的值;(3)由DQ=点Q的路程﹣AD的长度,可得DQ的值;由QC=CD﹣DQ,可求QC的长;(4)由路程=速度×时间,可得t的值;(5)由点P路程+点Q路程=AD+CD+BC,可求t的值.【解答】解:(1)∵动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,∴BP=1×t=t,故答案为:t,(2)∵动点Q同时以每秒4个单位的速度从点A出发,∴AQ=4×t=4t,故答案为:4t,(3)∵DQ=4t﹣AD∴DQ=4t﹣4,∵QC=CD﹣DQ∴QC=4﹣(4t﹣4)=8﹣4t故答案为:4t﹣4,8﹣4t(4)根据题意可得:4t=4+2t=1.5答:当t等于1.5时,点Q运动到DC的中点.(5)根据题意可得:4t+t=4×3t=答:当t等于时,点P与点Q相遇.【点评】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.25.【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q左边或重合时,满足条件,可得t+1≤5,由此即可解决问题;【解答】解:(1)对称轴x=﹣=2.故答案为2.(2)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2.∴4a﹣8a+3a=2.∴a=﹣2,y=﹣2x2+8x﹣6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6.(3)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,∴t≤4,∴t的最大值为4.【点评】本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
2022年人教版九年级数学中考模拟试卷2套(含答案解析)
2022年人教版九年级数学中考模拟试卷1一.选择题(每题4分,共40分)1.在下列各数中,最小的数是()A.﹣1.5 B.﹣3 C.﹣1 D.﹣52.某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球3.2020年,新冠肺炎疫情席卷全球,截至2020年12月30日,累计确诊人数超过78400000人,抗击疫情成为全人类共同的战役,寒假要继续做好疫情防控.将“78400000”用科学记数法可表示为()A.7.84×105B.7.84×106C.7.84×107D.78.4×1064.在Rt△ABC中,∠C=90°,BC=6,sin A=,则AC的长为()A.4 B.6 C.8 D.105.下列计算正确的是()A.2a2+a3=3a5B.(﹣b2)5=﹣b10C.(2ab)2÷(ab)=2ab D.(﹣1﹣ab)2=1﹣2ab+a2b26.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)50 55 60 65 70车辆数(辆) 5 4 8 2 1则上述车速的中位数和众数分别是()A.60,8 B.60,60 C.55,60 D.55,87.方程=的解为()A.x=1 B.x=2 C.x=3 D.x=48.如图,在△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接OD,CD,若CD =OD,则∠B的度数为()A .30°B .45°C .60°D .70°9.抛物线y =ax 2+bx +c (a >0)过点(1,0)和点(0,﹣3),且顶点在第三象限,设m =a ﹣b +c ,则m 的取值范围是( )A .﹣6<m <0B .﹣6<m <﹣3C .﹣3<m <0D .﹣3<m <﹣110.如图,正方形ABCD 内一点E ,满足△CDE 为正三角形,直线AE 交BC 于F 点,过E 点的直线GH ⊥AF ,交AB 于点G ,交CD 于点H .以下结论: ①∠AFC =105°;②GH =2EF ;③;④其中正确的有( )A .①②③B .①③④C .①④D .①②③④二.填空题(每题4分,共20分)11.若|a ﹣2|+(b +3)2=0,则a +b = .12.若A (﹣3,y 1),B (1,y 2),C (2,y 3)是反比例函数y =(k >0)图象上的三点,则y 1,y 2,y 3的大小关系是 (用“<”号连接).13.如图,在△ABC 中,AB =5,D ,E 分别是边AC 和AB 上的点,且∠AED =∠C ,若AD •BC =,则DE 的长为 .14.如图,在△ABC中,∠B=90°,sin A=,BD⊥AC,垂足为D,按如下步骤作图:①以A点为圆心,以大于AB的长度m为半径作弧;②以B点为圆心,以同样大小为半径作弧,两弧交点分别为E,F;③连接EF,直线EF与AC交于点G,则AB与DG的比是.15.如图.在矩形ABCD中,AD=2AB=6,点E是AD的中点.连接BE.点M是BE上一动点,取CM的中点为N.连接AN,则AN的最小值是.三.解答题(共7小题,共60分)16.(1)计算:﹣(4﹣π)0+(cos60°)﹣2﹣|﹣3|;(2)解不等式组:,并写出它的所有整数解.17.计算:(1﹣)÷.18.在学完锐角三角函数后,某班利用自制的测角仪和卷尺,测量校国旗杆的高度,他们制定了如下两种测量方案.方案一:第一步:在国旗杆前平地上选择一点A作为测量点,用自制的测角仪测出观察者看国旗杆顶端D的仰角α;第二步:在点A和国旗杆底端点C之间选择一点B,测出由点B看国旗顶端D的仰角β;第三步:测出AB两点间的距离;第四步:计算国旗杆的高度CD.方案二:第一步:在国旗杆前平地上选择一点A,用自制的测角仪测出观察者(竖直站立)看国旗杆顶端D的仰角α;第二步:测量观察者眼睛到地面的竖直高度AE;第三步:测量点A到国旗杆底端C的水平距离AC;第四步:在点A处重复上述操作,得到仰角及距离;第五步:计算国旗杆的高度CD.根据以上方案,测量信息汇总如下:课题测量校园旗杆的高度方案方案一方案二测量示意图测量数据测量项目αβAB的长测量项目αAE的长AC的长数据33°45° 5.99m数据第一次32.7°151cm17.47m第二次33.3°153cm17.45m平均值a152cm b(1)①填空:a=,b=;②请判断哪个方案更好,并说明理由.(2)根据你的判断,选择合适的数据计算出国旗杆的高度.(结果保留一位小数.参考数据:sin33°≈0.545,cos33°≈0.839,tan33°≈0.649)19.阳光中学为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如下两幅不完整的统计图.请根据以上信息,解答下列问题:(1)随机调查的学生人数是,并补全条形统计图;(2)求被调查的学生每人一周零花钱数额的中位数及众数;(3)为捐助贫困山区儿童学习,全校800名学生每人自发地捐出一周的零花钱,请估计全校学生共捐款钱数.20.由于疫情的影响,“地摊经济“成为了很多人经济来原的一种形式.李叔叔从市场得知如下信息:A商品B商品进价(元/件)35 5售价(元/件)45 8李叔叔计划购进A.B商品共100件进行销售,设购进A商品x件,A.B商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)若李叔叔用不超过2000元资金一次性购进A.B两种商品,则如何进货,才能使得获利最大?并求出最大利润.21.在平面直角坐标系xOy中,对于两个点A,B和图形ω,如果在图形ω上存在点P、Q (P、Q可以重合),使得AP=2BQ,那么称点A与点B是图形ω的一对“倍点”.已知⊙O的半径为1,点B(3,0).(1)①点B到⊙O的最大值是,最小值是;②在点A(5,0),D(0,10)这两个点中,与点B是⊙O的一对“倍点”的是;(2)在直线y=x+b上存在点A与点B是⊙O的一对“倍点”,求b的取值范围;(3)已知直线y=x+b,与x轴、y轴分别交于点M、N,若线段MN(含端点M、N)上所有的点与点B都是⊙O的一对“倍点”,请直接写出b的取值范围.22.如图,已知抛物线y=x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式;(2)求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使△ACP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵|﹣5|>|﹣3|>|﹣1.5|>|﹣1|,∴﹣5<﹣3<﹣1.5<﹣1,∴其中最小的数是﹣5.故选:D.2.解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.3.解:78400000=7.84×107.故选:C.4.解:sin A=,∴=,解得,AB=10,由勾股定理得,AC===8,故选:C.5.解:由于a2与a3不是同类项,不能加减,故选项A计算错误;(﹣b2)5=﹣b10,故选项B计算正确;(2ab)2÷(ab)=4ab≠2ab,故选项C计算错误;(﹣1﹣ab)2=1+2ab+a2b2≠1﹣2ab+a2b2,故选项D计算错误.故选:B.6.解:将这20辆车的车速从小到大排列后,处在中间位置的两个数都是60km/t,因此中位数是60km/t,这20辆车的车速出现次数最多的是60km/t,共出现8次,因此车速的众数是60km/t,故选:B.7.解:去分母得:x﹣2+x+2=2,解得:x=1,经检验x=1是分式方程的解.故选:A.8.解:∵CD=OD,OD=OC=OA=AC,∴CD=AC,∵AC为⊙O的直径,∴∠ADC=90°,∴∠A=30°,∵∠ACB=90°,∴∠B=90°﹣∠A=60°,故选:C.9.解:∵抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,﹣3),∴c=﹣3,a+b+c=0,即b=3﹣a,∵顶点在第三象限,∴﹣<0,<0,又∵a>0,∴b>0,∴b=3﹣a>0,即a<3,b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2>0∵a+b+c=0,∴a﹣b+c=﹣2b<0,∴a﹣b+c=﹣2b=2a﹣6,∵0<a<3,∴a﹣b+c=﹣2b=2a﹣6>﹣6,∴﹣6<a﹣b+c<0.故选:A.10.解:∵△CDE为正三角形,∴∠CDE=60°,∴∠ADE=90°﹣60°=30°,∵AD=DE=CD,∴∠DAE=∠DEA=(180°﹣30°)=75°,∴∠BAF=90°﹣75°=15°,∴∠AFC=90°+15°=105°,故①正确;过点H作HK⊥AB,则HK=AD,∵GH⊥AF,∴∠BAF+∠AGE=90°,又∵∠AGE+∠KHG=90°,∴∠BAF=∠KHG,在△ABF和△HKG中,,∴△ABF≌△HKG(AAS),∴AF=GH,∵△CDE为正三角形,∴点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,∴AF=2EF,∴GH=2EF,故②正确;∵GH⊥AF,∠DEA=75°,∴∠DEH=90°﹣75°=15°,∴∠CEH=60°﹣15°=45°,∴∠CEF=90°﹣45°=45°,过点F作FM⊥CE于M,过点H作HN⊥CE于N,则MF=EM,NH=EN,∵△CDE是等边三角形,∴∠DCE=60°,∴∠ECF=90°﹣60°=30°,∴CM=MF,NH=CN,∴CE=MF+MF=CN+CN,∴MF =CN , ∴CE =EF +EH ,∴CE =EF +EH ,故③正确;===,故④错误.综上所述,正确的结论是①②③. 故选:A .二.填空题(共5小题)11.解:根据题意得,a ﹣2=0,b +3=0, 解得a =2,b =﹣3, ∴a +b =2﹣3=﹣1. 故答案为:﹣1.12.解:∵k >0,故反比例函数图象的两个分支在一三象限,且在每个象限内y 随x 的增大而减小.∴A (﹣3,y 1)在第三象限,B (1,y 2),C (2,y 3)在第一象限,且1<2, ∴y 1<0,0<y 3<y 2,故y 1,y 2,y 3的大小关系为y 1<y 3<y 2. 故答案为y 1<y 3<y 2.13.解:∵∠AED =∠C ,∠EAD =∠CAB , ∴△ADE ∽△ABC , ∴,∴AD •BC =DE •AB ,且AD •BC =,AB =5,∴DE =, 故答案为:.14.解:由题意得,EF为AB的垂直平分线,∵∠B=90°,∴G为AB的中点,连接BG,∴AG=BG=CG,∵BD⊥AC,∴∠A=∠DBC,∴sin A=sin∠DBC=,∴=,设DC=x,则BC=2x,AC=4x,∴CG=2x,AB===2x,DG=CG﹣CD=x,∴.故答案为:2.15.解:取BC的中点N′,连接AN′、DN′,如图所示:∴BN′=CN′,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠ABC=∠BCD=90°,∵AD=2AB=6,∴AB=BN′=CN′=CD=3,∴∠AN′B=∠DN′C=45°,AN′==3,∴∠AN′D=90°,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是AD的中点,N′是BC的中点,∴DE=BN′,DE∥BN′,∴四边形BEDN′是平行四边形,∴BE∥DN′,∴DN′平分CM,即CM的中点N在DN′上,∴当N与N′重合时,AN⊥DN′,根据垂线段最短定理知,AN′的值就是AN的最小值为3.故答案为:3.三.解答题(共7小题)16.解:(1)﹣(4﹣π)0+(cos60°)﹣2﹣|﹣3|=2﹣1+4+﹣3=3;(2),解不等式①得x≥﹣1,解不等式②得x<3,故原不等式组的解集为﹣1≤x<3,故它的所有整数解为﹣1,0,1,2.17.解:原式=•=.18.解:(1)①根据方案二的两次测量结果的平均数为a==33°,根据法案二的两次测量结果取平均值即可b==17.46(m),故答案为:33°,17.46m;②方案二更好,理由:方案一测量点A在水平地面上,不易观察,容易产生误差,方案二考虑测量点的位置,并多次测量求其平均值,减少误差,因此方案二更好;(2)方案二的数据进行计算:过点E作EF⊥CD,垂足为F,则AE=CF=1.52,AC=EF=17.46,∠DEF=33°,在Rt△DEF中,DF=EF•tan33°≈17.46×0.649≈11.33(m),∴CD=DF+FC=11.33+1.52≈12.9(m),答:旗杆CD的高度约为12.9m.19.