湖南省2018年高三十四校联考数学(文)

合集下载

湖南省郴州市桂东县城关中学2018年高三数学文联考试题含解析

湖南省郴州市桂东县城关中学2018年高三数学文联考试题含解析

湖南省郴州市桂东县城关中学2018年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2 C.1 D.0参考答案:B2. 若a=30.6,b=log3 0.2,c=0.63,则()A.a>c>b B.a>b>c C.c>b>a D.b>c>a参考答案:A【考点】有理数指数幂的化简求值.【专题】计算题.【分析】利用指数函数与对数函数的性质可知,a>1,b<0,0<c<1.从而可得答案.【解答】解:∵a=30.6>a=3°=1,b=log30.2<log31=0,0<c=0.63<0.60=1,∴a>c>b.故选A.【点评】本题考查指数函数与对数函数的性质,考查有理数指数幂的化简求值,掌握指数函数与对数函数的性质是解决问题的关键,属于基础题.3. 若分别为P(1,0)、Q(2,0),R(4,0)、S(8,0)四个点各作一条直线,所得四条直线恰围成正方形,则该正方形的面积不可能为()A.B.C.D.参考答案:C【考点】直线的两点式方程.【分析】根据题意画出图形,由图形和同角三角函数的基本关系求出正方形面积.【解答】解:如果过点P(1,0),Q(2,0),R(4,0),S(8,0)作四条直线构成一个正方形,过P点的必须和过Q,R,S的其中一条直线平行和另外两条垂直,假设过P点和Q点的直线相互平行时,如图,设直线PC与x轴正方向的夹角为θ,再过Q作它的平行线QD,过R、S作它们的垂线RB、SC,过点A作x轴的平行线分别角PC、SC于点M、N,则AB=AMsinθ=PQsinθ=sinθ,AD=ANcosθ=RScosθ=4cosθ,因为AB=AD,所以sinθ=4cosθ,则tanθ=4,所以正方形ABCD的面积S=AB?AD=4sinθcosθ===,同理可求,当直线PC和过R的直线平行时正方形ABCD的面积S为,当直线PC和过S点的直线平行时正方形ABCD的面积S为,故选:C.4. 设集合A={x|x2﹣x﹣2>0},B={x|0<<2},则A∩B=()A. (2,4)B. (1,1)C. (﹣1,4)D. (1,4)参考答案:A【分析】可求出集合,,然后进行交集的运算即可.【详解】A={x|x<﹣1或x>2},B={x|1<x<4};∴A∩B=(2,4).故选:A.【点睛】本题主要考查描述法、区间的定义,一元二次不等式的解法,对数函数的单调性,以及交集的运算.5. 如果执行如图的程序框图,且输入n=4,m=3,则输出的p=()A.6 B.24 C.120 D.720参考答案:B【考点】程序框图.【分析】执行程序框图,写出每次循环得到的k,ρ的值,当有k=3,p=24时不满足条件k<m,输出p的值为24.【解答】解:模拟程序的运行,可得n=4,m=3k=1,p=1p=2,满足条件1<3,k=2,p=6满足条件k<3,k=3,p=24,不满足条件k<3,退出循环,输出p的值为24.故选:B.【点评】本题主要考察程序框图和算法,正确依次写出每次循环得到的k,p的值是解题的关键,属于基础题.6. (5分)(2015?临潼区校级模拟)有一个几何体是由几个相同的正方体拼合而成(如图),则这个几何体含有的正方体的个数是()A. 7 B. 6 C. 5 D. 4参考答案:C【考点】:简单空间图形的三视图.【专题】:作图题;压轴题.【分析】:根据三视图的特征,画出几何体的图形,可得结论.解:由左视图、主视图可以看出小正方体有7个,从俯视图可以看出几何体个数是5.如图故选C.【点评】:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.7. 在一个数列中,如果对任意,都有为常数,那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则A. B. C.D.参考答案:B8. 过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C.2 D.参考答案:A9. 《九章算术》的盈不足章第19个问题中提到:“今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十三里.驽马初日行九十七里,日减半里……”其大意为:“现在有良马和驽马同时从长安出发到齐去.已知长安和齐的距离是3000里.良马第一天行193里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里……”。

2018届湖南省十四校高三第二次联考数学(文)试题(解析版附后)

2018届湖南省十四校高三第二次联考数学(文)试题(解析版附后)