解:(1)校团委随机调查的学生有:10÷25%=40(人),零花钱有20元的学生有:40×15%=6(人),补全统计图如下:故答案为:40;(2)把这些数从小到大排列,中位数是第20、21个数的平均数,则中位数是=30(元);30元出现的次数最多,则众数是30元;答:被调查的学生每人一周零花钱数额的中位数是30元,众数是30元;(3)根据题意得:800×=26400(元),答:估计全校学生共捐款26400元.20.解:(1)由题意可得:y=(45﹣35)x+(8﹣5)(100﹣x)=7x+300,∴y与x之间的函数关系式为y=7x+300;(2)由题意可得:35x+5(100﹣x)≤2000,解得:x≤50,又∵x≥0,∴0≤x≤50,∵y=7x+300,7>0,∴y随x的增大而增大,∴当x=50时,可获得最大利润,最大利润为:y=7×50+300=650(元),100﹣x=100﹣50=50(件).答:当购进A种商品50件,B种商品50件时,可使得A、B商品全部销售完后获得的利润最大,最大利润650元.21.解:(1)①点B到⊙O的最大值是BO+r=3+1=4;点B到⊙O的最小值是BO﹣r=3﹣1=2;②∵A到圆O的最大值6,最小值4;D到圆O的最大值11,最小值9;又∵点B到⊙O的最大值是4,最小值是2;在圆O上存在点P,Q,使得AP=2BQ,∴A与B是⊙O的一对“倍点”,故答案为2,4,A;(2)如图,设直线y=x+b与x轴交于点E,与y轴交于点C,过点O作OD⊥CE于D,∵点B到⊙O的最大值是4,最小值是2∴4≤2BQ≤8,∴O到直线y=x+b的最大距离是9,即OD=9,∵直线y=x+b与x轴交于点E,与y轴交于点C,∴点C(0,b),点E(﹣b,0),∴CO=|b|,OE=|﹣b|,∴CE==|b|,∴sin∠CEO=,∴|b|=15,∴﹣15≤b≤15;(3)如图,∵线段MN(含端点M、N)上所有的点与点B都是⊙O的一对“倍点”,∴2×2+1≤ON≤2×4+1,∴5≤|b|≤9,∴5≤b≤9或﹣9≤b≤﹣5.22.解:(1)将点A(﹣2,0)代入y=x2+bx+4中,得,解得:b=,∴抛物线的解析式为y=x2+x+4;(2)当x=0时,y=4,∴点C的坐标为(0,4),当y=0时,x2+x+4=0,解得:x1=﹣2,x2=6,∴点B的坐标为(6,0),设直线BC的解析式为y=kx+n,将点B(6,0),点C(0,4)代入解析式y=kx+n,得:,解得:,∴直线BC的解析式为y=﹣x+4;(3)∵抛物线y=x2+x+4与x轴相交于A(﹣2,0)、B(6,0)两点,∴抛物线的对称轴为x=,假设存在点P,设P(2,t),则AC==,AP==,CP==,∵△ACP为等腰三角形,故可分三种情况:①当AC=AP时,,解得:t=±2,∴点P的坐标为(2,2)或(2,﹣2);②当AC=CP时,,解得:t=0或t=8,∴点P的坐标为(2,0)或(2,8),设直线AC的解析式为y=mx+n,将点A(﹣2,0)、C(0,4)代入得,解得:,∴直线AC的解析式为y=2x+4,当x=2时,y=4+4=8,∴点(2,8)在直线AC上,∴A、C、P在同一直线上,点(2,8)应舍去;③当AP=CP时,,解得:t=,∴点P的坐标为(2,);综上可得,符合条件的点P存在,点P的坐标为:(2,2)或(2,﹣2)或(2,0)或(2,).2022年人教版九年级数学中考模拟试卷2一.选择题(共12小题,满分48分,每小题4分)1.计算|﹣2|+2﹣1的结果是()A.﹣1B.0C.1D.22.下面各式计算正确的是()A.(a5)2=a7B.a8÷a2=a6C.3a3•2a3=6a9D.(a+b)2=a2+b23.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°4.如图,在长方体中,AB=4,BC=3,AA1=5,若以BDD1B1为主(正)视平面,则该长方体左视图的面积为()A.12B.C.25D.245.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=6.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.77.某地近年来持续干旱,为了倡导节约用水,该地一家庭记录了去年12个月的月用水量如表,m取1≤m≤3的整数,用水量x/吨34567频数1254﹣m m下列关于用水量的统计量不会发生变化的统计量是()A.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差8.如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°9.如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣;④若方程ax2+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有()个.A.1B.2C.3D.410.对于实数a,b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是通常的实数运算.例如:1⊗3==﹣,则方程x⊗(﹣1)=﹣1的解是()A.x=4B.x=5C.x=6D.x=711.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)12.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC 上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G 处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5,正确的是()A.①②B.②③C.③④D.①②③④二.填空题(共6小题,满分24分,每小题4分)13.计算﹣﹣(﹣1)0的结果是.14.当代数式有意义时,x应满足的条件.15.一个正多边形的内角和大于等于540度而小于1000度,则这个正多边形的每一个内角可以是度.(填出一个即可)16.如图,一次函数y=kx+b与反比例函数y=的图象交于A(m,3),B(3,n)两点,当kx+b﹣>0时x的取值范围是.17.如图,在平面直角坐标系中,点A(0,8),点B(8,0),点C在线段AB上,AC =2,若以原点O为位似中心,把线段AB缩小为原来的,得到线段A′B′,则点C的对应点C′坐标为.18.已知:如图,在平面直角坐标系xoy中,点B1、点C1的坐标分别为(1,0),(1,),将△OB1C1绕原点O逆时针旋转60°,再将其各边都扩大为原来的m倍,使OB2=OC1,得到△OB2C2.将△OB2C2绕原点O逆时针旋转60°,再将其各边都扩大为原来的m倍,使OB3=OC2,得到△OB3C3,如此下去,得到△OB2011C2011,则点C2011的坐标:.三.解答题(共7小题,满分78分)19.先化简,再求值:(x﹣2+)÷,其中x=﹣.20.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.21.奇奇,妙妙等同学想用一些测量工具和所学的几何知识测量某景区景观塔的高EF.因景观塔前有一个山坡,故底部DE间的距离不易测得.经过研究,他们使用如下测量方法:如图,首先测得坡角∠MDE=22°,DM=10米.奇奇在塔顶F处用测角仪测得山坡上点M的俯角为45度,然后,妙妙站在段B处.同伴在妙妙和观景塔之间的直线BE 上放一平面镜.在镜面上做了一个标记,这个标记在直线BE上的对应位置为点C,移动平面镜,此时妙妙在平面镜内可以看到塔顶点F在镜面中的像与镜面上的标记重合.这时,测得妙妙眼睛与地面的高度AB=1.6米.BC=4.8米,CD=16.4米.已知AB、BE.EF ⊥BE.点B、C、D、E共线.其中,测量时使用的平面镜的厚度忽略不计.请你根据题中提供的相关信息,求出景观塔的高EF的长度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)22.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.23.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.24.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD=AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.25.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:|﹣2|+2﹣1=2+=2.故选:D.2.解:A、(a5)2=a5×2=a10;故本选项错误;B、a8÷a2=a8﹣2=a6;故本选项正确;C、3a3•2a3=2×3•a3+3=6a6;故本选项错误;D、(a+b)2=a2+2ab+b2;故本选项错误;故选:B.3.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.4.解:该长方体左视图为长方形ACC1A1.AC=,∴长方形ACC1A1的面积为:5×5=25.故选:C.5.解:∵∠BAC=∠D,,∴△ABC∽△DEA.故选:C.6.解:∵解不等式①得:x>﹣0.5,解不等式②得:x≤5,∴不等式组的解集为﹣0.5<x≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C.7.解:∵6吨和7吨的和是4,∴频率之和是1+2+5+4=12,则这组数据的中位数是第6、7个数据的平均数,即=5吨,∴对于不同的正整数x,中位数不会发生改变;∵5出现的次数最多,出现了5次,∴众数是5吨,∴众数也不会发生改变;故选:B.8.解:如图,∵A、B、C是⊙O上的三个点,∠AOB=58°,∴∠BCA=∠AOB=29°,故选:D.9.解:由图象可知,a<0,b>0,c>0,﹣=1,∴abc<0,﹣b=2a,2a﹣b=4a≠0,故①正确,②错误;x=﹣1时,a﹣b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),由图象可知,y=2时,x1>﹣1,x2<3,∴x1+1>0,x2﹣3<0,∴(x1+1)(x2﹣3)<0.故④正确.故选:C.10.解:根据题中的新定义化简得:=﹣1,去分母得:2=6﹣x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.11.解:根据题意仔细观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,所以甲车的速度为90千米/时;所以A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,所以乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.12.解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌Rt△CMD(HL),∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2所示:设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC===4,∴CQ=AC=2,∴QN==,∴MN=2QN=2.故③正确;当MN过点D时,如图3所示:=×4×4=4,此时,CN最短,四边形CMPN的面积最小,则S最小为S=S菱形CMPN当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=×5×4=5,∴4≤S≤5,故④错误.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:﹣﹣(﹣1)0==.故答案为:.14.解:∵代数式有意义,∴4﹣x≥0,x2﹣1≠0,解得,x≤4且x≠±1,故答案为:x≤4且x≠±1.15.解:设该多边形的边数为n,则540≤180(n﹣2)<1000,解得:5≤n<,∵n为正整数,∴n=5或6或7,若n=5,则每个内角度数为=108°,故答案为:108.16.解:∵A(m,3),B(3,n)两点在反比例函数y=的图象上,∴3=,n=解得m=2,n=2,∴A(2,3),B(3,2),由图象可知,kx+b﹣>0时x的取值范围是2<x<3或x<0,故答案为2<x<3或x<0.17.解:∵点A(0,8),点B(8,0),点C在线段AB上,AC=2,∴AB=8,∴点C坐标为(2,6),∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段A′B′,∴点C'的横坐标和纵坐标都变为C点的横坐标和纵坐标的一半,∴点C'的坐标为(1,3).在第三象限时,点C'的坐标为(﹣1,﹣3),故答案为:(1,3)或(﹣1,﹣3).18.解:如图,(此图,只反映旋转一周的次数)∵每一次的旋转角是60°,∴旋转6次后点C在射线OC1上,∴2011÷6=335…1,∴点C2011的坐标跟C1的坐标在同一条射线OC1上,∵第2次旋转后,各边长是原来的2倍,第3次旋转后,各边长是原来的22倍,∴点C2011的横纵坐标均为原来的2010倍.而C1(1,)故答案为:(22010,22010).三.解答题(共7小题,满分78分)19.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.20.解:(1)调查的学生人数为16÷20%=80(人),∴“比较重视”所占的圆心角的度数为360°×=162°,故答案为:162°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:3200×=160(人),即估计该校对视力保护“非常重视”的学生人数为160人;(3)画树状图如图:共有12个等可能的结果,恰好抽到同性别学生的结果有4个,∴恰好抽到同性别学生的概率为=.21.解:过点M作MN⊥EF,垂足为M,MP⊥DE,垂足为P,在Rt△DMP中,∠MDE=22°,DM=10,∴PM=DM•sin22°≈10×0.37=3.7(m)=EN,PD=DM•cos22°≈10×0.93=9.3(m),在Rt△MNF中,∠MFN=45°,∴MN=FN=PE,设FN=x,则FE=FN+NE=(x+3.7)米,CE=CD+DP+PE=16.4+9.3+x=(25.7+x)米,由题意可得,△ABC∽△FEC,∴=,即,=,解得,x=7.3,∴FE=FN+NE=7.3+3.7=11(米),答:景观塔的高EF的高度约为11米.22.解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.23.解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴=,∴BD2=BF•BA=2×6=12.∴BD=2.解法二:利用勾股定理求出DF,再利用勾股定理求出BD即可.24.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.25.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。
人教版九年级数学中考模拟试卷及参考答案
人教版九年级数学中考模拟试卷一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的.1.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20° B.30° C.40° D.70°2.已知关于x,y的方程组的解满足方程3x+2y=19,则m值是()A.1 B.﹣1 C.19 D.﹣193.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.54.已知某等腰三角形的腰和底分别是一元二次方程x2﹣6x+5=0的两根,则此三角形的周长是()A.11 B.7 C.8 D.11或75.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6 C.4 D.56.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为()A.B.(5,1)C.D.(6,1)7.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m8.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.9.如图,点A.B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y 轴于点C,且点B 为线段AC中点,过点A作AD⊥x轴子点D,点E 为线段OD的三等分点,且OE<DE.连接AE.BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣610.如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于F,连ED,EC,有以下结论:①△ADE≌△BCE②CE⊥AB③BD=2EF④S△BDE=S△ACE其中正确的是()A.①②③B.②④ C.①③ D.①③④二、填空题:本题共6小题,每小题4分,共24分.11.近似数3.60×105精确到____位.12.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.13.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=____时,△AMN与原三角形相似.14.将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2018在第_____行.15.如图,在平面直角坐标系中,直线l1:y=x+1与x轴交于点A,与y轴交于点B,以x轴为对称轴作直线y=x+1的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1.△A3B3B2.…、△AnBnBn﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1.四边形A3B3C3B2…、四边形AnBn∁nBn﹣1的周长分别是l1.l2.l3.…、ln,则ln为_______(用含有n的代数式表示)16.如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将△BEM沿着BM翻折得到△BFM.连接DF、CF,则DF+FC的最小值为_________.三、解答题:本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值: +(+1)÷,然后从﹣≤x≤的范围内选取一个合适的整数作为x的值带入求值.18.(8分)某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了______学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.19.(8分)如图,湿地景区岸边有三个观景台A.B.C,已知AB=700米,AC=500米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.景区规划在线段BC的中点D处修建个湖心亭,并修建观景栈道AD.求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).20.(8分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD 的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.21.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m 和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.22.(10分)如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF交AD 于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.23.(10分)菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC.BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.24.(12分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.25.(14分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A.B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA.OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的.1.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20° B.30° C.40° D.70°【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.2.已知关于x,y的方程组的解满足方程3x+2y=19,则m值是()A.1 B.﹣1 C.19 D.﹣19【分析】先解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①+②得x=7m,①﹣②得y=﹣m,依题意得3×7m+2×(﹣m)=19,∴m=1.故选:A.【点评】此题考查二元一次方程组的解,本题实质是解二元一次方程组,先用m表示的x,y的值后,再求解关于m的方程,解方程组关键是消元.3.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.5【分析】根据题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.【解答】解:设2014年与2015年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4.已知某等腰三角形的腰和底分别是一元二次方程x2﹣6x+5=0的两根,则此三角形的周长是()A.11 B.7 C.8 D.11或7【分析】本题要先通过解方程求出等腰三角形的两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.【解答】解:解方程x2﹣6x+5=0,得x1=5,x2=1;∵当底为5,腰为1时,由于5﹣1>1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为5;∴三角形的周长为1+5+5=11.故选:A.【点评】此题是一元二次方程的解法结合几何图形性质的应用,结果要结合三角形三边关系来检验.是一道难度适中的综合题.5.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6 C.4 D.5【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:B.【点评】本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.6.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为()A.B.(5,1)C.D.(6,1)【分析】根据直线解析式求出点A的坐标,然后求出AB.OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.【解答】解:∵AB⊥x轴于点B,点B的坐标为(2,0),∴y=2,∴点A的坐标为(2,2),∴AB=2,OB=2,由勾股定理得,OA===4,∴∠A=30°,∠AOB=60°,∵△ABO绕点B顺时针旋转60°得到△BCD,∴∠C=30°,CD∥x轴,设AB与CD相交于点E,则BE=BC=AB=×2=,CE===3,∴点C的横坐标为3+2=5,∴点C的坐标为(5,).故选:A.【点评】本题考查了坐标与图形性质,一次函数图象上点的坐标特征,勾股定理的应用,求出△AOB 的各角的度数以及CD∥x轴是解题的关键.7.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m【分析】先把方程化为一般式,再计算判别式的值得到△=37(m2﹣4),然后根据m的范围得到△<0,从而根据判别式的意义可得到正确选项.【解答】解:方程整理为x2+7mx+3m2+37=0,△=49m2﹣4(3m2+37)=37(m2﹣4),∵0<m<2,∴m2﹣4<0,∴△<0,∴方程没有实数根.故选:A.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了判别式的意义.8.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,由勾股定理得,=∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.【点评】此题主要考查了函数图象中动点问题,根据移动路线以及图形边长即可得出函数关系式情况是解决问题的关键.9.如图,点A.B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y 轴于点C,且点B 为线段AC中点,过点A作AD⊥x轴子点D,点E 为线段OD的三等分点,且OE<DE.连接AE.BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣6【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.10.如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于F,连ED,EC,有以下结论:①△ADE≌△BCE②CE⊥AB③BD=2EF④S△BDE=S△ACE其中正确的是()A.①②③B.②④ C.①③ D.①③④【分析】只要证明△ADE≌△BCE,△KAE≌△DBE,EF是△ACK的中位线即可一一判断;【解答】解:如图延长CE交AD于K,交AB于H.设AD交BE于O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD,∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确,∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°,∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直AB,故②错误,∵∠AEB=∠HED,∴∠AEK=∠BED,∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK,∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK,∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确,∵EK=EC,∴S△AKE=S△AEC,∵△KAE≈△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选:D.【点评】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本题共6小题,每小题4分,共24分.11.近似数3.60×105精确到千位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:因为0所在的数位是千位,所以3.60×105精确到千位.故答案是:千.【点评】本题主要考查科学记数法和有效数字,对于用科学记表示的数,有效数字的计算方法,与精确到哪一位是需要识记的内容,经常会出错.12.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6 .