2018届湖南省十四校高三第二次联考数学(文)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.2. 复数的共轭复数为()A. B. C. D.3. 函数的图象大致为()A. B.C. D.4. 若实数,满足,则的最大值为()A. B. C. D.5. 长方体内部挖去一部分的三视图如图所示,则几何体的体积为()A. B. C. D.6. 已知命题:,;命题:,,则下列命题中为真A. B. C. D.7. 函数的部分图象如图所示,已知,,则的对称中心为()A. B.C. D.8. 如图是为了求出满足的最小整数,和两个空白框中,可以分别填入()A. ,输出B. ,输出C. ,输出D. ,输出9. 已知某地春天下雨的概率为.现采用随机模拟的方法估计未来三天恰有一天下雨的概率;先由计算器产生到之间取整数值的随机数,指定,,,表示下雨,,,,,,表示不下雨;再以每三个随机数作为一组,代表未来三天是否下雨的结果.经随机模拟产生了如下组随机数:,,,,,,,,,,,,,,,,,,,.据此估计,该地未来三天恰有一天下雨的概率为()A. B. C. D.10. 的内角,,的对边分别为,,,已知,,,则A. B. C. D.11. 已知直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,则实数的值为()A. 或B. 或C.D.12. 已知函数,若实数满足,则实数的取值范围为()A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题后后的横线上.13. 已知,,,则__________.14. 已知函数,,则的单调递增区间为__________.15. 菱形边长为,,将沿对角线翻折使得二面角的大小为,已知、、、四点在同一球面上,则球的表面积等于__________.16. 设椭圆:的左、右焦点、,其焦距为,点在椭圆的内部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知是等差数列,是等比数列,,,,.(1)求,的通项公式;(2)的前项和为,求证:.18. 已知如图,平面,四边形为等腰梯形,,.(1)求证:平面平面;(2)已知为中点,求与平面所成角的正弦值.19. 随着智能手机和电子阅读器越来越普及,人们的阅读习惯也发生了改变,手机和电子阅读产品方便易携带,越来越多的人习惯通过手机或电子阅读器阅读.某电子书阅读器厂商随机调查了人,统计了这人每日平均通过手机或电子阅读器阅读的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知阅读时间在,,三组对应的人数依次成等差数列.(1)求频率分布直方图中,的值;(2)若将日平均阅读时间不少于分钟的用户定义为“电子阅读发烧友”,将日平均阅读时间少于分钟的用户定义为“电子阅读潜在爱好者”,现从上述“电子阅读发烧友”与“电子阅读潜在爱好者”的人中按分层抽样选出人,再从这人中任取人,求恰有人为“电子阅读发烧友”的概率.20. 已知抛物线:上一点,直线过与相切,直线过坐标原点与直线平行交于.(1)求的方程;(2)与垂直交于,两点,已知四边形面积为,求的方程.21. 已知.(1)求的单调递减区间;(2)证明:当时,恒成立.22. 在直角坐标系中,曲线的参数方程为(为参数),其中.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求出曲线的普通方程和曲线的直角坐标方程;(2)已知曲线与交于,两点,记点,相应的参数分别为,,当时,求的值.23. 已知,.(1)求不等式的解集;(2)若对任意的,,恒成立,求的取值范围.2018届湖南省十四校高三第二次联考数学(文)试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】根据一元二次不等式的解法化简集合,根据指数函数的性质化简集合,可得,,故选B.2. 复数的共轭复数为()A. B. C. D.【答案】B【解析】利用复数的乘法法则化简,从而可得复数的共轭复数为,故选B.3. 函数的图象大致为()A. B.C. D.【答案】D4. 若实数,满足,则的最大值为()A. B. C. D.【答案】B【解析】画出表示的可行域,如图,由可得,平移直线,由图可知当直线过时,直线在纵轴上的截距最大,此时有最大值等于,故选B.5. 长方体内部挖去一部分的三视图如图所示,则几何体的体积为()A. B. C. D.【答案】C【解析】由三视图可知,该几何体是一个长方体内部挖掉一个半圆锥,其中长方体的长宽高分别为,圆锥的底面半径为,高为,所以该几何体的体积为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.6. 已知命题:,;命题:,,则下列命题中为真命题的是()A. B. C. D.【答案】A【解析】,,故为假命题,为真命题,因为,,所以命题:,,为假命题,所以为真命题,为真命题,故选A.7. 函数的部分图象如图所示,已知,,则的对称中心为()A. B.C. D.【答案】C【解析】,由五点作图法可得是第二点,可得,,由,得,的对称中心为,故选C.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点) 时;“第二点”(即图象的“峰点”) 时;“第三点”(即图象下降时与轴的交点) 时;“第四点”(即图象的“谷点”) 时;“第五点”时.8. 如图是为了求出满足的最小整数,和两个空白框中,可以分别填入()A. ,输出B. ,输出C. ,输出D. ,输出【答案】A【解析】为了求出满足的最小整数,就是使的第一个整数,所以判断框内应该填写;根据程序框图可知,当时,已经被替换,所以应输出,才能得到满足的最小整数,故选A.9. 已知某地春天下雨的概率为.现采用随机模拟的方法估计未来三天恰有一天下雨的概率;先由计算器产生到之间取整数值的随机数,指定,,,表示下雨,,,,,,表示不下雨;再以每三个随机数作为一组,代表未来三天是否下雨的结果.