【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【点评】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.13.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=2或4.5 时,△AMN与原三角形相似.【分析】分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.【解答】解:由题意可知,AB=9,AC=6,AM=3,①若△AMN∽△ABC,则=,即=,解得:AN=2;②若△AMN∽△ACB,则=,即=,解得:AN=4.5;故AN=2或4.5.故答案为:2或4.5.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.14.将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15.如图,在平面直角坐标系中,直线l1:y=x+1与x轴交于点A,与y轴交于点B,以x轴为对称轴作直线y=x+1的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1.△A3B3B2.…、△AnBnBn﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1.四边形A3B3C3B2…、四边形AnBn∁nBn﹣1的周长分别是l1.l2.l3.…、ln,则ln为(用含有n的代数式表示)【分析】依据直线l1:y=x+1,可得∠BAO=30°,进而得出∠AA1O=30°,AO=A1O=,C1O =A1B1=,分别求得四边形A1B1C1O、四边形A2B2C2B1.四边形A3B3C3B2的周长,根据规律可得四边形AnBn∁nBn﹣1的周长.【解答】解:由直线l1:y=x+1,可得A(﹣,0),B(0,1),∴AO=,BO=1,∴∠BAO=30°,又∵∠A1OB1=60°,∴∠AA1O=30°,∴AO=A1O=,由轴对称图形可得,C1O=A1B1=,∴四边形A1B1C1O的周长l1为4;同理可得,AB1=A2B1=2,四边形A2B2C2B1的周长l2为8,AB2=A3B2=4,四边形A3B3C3B2的周长l3为16,以此类推,AnBn∁nBn﹣1的周长ln为,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,等边三角形的判定与性质以及等腰三角形的性质的运用,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.16.如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将△BEM沿着BM 翻折得到△BFM.连接DF、CF,则DF+FC的最小值为.【分析】取BG=,连接FG,首先证明△BGF∽△BFC,从而可得到FG=FC,然后依据三角形的三边关系可知DF+FC=DF+FC≤DG,然后依据勾股定理求得DG的值即可.【解答】解:如图所示:取BG=,连接FG.∵BC=2,E是BC的中点,∴BE=1.由翻折的性质可知BF=BE=1.∵BF=1,BC=2,GB=,∴BF2=BC•GB.∴.又∵∠FBG=∠FBC,∴△BGF∽△BFC,∴==,∴FG=FC.∴DF+FC=DF+FC≤DG===.∴DF+FC的最小值为.故答案为:.【点评】本题主要考查的是相似三角形的性质和判定、正方形的性质、三角形的三边关系,够造△NGF使△BGF∽△BFC是解题的关键.三、解答题:本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值: +(+1)÷,然后从﹣≤x≤的范围内选取一个合适的整数作为x的值带入求值.【分析】根据分式的加减、乘除法则,先对分式进行化简,然后选取合适的整数代入.注意代入的整数需使原分式有意义.【解答】解:原式+×=﹣+=∵﹣≤x≤所以x可取﹣2.﹣1,0,1由于当x取﹣1.0、1时,分式的分母为0,所以x只能取﹣2.当x=﹣2时,原式=8.【点评】本题主要考查了根式的化简求值.解决本题的关键是掌握分式的运算法则和运算顺序.注意代入的值需满足分式有意义.18.(8分)某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了40 名学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.【分析】(1)根据A活动的人数及其百分比可得总人数;(2)总人数减去A.C.D的人数求出B活动的人数,据此补全统计图可得;(3)列表得出所有等可能结果,再从中找到恰好抽到一名男生一名女生的结果数,继而根据概率公式计算可得.【解答】解:(1)本次调查的学生总人数为6÷15%=40人,故答案为:40;(2)B项活动的人数为40﹣(6+4+14)=16,补全统计图如下:(3)列表如下:男男男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)由表可知总共有12种结果,每种结果出现的可能性相同,其中恰好抽到一名男生和一名女生的结果有6种,所以抽到一名男生和一名女生的概率是,即.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.19.(8分)如图,湿地景区岸边有三个观景台A.B.C,已知AB=700米,AC=500米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.景区规划在线段BC的中点D处修建个湖心亭,并修建观景栈道AD.求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【分析】作CE⊥BA于E.在Rt△ACE中,求出CE,连接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可.【解答】解:作CE⊥BA于E,在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈500×0.8=400米.连接AD,作DF⊥AB于F,则DF∥CE,∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=200米,∵AE=AC•cos53.2°≈300米,∴BE=AB+AE=1000米,∴AF=EB﹣AE=200米,在Rt△ADF中,AD==200≈282.8米,答:A,D间的距离为282.8m.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD 的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【分析】(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1.CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.【解答】解:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=AC•BE=×4×2=4,即△ABC的面积为4.【点评】本题主要考查反比例函数与一次函数的交点问题,根据三角形的面积求得点A的坐标及待定系数法求函数解析式是解题的关键.21.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m 和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【分析】(1)根据AB=x米可知BC=(32﹣x)米,再根据矩形的面积公式即可得出结论;(2)根据P处有一棵树与墙CD.AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论.【解答】解:(1)设AB=x米,可知BC=(32﹣x)米,根据题意得:x(32﹣x)=252.解这个方程得:x1=18,x2=14,答:x的长度18m或14m.(2)设周围的矩形面积为S,则S=x(32﹣x)=﹣(x﹣16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和6米,∴6≤x≤15.∴当x=15时,S最大=﹣(15﹣16)2+256=255(平方米).答:花园面积的最大值是255平方米.【点评】本题考查的是二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解答此题的关键.22.(10分)如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF交AD 于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.【分析】(1)只要证明△DAE∽△CAD,可得=,推出AD2=AC•AE即可解决问题;(2)利用直角三角形斜边中线定理求出DF,再根据DF∥AC,可得===,由此即可解决问题;【解答】(1)证明:∵AD⊥BC于D,作DE⊥AC于E,∴∠ADC=∠AED=90°,∵∠DAE=∠DAC,∴△DAE∽△CAD,∴=,∴AD2=AC•AE,∵AC=AB,∴AD2=AB•AE.(2)解:如图,连接DF.∵AB=3,∠ADB=90°,BF=AF,∴DF=AB=,∵AB=AC,AD⊥BC,∴BD=DC,∴DF∥AC,∴===,∴=.【点评】本题考查相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是准确寻找相似三角形解决问题,学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.23.(10分)菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC.BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.【分析】(1)在RT△BCP中利用勾股定理求出PB,在RT△ABP中利用勾股定理求出PA即可.(2)如图2中,延长PM交BC于E.先证明PD=BE,再利用三角形中位线定理证明MN=BE,ON=PD即可.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在RT△PCB中,∵∠CPB=90°PC=6,BC=10,∴PB===8,在RT△ABP中,∵∠ABP=90°,AB=10,PB=8,∴PA===2.(2)△OMN是等腰三角形.理由:如图2中,延长PM交BC于E.∵四边形ABCD是菱形,∴AC⊥BD,CB=CD,∵PE⊥AC,∴PE∥BD,∴=,∴CP=CE,∴PD=BE,∵CP=CE,CM⊥PE,∴PM=ME,∵PN=NB,∴MN=BE,∵BO=OD,BN=NP,∴ON=PD,∴ON=MN,∴△OMN是等腰三角形.【点评】本题考查菱形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是添加辅助线构造,利用三角形中位线定理解决问题,属于中考常考题型.24.(12分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN ∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.25.(14分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A.B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA.OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.(3)分三种情形分别讨论求解即可解决问题;【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线OE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。
2023-2024学年全国初三下数学人教版模拟考卷(含答案解析)
专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项是正确的?A. 1 + 1 = 2B. 2 + 2 = 3C. 3 + 3 = 4D. 4 + 4 = 52. 下列哪个选项是错误的?A. 5 2 = 3B. 6 3 = 3C. 7 4 = 3D. 8 5 = 33. 下列哪个选项是正确的?A. 2 × 2 = 4B. 3 × 3 = 9C. 4 × 4 = 16D. 5 × 5 = 254. 下列哪个选项是错误的?A. 6 ÷ 2 = 3B. 7 ÷ 3 = 2C. 8 ÷ 4 = 2D. 9 ÷ 5 = 15. 下列哪个选项是正确的?A. 2^3 = 8B. 3^2 = 9C. 4^4 = 16D. 5^5 = 25二、判断题5道(每题1分,共5分)1. 1 + 1 = 2 是正确的。
(√)2. 2 + 2 = 3 是错误的。
(×)3. 3 × 3 = 9 是正确的。
(√)4. 4 ÷ 2 = 2 是正确的。
(√)5. 5^2 = 25 是正确的。
(√)三、填空题5道(每题1分,共5分)1. 2 + 3 = ______2. 4 2 = ______3. 3 × 4 = ______4. 6 ÷ 2 = ______5. 2^4 = ______四、简答题5道(每题2分,共10分)1. 简述加法的定义。
2. 简述减法的定义。
3. 简述乘法的定义。
4. 简述除法的定义。
5. 简述指数的定义。
五、应用题:5道(每题2分,共10分)1. 计算5 + 3 × 2。
2. 计算8 4 ÷ 2。
3. 计算2^3 × 3^2。
4. 计算9 ÷ 3 + 4。
5. 计算 (2 + 3) × (4 2)。
六、分析题:2道(每题5分,共10分)1. 分析加法、减法、乘法、除法之间的关系。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
人教版九年级数学中考模拟试卷及答案解析
A. 60° C. 80° 【答案】B 【解析】
B. 70° D. 110°
【分析】
直接根据平行线的性质即可得出结论.
【详解】
∵直线 a∥b, ∴∠3=∠1=110 ,
1
∴∠2=180 −110 =70 , 故答案选 B. 【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
A. 8
B. 10
C. 12
D. 14
【答案】B
【解析】
试题分析:根据平行四边形的性质可知 AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和
角平分线的性质可知 AB=AF,DE=CD,因此可知 AF+DE=AD+EF=2AB=12,解得 AD=BC=12-2=10.
故选:B.
点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化
18.如图,直径为 10 的⊙A 经过点 C(0,6)和点 O(0,0),与 x 轴的正半轴交于点 D,B 是 y 轴右侧圆弧上一点,则 cos∠OBC 的值为__.
【答案】 【解析】 连接 CD,如图.
9
∵∠COD=90°,
∴CD 是⊙A 的直径,即 CD=10.
∵点 C(0,6),
∴OC=6,
【答案】见解析 【解析】 可. 【详解】如图所示即为所求.
11
证明:在 ΔABC 和 ΔEDC 中,∵∠A=∠E,CE=CA,∠ECD=∠CAB,∴ΔABC≌ΔEDC(ASA). 【点睛】本题考查了全等三角形的判定和尺规作图.解题的关键是作出图形. 22.“校园手机”现象越来越受到社会的关注.为了了解学生和家长对中学生带手机的态度, 某记者随机调查了城区若干名学生和家长的看法,调查结果分为:赞成、无所谓、反对,并 将调查结果绘制成如下不完整的统计表和统计图:
人教版九年级数学中考模拟试题及参考答案
5.【解答】解:原式=
•
=
故选:D.
6.【解答】解:第 1 个图形,是轴对称图形,不是中心对称图形,故此选项错误;
第 2 个图形,不是轴对称图形,是中心对称图形,故此选项错误;
第 3 个图形,是轴对称图形,也是中心对称图形,故此选项正确;
第 4 个图形,是轴对称图形,不是中心对称图形,故此选项错误;
23.(10 分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的 A 型车去年销售总额为 50000 元,今年销售总额将比去年减少 20%,每辆销售价比去年降低 400 元,若这两年卖出的数量相同. (1)求今年 A 型车每辆售价多少元? (2)该车行计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数量不超过 A 型车数量的两倍,求销 售这批车获得的最大利润是多少元. A,B 两种型号车今年的进货和销售价格表:
(1)求 AO 的长; (2)如图 2,当点 F 在线段 BO 上,且点 M,F,C 三点在同一条直线上时,求证:AC= AM; (3)连接 EM,若△AEM 的面积为 40,请直接写出△AFM 的周长. 25.(10 分)如图,在平面直角坐标系中,抛物线 y=ax2+bx+c(a<0)与 x 轴交于 A(﹣2,0)、B(4,0)两点, 与 y 轴交于点 C,且 OC=2OA. (1)试求抛物线的解析式; (2)直线 y=kx+1(k>0)与 y 轴交于点 D,与抛物线交于点 P,与直线 BC 交于点 M,记 m= ,试求 m 的
参考答案
一、选择题(每小题 3 分,共 36 分) 1.【解答】解:这一天的温差为 2﹣(﹣8)=2+8=10(℃),
故选:C. 2.【解答】解:cos45°= .
人教版九年级数学中考模拟试卷及参考答案
参考答案
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【解答】解:原式=2﹣(﹣12)=2+12=14,
故选:D.
2.【解答】解:2cos30°=2×
.
故选:B. 3.【解答】解:将 40000 用科学记数法表示为:4×104.
7.【解答】解:
,
①×3+②×2 得:19x=114, 解得:x=6, 把 x=6 代入①得:y=﹣ ,
第 8 页(共 20 页)
则方程组的解为
,
故选:C. 8.【解答】解:∵k>0.
∴图象分别位于第一、三象限, 又∵在每个象限内 y 随 x 的增大而减小,x1>x2,x1x2>0, 故 y1<y2, ∴y1﹣y2 的值为负数. 故选:B. 9.【解答】解:∵将△ABC 绕点 C 顺时针旋转 40°得到△A′B′C, ∴△ABC≌△A'B'C ∴AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90° ∴∠AA'C=70°=∠A'AC ∴∠B'A'A=∠B'A'C﹣∠AA'C=20° 故选:C. 10.【解答】解:如图,∵“六芒星”图标是由圆的六等分点连接而成, ∴△ABC 与△ADE 是等边三角形, ∵圆的半径为 2, ∴AH=3,BC=AB=2 , ∴AE= ,AF=1,
∴图中阴影部分的面积=S△ABC+3S△ADE= ×2 ×3+ × 故选:D.
×1×3=4 ,
第 9 页(共 20 页)
11.【解答】解:连接 CC′,如图所示. ∵△ABC、△A′BC′均为正三角形, ∴∠ABC=∠A′=60°,A′B=BC=A′C′, ∴A′C′∥BC, ∴四边形 A′BCC′为菱形, ∴点 C 关于 BC'对称的点是 A', ∴当点 D 与点 B 重合时,AD+CD 取最小值, 此时 AD+CD=2+2=4. 故选:A.
2023-2024学年全国初三下数学人教版模拟考试试卷(含答案解析)
20232024学年全国初三下数学人教版模拟考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 若 a > 0,b < 0,则a² 与b² 的大小关系是()A. a² > b²B. a² < b²C. a² ≥ b²D. a² ≤ b²2. 已知一组数据从小到大排列,其平均数为10,中位数为12,则这组数据中一定有()A. 大于12的数B. 小于10的数C. 等于12的数D. 无法确定3. 下列函数中,既是奇函数又是偶函数的是()A. y = x³B. y = x²C. y = |x|D. y = x³ + x²4. 若平行四边形ABCD的对角线交于点E,且BE = 4,CE = 6,则对角线AC的长度是()A. 10B. 12C. 15D. 205. 若一个等差数列的前三项分别为2,5,8,则该数列的第10项是()A. 29B. 30C. 31D. 32二、判断题(每题1分,共20分)6. 若 a + b = 0,则 a 和 b 互为相反数。
()7. 两个锐角互余。
()8. 任何两个等边三角形全等。
()9. 对角线互相垂直的四边形一定是菱形。
()10. 任何两个奇数之和为偶数。
()三、填空题(每空1分,共10分)11. 若 x + y = 5,x y = 3,则 x = __,y = __。
12. 若一个等比数列的前三项分别为2,4,8,则该数列的公比为__。
13. 若直线 y = 2x + 3 与 y 轴的交点为 (0, a),则 a = __。
14. 若一个圆的半径为5,则该圆的直径为 __。
15. 若平行四边形ABCD的对角线交于点E,且AE = 10,CE = 12,则对角线BD的长度为 __。
人教版九年级数学中考模拟试卷及答案解析
人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。
人教版九年级中考冲刺数学模拟卷3(附答案)
中考数学试卷一、单选题。
(共10题;共30分。
)1、如图.将四根长度相等的细木条首尾相连.用钉子钉成四边形.转动这个四边形.使它形状改变.当. 时. 等于()。
A. B. C. D.2、某种药品原价为元/盒.经过连续两次降价后售价为元/盒.设平均每次降价的百分率为.根据题意.所列方程正确的是()。
A. B.C. D.3、一个盒子装有除颜色外其它均相同的2个红球和1个白球.现从中任取2个球.则取到的是一个红球.一个白球的概率为()。
A.14B.12C.23D.344、下列各组线段单位: cm 中.成比例的是()。
A. 1.2.3.4B. 6.5.10.15C. 3.2.6.4D. 15.3.4.105、对于函数y=4x.下列说法错误的是()。
A.点(23.6)在这个函数图象上B.这个函数的图象位于第一、三象限C.这个函数的图象既是轴对称轴图形又是中心对称图形D.当x>0时.y随x的增大而增大6、计算sin30°·tan45°的结果是()。
A. 12B. √32C. √36D. √247、如图所示.⊙O的半径为10.弦AB的长度是16.ON垂直AB.垂足为N.则ON的长度为()。
A.5B.6C.8D.108、抛物线y=﹣2(x+6)2+5的顶点坐标()。
A.(﹣6.5)B.(6.5)C.(6.﹣5)D.(﹣2.5)9、sin45°+cos45°的值等于()。
A.√2B.√3+12C.√3D.110、已知抛物线y=ax2+bx+c中.4a﹣b=0.a﹣b+c>0.抛物线与x轴有两个不同的交点.且这两个交点之间的距离小于2.则下列结论:①abc<0.②c>0.③a+b+c >0.④4a>c.其中.正确结论的个数是()。
A.4B.3C.2D.1二、填空题。
(共8题;共24分。
)11、正方形、菱形、矩形的对角线都具有的共同特征是______.12、关于的方程有两个不相等的实数根.则的取值范围为________.13、甲、乙、丙、丁4名同学进行一次乒乓球单打比赛.要从中随机选出2名同学打第一场比赛.其中有乙同学参加的概率是_____________ .14、如图.已知DE∥BC.AD=3.AB=9.AE=2.5.则EC=.15、若y=是反比例函数.则m=________.16、已知Rt△ABC中.∠C=90°.AB=15.tanA=.则AC=____.17、如图.△ABC内接于⊙O.∠ABC=70°.∠CAB=50°.点D在⊙O上.则∠ADB的大小为.18、如图.抛物线y=ax 2+bx+c(a≠0)的对称轴为直线x=﹣1.下列结论中:①abc <0;②9a﹣3b+c<0;③b 2﹣4ac>0;④a>b.正确的结论是_____。
(完整word版)人教版九年级数学中考模拟试卷含答案,推荐文档
2018年初中数学中考复习试卷一、单选题(共10题;共20分)1、如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为()A、逐渐增大B、逐渐减小C、始终不变D、先增大后变小2、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A、B、C、D、3、如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=cm,且tan∠EFC=,那么该矩形的周长为()A、72cmB、36cmC、20cmD、16cm4、如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A、1个B、2个C、3个D、4个5、计算的结果是()A、﹣yB、C、D、6、下列运算结果为m2的式子是()A、m6÷m3B、m4•m-2C、(m-1)2D、m4-m27、若a2=36,b3=8,则a+b的值是()A、8或﹣4B、+8或﹣8C、﹣8或﹣4D、+4或﹣48、如图,已知一次函数y=kx+b的图象经过A(0,1)和B(2,0),当x>0时,y的取值范围是().A、y<1B、y<0C、y>1D、y<29、为确保信息安全,信息需要加密传输,发送方由明文密文(加密),接受方由密文—明文(解密)。
以知加密规则为:明文a,b,c,对应a+1.2b+4.3c+9.列如明文1,2,3对应的密文2,8 ,18。
如果接受方受到的密文7 ,18,15 ,则解密得到的明文为()A、4,5,6B、6,7,2C、2,6,7D、7,2,210、小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择()获胜的可能性较大.A、5B、6C、7D、8二、填空题(共6题;共6分)11、若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为________.12、计算:a8÷a4=________13、下列函数(其中n为常数,且n>1)①y=[MISSING IMAGE: , ](x>0);②y=(n﹣1)x;③y=[MISSING IMAGE: , ](x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y 的值随x 的值增大而增大的函数有 ________个.14、湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个湘莲,付50元,找回38元,设每个湘莲的价格为元,根据题意,列出方程为________.15、如图,已知菱形OABC,点C在x轴上,直线y=x经过点A,菱形OABC面积是,若反比例函数图象经过点B,则此反比例函数表达式为________16、(2015秋•高新区校级月考)将一个半径为3cm的圆分成四个扇形,它们的圆心角的度数之比为2:3:3:4,则最大扇形的面积为 ________.三、解答题(共8题;共40分)17、如图所示,a∥b,a与c相交,那么b与c相交吗?为什么?18、试说明把一个两位数的十位上的数字与个位上的数字互换位置后,所得的新两位数与原两位数的和能被11整除19、已知(10x-31)(13x-17)-(13x-17)(3x-23)可因式分解成(ax+b)(7x+c),其中a、b、c均为整数,求a+b+c的值20、如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,求劣弧BC的长21、如图,直线y=x+与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点D是劣弧AO上一动点(D点与A,C不重合).抛物线y=-+bx+c经过点A、C,与x轴交于另一点B,(1)求抛物线的解析式及点B的坐标;(2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P 的坐标;若不存在,请说明理由。
(新)人教版九年级数学中考模拟测试卷试题及答案解析
20XX 年中考模拟试题一数 学(总分:120分 时间:100分钟)一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个是正确选项. 1.9的算术平方根是( ) A .±3B .3C .9D .±92.如图所示的几何体左视图是( )A. B. C. D.3.下列运算正确的是( )A. a +2a =3a 2B. 3a 3⋅2a 2=6a 6C. a 8÷a 2=a 4D. (2a)3=8a 3 4.若一个多边形的内角和是1080度,则这个多边形的边数为( ) A .6B .7C .8D .105.下列一元二次方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣26.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”的读书活动,为了解3月份七年级300名学生读书情况,随机调查了七年级50个学生读书的册数,统计数据如下表所示:册数 0 1[来源:]2 3 4 人数4[来源:学.科.网]1216171关于这组数据,下列说法正确的是( )A.众数是 17 B .平均数是 2 C .中位数是 2 D .方差是 27.如图,点A 是反比例函数y =kx (x >0)图象上一点,AB ⊥x 轴于点B ,点C 在x轴上,且OB =OC ,若△ABC 的面积等于6,则k 的值等于( ) A. 3 B. 6 C. 8 D. 128.如下右图,AB 是⊙O 的直径,C ,D 为⊙O 上的两点,若AB =6,BC =3,则∠BDC 的大小是( )A. 60∘B. 45∘C. 30∘D. 15∘9.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x 千米/时,依题意列方程正确的是( ) A .B .C .D .10.如图抛物线y =ax 2+bx+c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b+c <0;③2a+b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .4 二、填空题:本大题 共8小题,每小题3分,共24分.11.分解因式:a 3﹣a = . 12.若3x =4,3y =6,则3x ﹣2y 的值是__________13.不等式组的整数解是x = .14.在函数y =﹣的图象上有三个点(﹣2,y 1),(﹣1,y 2),(,y 3),则y 1,y 2,y 3的大小关系为 .15.如图在△ABC 中,DE//BC ,AD =4,DB =2,AE =6,则EC 的长为______ 16. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 在上,使得=2,点D 在OB 上,点E 在OB 的延长线上,当CF =2时,阴影部分的面积为________.(16题图) (17题图)17.如图,在矩形ABCD 中,AB =2,BC =4,把矩形折叠,使点D 与点B 重合,点C 落在点E 处,则折痕FG 的长为_____________18.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n 个图形中有 个三角形(用含字母n 的代数题号 一 二 三 四 总分 得分学校 班级 姓名 考号 密 封 线式表示).三、解答题(一):本大题共5小题,共26分.解答应写出文字说明、证明过程或演算步骤. 19.(4分)计算:4sin60°﹣|﹣1|+(﹣1)0+20.(4分)先化简,再求值:(x ﹣2+)÷,其中x =﹣.21.(6分)某校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购实两种篮球共需费用840元.(1)A 、B 两种篮球共需单价各多少元?(2)设购买A 种篮球x 个且A 种篮球不少于8个,所需费用为y 元,试确定y 与x 的关系式. 22.(6分)如图所示,初三数学兴趣小组同学为了测量垂直于水平地面的一座大厦AB 的高度,一测量人员在大厦附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了60米后到达D 处,在D 处测得A 处的仰角大小为30°,则大厦AB 的高度约为多少米?(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)23.(6分)有A 、B 两个口袋,A 口袋中装有两个分别标有数字2,3的小球;B 口袋中装有三个分别标有数字﹣1,4,﹣5的小球.小明先从A 口袋中随机取出一个小球,用m 表示所取球上的数字,再从B 口袋中随机取出两个小球,用n 表示所取球上的数字之和. (1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果; (2)求的值是整数的概率.四、解答题(二):本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.24.(7分)甘肃省注重建设“书香校园”.为了了解学生们的课外阅读情况,张老师调查了全班50名学生在一周内的课外阅读时间,并将统计的时间(单位:小时)分成5组:A .0.5≤x <1 B.1≤x <1.5 C.1.5≤x <2 D.2≤x <2.5 E.2.5≤x <3;并制成两幅不完整的统计图表如下: 组别 频数 占总数的百分比 A 3 B C 40% D 9 E 1 总计50100%请根据图表中提供的信息,解答下列问题:(1)这次调查中学生课外阅读时间的中位数所在的组是 ;(2)扇形统计图中,B 组的圆心角为 ,并补全统计图表;(3)请根据以上调查情况估计:全校1500名学生中有多少名学生每周阅读时间不低于2小时? 25.(7分)如图,直线y =kx +2与x 轴,y 轴分别交于点A(−1,0)和点B ,与反比例函数y =mx 的图象在第一象限内交于点C(1,n).(1)求一次函数y =kx +2与反比例函数y =mx 的表达式;(2)过x 轴上的点D(a,0)作平行于y 轴的直线l(a >1),分别与直线y =kx +2和双曲线y =mx 交于P 、Q 两点,且PQ =2QD ,求点D 的坐标.26.(8分)已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD . (1)求证:AB =AF ;(2)若AG =AB ,∠BCD =120°,判断四边形ACDF 的形状,并证明你的结论.27.(8分)如图,AB为⊙O直径,C、D为⊙O上的点,∠ACD=2∠A,CE⊥DB交DB的延长线于点E.(1)求证:直线CE与⊙O相切;(2)若AC=8,AB=10,求CE的长.28.(10分)如图抛物线y=x2+bx+c(c<0)与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,顶点为D,且OB=OC=3,点E为线段BD上的一个动点,EF⊥x轴于F.(1)求抛物线的解析式;(2)是否存在点E,使△ECF为直角三角形?若存在,求点E的坐标;不存在,请说明理由;(3)连接AC、BC,若点P是抛物线上的一个动点,当P运动到什么位置时,∠PCB=∠ACO,请直接写出点P的坐标.数学答案一、选择题1-5 BCDCC 6-10 CBCAB二、填空题11.a(a+1)(a-1) 12.1/9 13.-4 15.316. 32-3817.241 18.4n-3三、解答题19.36 20..解:原式=(+)•=•=2(x+2) =2x+4,当x =﹣时, 原式=2×(﹣)+4 =﹣1+4 =3.21.(1)设A 种篮球每个x 元,B 种篮球每个y 元, 依题意得,,解得,答:A 种篮球每个50元,B 种篮球每个30元;……………………3分 (2)设购买A 种篮球m 个,则购买B 种篮球(20﹣m )个, 依题意,得,∴y 与x 的关系式为y =20x+600(8≤x ≤20)……………………6分 22.解:设AB =x 米,在Rt △ABC 中,∵∠ACB =45°, ∴BC =AB =x 米,则BD =BC+CD =x+100(米), 在Rt △ABD 中,∵∠ADB =30°,∴tan ∠ADB ==,即=,解得:x =30+30≈82(米),即大厦AB 的高度约为82米23.解:(1)用树状图表示取出的三个小球上的数字所有可能结果如下:∴共有12种等可能的情况;……………………4分 (2)由树状图可知,所有可能的值分别为:,共有12种情况,且每种情况出现的可能性相同,其中的值是整数的情况有6种.所以的值是整数的概率P =.……………………6分24.解:(1)C 组的人数是50×40%=20,则B 组的人数是:50﹣3﹣20﹣9﹣1=17(人). 中位数在C 组;……………………………………………………2分(2)扇形统计图中,B 组的圆心角为360°×34%=122.4°……………………………3分 组别 频数 占总数的百分比 A 3 6% B 17 34% C 20 40% D 9 18% E 1 2% 总计50100%……………………………………………………7分(统计图表各2分)(3)1500×9150+=300(名)答:全校1500名学生中有300名学生每周阅读时间不低于2小时.…………………10分25.把代入得,,把代入得,反比例函数解析式为;轴,而,,,,,整理得,解得,舍去,.26.(1)∵四边形ABCD是平行四边形∴AB=DC又证△AGF≅△DGC(ASA)得AF=CD,∴AB=AF(2)先证ACDF是平行四边形,再证对角线相等,得四边形ACDF是矩形27.(1)证明:连接OC,∵OA=OC,∴∠A=∠ACO,∵∠ACD=2∠A,∴∠DCO=∠ACO=∠A,∵∠A=∠D,∴∠DCO=∠D,∴OC∥DE,∵CE⊥DB,∴OC⊥CE,∴直线CE与⊙O相切;(2)解:∵AB为⊙O直径,∴∠ACB=90°,∵AC=8,AB=10,∴BC=6,∵直线CE与⊙O相切,∴∠BCE=∠BAC ,∵∠CEB=∠ACB =90°,∴△ABC∽△CBE,∴,∴,∴CE=.28.解:(1)∵OB=OC=3,∴点B坐标为(3,0),点C坐标为(0,﹣3),∵抛物线y=x2+bx+c经过点B,C,∴3930cb c=-⎧⎨++=⎩,解得:c=﹣3,b=﹣2,∴抛物线的解析式为y=x2﹣2x﹣3;……………………………………………2分(2)∵抛物线的解析式为y=x2﹣2x﹣3,∴点D坐标为(1,﹣4),∵直线BD经过点B,D,设直线BD解析式为y=kx+b,则430k bk b+=-⎧⎨+=⎩,解得:k=2,b=﹣6,∴直线BD解析式为y=2x﹣6,∵△ECF为直角三角形,当∠CEF=90°时,E点纵坐标和等于C点纵坐标,∴点E纵坐标为﹣3,∴点E横坐标为32,∴点E坐标为(32,﹣3);当∠FCE=90°时,∵EF⊥x轴,所以易得△CFO∽FEC,∴EF CFCF OC=,即EF•OC=CF2,=OF2+OC2,设OF=m,因此F的坐标为(m,0)带入直线BD的方程y=2x﹣6得E的坐标为(m,2m﹣6),∴EF=6﹣2m,∴(6﹣2m)×3=m2+9,解得m=32﹣3(负值舍去),∴点E的坐标为(32﹣3,62﹣12)综上可得E点的坐标为(32,﹣3)或(32﹣3,62﹣12).……………………6分(3)存在2种情况:①∠PCB=∠ACO,∵∠BCE=45°,∴tan∠BCE=1,∵tan∠ACO=13,∴tan∠PCB=13,∴tan∠PCE=tan(∠BCE﹣∠PCB)=113113-+=12,∵直线PC经过点P,∴直线PC解析式为:y=12x﹣3,∴点P坐标为:(52,﹣74),②∠P'CB=∠ACO,∵∠BCE=45°,∴tan∠BCE=1,∵tan∠ACO=13,∴tan∠P'CB=13,∴tan∠P'CE=tan(∠BCE﹣∠P'CB)=113113+-=2,∵直线PC经过点P,∴直线PC解析式为:y=2x﹣3,∴点P坐标为:(4,5).………………………………………………………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学中考模拟试卷含答案题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共12小题,12*3=36)1.的值是()A.1B.﹣1C.3D.﹣32.已知x2﹣3x+1=0,则的值是()A.B.2C.D.33.如图,在数轴上表示实数的可能是()A.点P B.点Q C.点M D.点N4.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁5.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.6.计算﹣•的结果是()A.B.C.D.7.某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每分钟收费b 元,如果某人打一次该长途电话被收费m元,则这次长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形9.若不等式组的解集为x>3,则a的取值是()A.a≤6B.a≥6C.a<6D.a≤010.如图,点A、B的坐标分别为(0,2)、(2,0),⊙C的圆心坐标为(﹣1,0),半径为1,若点D为⊙O上的一个动点,线段DB与y轴交于点E,则△ABE面积的最小值为()A.1B.2C.2﹣D.4﹣11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①抛物线的对称轴为x=﹣1;②abc=0;③方程ax2+bx+c+1=0有两个不相等的实数根;④无论x取何值,ax2+bx≤a﹣b.其中,正确的个数为()A.4B.3C.2D.112.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交正方形的外角∠DCG的平分线于点F,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()A.B.C.D.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,4*6=24)13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)= .14.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为.15.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是.16.如图,△AOB,AB∥x轴,OB=2,点B在反比例函数y=上,将△AOB绕点B逆时针旋转,当点O的对应点O′落在x轴的正半轴上时,AB的对应边A′B恰好经过点O,则k的值为.17.如图,动点P从(0,2)出发,沿所示的方向在矩形网格中运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,若第一次碰到矩形的边时坐标为P1(2,0),则P2017的坐标为.18.如图,MN为⊙O的直径,四边形ABCD,CEFG均为正方形,若OM=2,则EF的长为.评卷人得分三.解答题(共7小题,60分)19.(6分)解方程组:.20.(8分)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和数量如下表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152025千克(千克)304030)该什锦糖的单价为元(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中再加入甲、乙两种糖果共100千克,则最少需要加入甲种糖果多少千克?21.(8分)某企业计划购买甲、乙两种学习用品800件,资助某贫困山区希望小学,已知每件甲种学习用品的价格比每件乙种学习用品的价格贵10元,用400元购买甲种学习用品的件数恰好与用320元购买乙种学习用品的件数相同.(1)求甲、乙两种学习用品的价格各是多少元?(2)若该希望小学需要乙种学习用品的数量是甲种学习用品数量的3倍,按照此比例购买这800件学习用品所需的资金为多少元?22.(8分)如图①,AE是⊙O的直径,点C是⊙O上的点,连结AC并延长AC至点D,使CD=CA,连结ED交⊙O于点B.(1)求证:点C是劣弧的中点;(2)如图②,连结EC,若AE=2AC=4,求阴影部分的面积.23.(10分)问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.24.(10分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)25.(10分)已知,矩形OABC在平面直角坐标系的位置如图所示,点B的坐标为(8,10),抛物线y=ax2+bx+c经过点O,点C,与AB交于点D,将矩形OABC沿CD折叠,点B的对应点E刚好落在OA上.(1)求抛物线y=ax2+bx+c的表达式;(2)若点P在抛物线上,点Q在抛物线的对称轴上,是否存在这样的点P、Q,使得以点P、Q、C、E为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.的值是()A.1B.﹣1C.3D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.已知x2﹣3x+1=0,则的值是()A.B.2C.D.3【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选:A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.3.如图,在数轴上表示实数的可能是()A.点P B.点Q C.点M D.点N【分析】根据数的平方估出介于哪两个整数之间,从而找到其对应的点.【解答】解:∵<<,∴2<<3,点Q在这两个数之间,故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.4.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.5.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,2;从左面看有3列,每列小正方形数目分别为1,4,3.据此可画出图形.【解答】解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.计算﹣•的结果是()A.B.C.D.【分析】先进行二次根式的乘法法则运算,然后化简后合并即可.【解答】解:原式=3﹣=3﹣=.故选:C.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.7.某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每分钟收费b 元,如果某人打一次该长途电话被收费m元,则这次长途电话的时间是()A.分钟B.分钟C.分钟D.分钟【分析】打电话的时间=(m﹣超过a元的钱数+b)÷b,把相关数值代入即可.【解答】解:这次长途电话的时间是分钟,故选:C.【点评】考查列代数式;得到打电话所用两个时间段的和的关系式是解决本题的关键.8.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.【解答】解:A、正确.∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形.故正确.B、错误.当E是BC中点时,无法证明∠ACD=90°,故错误.C、正确.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,D、正确.当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形.故选:B.【点评】本题考查平行四边形的判定、矩形的判定、菱形的判定.正方形的判定等知识,解题的关键是熟练掌握特殊四边形的判定方法,属于中考常考题型.9.若不等式组的解集为x>3,则a的取值是()A.a≤6B.a≥6C.a<6D.a≤0【分析】分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集即可确定a的范围.【解答】解:解不等式2x+a<3(x+1)得:x>a﹣3,解不等式>,得:x>3,∵不等式组的解集为x>3,∴a﹣3≤3,解得:a≤6,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键10.如图,点A、B的坐标分别为(0,2)、(2,0),⊙C的圆心坐标为(﹣1,0),半径为1,若点D为⊙O上的一个动点,线段DB与y轴交于点E,则△ABE面积的最小值为()A.1B.2C.2﹣D.4﹣【分析】由于OA的长为定值,若△ABE的面积最小,则BE的长最短,此时AD与⊙O相切;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,由△AEO∽△ACD,求出OE 的长即可解决问题;【解答】解:若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;Rt△ACD中,CD=1,AC=OC+OA=3;由勾股定理,得:AD=2;∵∠AOE=∠ADC,∠OAE=∠DAC,∴△AOE∽△ADC,∴=,∴=,OE=,∴BE=2﹣,∴△ABE的面积的最小值=•BE•AO=2﹣,故选:C.【点评】此题主要考查了切线的性质、相似三角形的性质、三角形面积的求法等知识;能够正确的判断出△BE面积最小时AD与⊙C的位置关系是解答此题的关键.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①抛物线的对称轴为x=﹣1;②abc=0;③方程ax2+bx+c+1=0有两个不相等的实数根;④无论x取何值,ax2+bx≤a﹣b.其中,正确的个数为()A.4B.3C.2D.1【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线与x轴的交点坐标为(﹣2,0),(0,0),∴对称轴为x==﹣1,故①正确;∵抛物线开口向下,a<0,抛物线与原点相交,c=0,∴abc=0,故②正确;∵c=0,∴b2﹣4a(c+1)=b2﹣4a>0,故③正确;当x=﹣1时,抛物线有最大值,∴无论x取何值,ax2+bx+c≤a﹣b+c,即ax2+bx≤a﹣b,故④正确.正确的为①②③④,故选:A.【点评】本题主要考查二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴的交点、抛物线与x轴交点的个数确定是解题的关键.12.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交正方形的外角∠DCG的平分线于点F,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()A.B.C.D.【分析】过F作FG⊥BC于G,求出FG=CG,求出△BAE∽△GEF,得出=,求出FG=x,代入y=×CE×FG求出解析式,根据解析式确定图象即可.【解答】解:过F作FG⊥BC于G,∵四边形ABCD是正方形,∴∠DCG=90°,∵CF平分∠DCG,∴∠FCG=∠DCG=45°,∵∠G=90°,∴∠GCF=∠CFG=45°,∴FG=CG,∵四边形ABCD是正方形,EF⊥AE,∴∠B=∠G=∠AEF=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵∠B=∠G=90°,∴△BAE∽△GEF,∴=,∵BE=x,∴EG=BC﹣BE+CG=4﹣x+FG,∴=,解得:FG=x,∴y=×CE×FG=×(4﹣x)•x,即:y=2x﹣x2,故选:C.【点评】本题考查了动点问题的函数图象、正方形性质、角平分线定义、三角形面积的计算、相似三角形的性质和判定的应用等知识,能用x的代数式把CE和FG的值表示出来是解决问题的关键.二.填空题(共6小题)13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)= (y﹣1)2(x﹣1)2.【分析】式中x+y;xy多次出现,可引入两个新字母,突出式子特点,设x+y=a,xy=b,将a、b代入原式,进行因式分解,然后再将x+y、xy代入进行因式分解.【解答】解:令x+y=a,xy=b,则(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=(b﹣1)2﹣(a﹣2b)(2﹣a)=b2﹣2b+1+a2﹣2a﹣2ab+4b=(a2﹣2ab+b2)+2b﹣2a+1=(b﹣a)2+2(b﹣a)+1=(b﹣a+1)2;即原式=(xy﹣x﹣y+1)2=[x(y﹣1)﹣(y﹣1)]2=[(y﹣1)(x﹣1)]2=(y﹣1)2(x ﹣1)2.故答案为:(y﹣1)2(x﹣1)2.【点评】本题考查了多项式的因式分解,因式分解要根据所给多项式的特点,选择适当的方法,对所给多项式进行变形,套用公式,最后看结果是否符合要求.14.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为 2 .【分析】利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再证明DA=DC,从而得到CD=AB=2.【解答】解:由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=AB=×4=2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是 4 .【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【解答】解:∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=4,∴=4,(2k)2﹣2(k2﹣k)=4,2k2+2k﹣4=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣4×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=4﹣0=4.【点评】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.16.如图,△AOB,AB∥x轴,OB=2,点B在反比例函数y=上,将△AOB绕点B逆时针旋转,当点O的对应点O′落在x轴的正半轴上时,AB的对应边A′B恰好经过点O,则k的值为.【分析】先求得△BOO′是等边三角形,即可求得B的坐标,然后根据待定系数法即可求得双曲线的解析式;【解答】解:(1)∵AB∥x轴,∴∠ABO=∠BOO′,∵∠ABO=∠A′BO′,∴∠BOO′=∠OBO′,∴OO′=O′B,∵OB=BO′,∴△BOO′是等边三角形,∴∠BOO′=60°,∵OB=2,∴B(1,);∵双曲线y=经过点B,∴k=1×=,故答案为.【点评】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,待定系数法求反比例函数的解析式等,求得△BOO′是等边三角形是解题的关键.17.如图,动点P从(0,2)出发,沿所示的方向在矩形网格中运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,若第一次碰到矩形的边时坐标为P1(2,0),则P2017的坐标为(2,0).【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2017除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,2),∵2017÷6=336…1,∴当点P第2017次碰到矩形的边时为第336个循环组的第1次反弹,点P的坐标为(2,0).故答案为:(2,0).【点评】此题考查了对点的坐标的规律变化的认识,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.18.如图,MN为⊙O的直径,四边形ABCD,CEFG均为正方形,若OM=2,则EF的长为 2 .【分析】连接OD、OF,作OH⊥AD于H,如图,利用垂径定理得到AH=DH,再证明OC=AD,设正方形ABCD的边长为x,利用勾股定理x2+x2=(2)2,解得x=4(x=﹣4舍去),然后设正方形CEFG的边长为a,在Rt△OFG中利用勾股定理得到a2+(2+a)2=(2)2,于是解关于a的方程即可.【解答】解:连接OD、OF,作OH⊥AD于H,如图,则AH=DH,∵四边形ABCD为正方形,∴四边形OCDH为矩形,∴OC=AD,设正方形ABCD的边长为x,在Rt△OCD中,∵OD=2,OC=x,CD=x,∴x2+x2=(2)2,解得x=4(x=﹣4舍去),设正方形CEFG的边长为a,则FG=a,OG=2+a,在Rt△OFG中,a2+(2+a)2=(2)2,解得a=2,即EF=2.故答案为2.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了正方形的性质和勾股定理.三.解答题(共7小题)19.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和数量如下表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152025千克(千克)304030)该什锦糖的单价为20 元(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中再加入甲、乙两种糖果共100千克,则最少需要加入甲种糖果多少千克?【分析】(1)根据单价=三种糖果的总价÷三种糖果的总质量,由此即可得出结论;(2)设需加入甲种糖果x千克,则加入乙种糖果(100﹣x)千克,根据单价=总价÷数量结合单价不超过18元/千克,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最小值即可.【解答】解:(1)(15×30+20×40+25×30)÷(30+40+30)=20(元/千克).故答案为:20.(2)设需加入甲种糖果x千克,则加入乙种糖果(100﹣x)千克,根据题意得:≤20﹣2,解得:x≥80.答:最少需要加入甲种糖果80千克.【点评】本题考查了一元一次不等式的应用以及加权平均数,解题的关键是:(1)根据单价=三种糖果的总价÷三种糖果的总质量列式计算;(2)根据单价=总价÷数量结合单价不超过18元/千克,列出关于x的一元一次不等式.21.某企业计划购买甲、乙两种学习用品800件,资助某贫困山区希望小学,已知每件甲种学习用品的价格比每件乙种学习用品的价格贵10元,用400元购买甲种学习用品的件数恰好与用320元购买乙种学习用品的件数相同.(1)求甲、乙两种学习用品的价格各是多少元?(2)若该希望小学需要乙种学习用品的数量是甲种学习用品数量的3倍,按照此比例购买这800件学习用品所需的资金为多少元?【分析】(1)设甲种学习用品的价格是x元,则乙种学习用品的价格是(x﹣10)元,根据数量=总价÷单价结合用400元购买甲种学习用品的件数恰好与用320元购买乙种学习用品的件数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量列式计算,即可得出结论.【解答】解:(1)设甲种学习用品的价格是x元,则乙种学习用品的价格是(x﹣10)元,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,∴x﹣10=40.答:甲种学习用品的价格是50元,乙种学习用品的价格是40元.(2)50××800+40××800=34000(元).答:按照此比例购买这800件学习用品所需的资金为34000元.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×数量列式计算.22.如图①,AE是⊙O的直径,点C是⊙O上的点,连结AC并延长AC至点D,使CD=CA,连结ED交⊙O于点B.(1)求证:点C是劣弧的中点;(2)如图②,连结EC,若AE=2AC=4,求阴影部分的面积.【分析】(1)连接CE,由AE是⊙O的直径,得到CE⊥AD,根据等腰三角形的性质得到∠AEC=∠DEC,于是得到结论;(2)连接BC,OB,OC,由已知条件得到△AED是等边三角形,得到∠A=60°,推出AE∥BC,∠BOC=60°,于是得到结论.【解答】解:(1)连接CE,∵AE是⊙O的直径,∴CE⊥AD,∵AC=CD,∴AE=ED,∴∠AEC=∠DEC,∴;∴点C是劣弧的中点;(2)连接BC,OB,OC,∵AE=2AC=4,∴∠AEC=30°,AE=AD,∴∠AED=60°,∴△AED是等边三角形,∴∠A=60°,∵=,∴==,∴AE∥BC,∠BOC=60°,∴S△OBC=S△EBC,∴S阴影=S扇形==π.【点评】本题考查了等边三角形的判定和性质,圆周角定理,平行线的判定,扇形的面积的计算,正确的作出辅助线是解题的关键.23.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【分析】(1)结论:AM⊥BN.只要证明△ABM≌△BCN即可解决问题;(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.首先证明PA+PB=2EF,求出EF的最大值即可解决问题;(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.首先证明PA+PB=PK,求出PK的最大值即可解决问题;【解答】解:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.【点评】本题考查四边形综合题、正方形的性质、等边三角形的性质、等腰直角三角形的性质、全等三角形的判定和性质,四点共圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.24.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.已知,矩形OABC在平面直角坐标系的位置如图所示,点B的坐标为(8,10),抛物线y=ax2+bx+c经过点O,点C,与AB交于点D,将矩形OABC沿CD折叠,点B的对应点E刚好落在OA上.(1)求抛物线y=ax2+bx+c的表达式;(2)若点P在抛物线上,点Q在抛物线的对称轴上,是否存在这样的点P、Q,使得以点P、Q、C、E为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据翻折的性质,可得DE,CE的长,根据勾股定理,可得AD的长,根据待定系数法,可得答案;(2)①根据平行四边形的对角线互相平分,可得x Q=x P,根据自变量与函数式的对应关系,可得答案;②根据平行四边形对边的横坐标的距离相等可得|x Q﹣x P|,根据自变量与函数式的对应关系,可得答案.【解答】解:(1)由矩形OCBA,B点坐标为(8,10),得C(8,0),AB=8,AC=BC=10.设AD的长为x,BD=8﹣x,由翻折的性质,得DE=DB=8﹣x,CE=BC=10,由勾股定理,得OE===6,AE=AO﹣OE=10﹣6=4,在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,即42+x2=(8﹣x)2,解得x=3,即D(3,10),C(8,0),将D、C、O点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x;(2)C点坐标为(8,0),E(0,6)①当CE为平行四边形的对角线时,对角线的交点坐标为(4,3),∵Q在对称轴上,∴点P的横坐标等于Q的横坐标4,当x=4时,y=,点P为抛物线的顶点∴P(4,);②当CE为平行四边形的边时,C、E两点之间的水平距离等于P、Q两点间的横坐标,对称轴是x=4,C、E两点之间的水平距离等于8,P在Q的左边时,4﹣8=﹣4,当x=﹣4时,y=﹣32,即P(﹣4,﹣32);P在Q的右边时,4+8=12,当x=12时,y=﹣32,即P(12,﹣32);综上所述:存在这样的点P、Q,使得以点P、Q、C、E为顶点的四边形为平行四边形,点P的坐标(4,),(﹣4,﹣32),(12,﹣32).【点评】本题考查了二次函数综合题,解(1)的关键是利用翻折的性质得出DE,CE的长,又利用了勾股定理,待定系数法;解(2)的关键是利用平行四边形的性质x Q=x P,|x Q﹣x P|;又利用了自变量与函数值的对应关系.。