经随机模拟产生了如下组随机数:,,,,,,,,,,,,,,,,,,,.据此估计,该地未来三天恰有一天下雨的概率为()A. B. C. D.【答案】C【解析】根据题意,表示未来三天是否下雨的结果,当未来三天恰有一天下雨,就是三个数字中只有一个数字在集合,考查这组数据,以下个数据符合题意,按次序分别为,其概率,故选C.10. 的内角,,的对边分别为,,,已知,,,则角()A. B. C. D.【答案】D【解析】由正弦定理可得,可得,,由,可得,,由为三角形内角,可得,由正弦定理可得由,可得,故选D.11. 已知直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,则实数的值为()A. 或B. 或C.D.【答案】B【解析】因为直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,到直线的距离为,由点到直线距离公式可得,故选B.12. 已知函数,若实数满足,则实数的取值范围为()A. B. C. D.【答案】A【解析】由题意得函数的定义域为,函数为奇函数,又当时,,函数在上单调递增,则上奇函数为增函数,,即,,解得,故选A.【方法点睛】本题主要考查函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题后后的横线上.13. 已知,,,则__________.【答案】【解析】因为,所以可得,又,,解得,故答案为. 14. 已知函数,,则的单调递增区间为__________.【答案】或【解析】,根据正弦函数的单调性可得,解得得,又的单调递增区间为,故答案为或.15. 菱形边长为,,将沿对角线翻折使得二面角的大小为,已知、、、四点在同一球面上,则球的表面积等于__________.【答案】【解析】如图,点分别为外接圆的圆心,点为球心,因为菱形边长为,,所以,,,故答案为.16. 设椭圆:的左、右焦点、,其焦距为,点在椭圆的内部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是__________.【答案】【解析】点在椭圆的内部,,,即,,解得,又,且,要恒成立,即,,则椭圆离心率的取值范围是,故答案为.【方法点晴】本题主要考查利用椭圆的简单性质求双曲线的离心率范围,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点在椭圆的内部以及三角形的性质构造出关于的不等式,最后解出的范围.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知是等差数列,是等比数列,,,,.(1)求,的通项公式;(2)的前项和为,求证:.【答案】(1),;(2)见解析【解析】试题分析:(1)根据是等差数列,是等比数列,,,,列出关于公比、公差的方程组,解方程组可得与的值,从而可得数列,的通项公式;(2)由(1)可知,根据错位相减法结合等比数列的求和公式可得的前项和为,利用放缩法可得结论.试题解析:(1)设公差为,公比为,由题意得:,解得,或(舍),∴,.(2),,相减得:,∴,∴.【方法点睛】本题主要考查等比数列和等差数列的通项以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.18. 已知如图,平面,四边形为等腰梯形,,.(1)求证:平面平面;(2)已知为中点,求与平面所成角的正弦值.【答案】(1)见解析;(2)【解析】试题分析:(1)连接,过作于,过作于,由三角形内角和定理可得,由平面,可得,从而可得平面,由面面垂直的判定定理可得结论;(2)由(1)知,,∴为直角三角形,为中点,设到平面距离为,根据“等积变换”可求得,进而可得与平面所成角的正弦值.试题解析:(1)连接,过作于,过作于.在等腰梯形中,∵,∴.∴,则,,∴即,∵平面,平面,∴,∴平面,又平面,∴平面平面.(2)∵由(1)知,,∴为直角三角形,为中点,设到平面距离为,∴,∵,∴,即,∴.∴与平面所成角的正弦值等于.19. 随着智能手机和电子阅读器越来越普及,人们的阅读习惯也发生了改变,手机和电子阅读产品方便易携带,越来越多的人习惯通过手机或电子阅读器阅读.某电子书阅读器厂商随机调查了人,统计了这人每日平均通过手机或电子阅读器阅读的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知阅读时间在,,三组对应的人数依次成等差数列.(1)求频率分布直方图中,的值;(2)若将日平均阅读时间不少于分钟的用户定义为“电子阅读发烧友”,将日平均阅读时间少于分钟的用户定义为“电子阅读潜在爱好者”,现从上述“电子阅读发烧友”与“电子阅读潜在爱好者”的人中按分层抽样选出人,再从这人中任取人,求恰有人为“电子阅读发烧友”的概率.【答案】(1);(2)【解析】试题分析:(1)由,解得,又,∴;(2)根据分层抽样方法可得抽取“发烧友”抽取人,“潜在爱好者”抽取人,利用列举法可得这人中任选人的事件有个,其中从人中任取人恰有人为“电子阅读发烧友”的事件共有种,根据古典概型概率公式可得结果.试题解析:(1)由,解得,又,∴.(2)“电子阅读发烧友”“电子阅读潜在爱好者”的人数之比为:,所以“发烧友”抽取人,“潜在爱好者”抽取人,记事件:从人中任取人恰有人为“电子阅读发烧友”,设两名“电子阅读发烧友”的人记为:,,三名“电子阅读潜在爱好者”的人记为:,,,则这人中任选人有:,,,,,,,,,,共种情形,符合题设条件的有:,,,,,共有种,因此恰有人为“电子阅读发烧友”的概率为.【方法点睛】本题主要考查直方图的应用以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.20. 已知抛物线:上一点,直线过与相切,直线过坐标原点与直线平行交于.(1)求的方程;(2)与垂直交于,两点,已知四边形面积为,求的方程.【答案】(1);(2)【解析】试题分析:(1)把代入:得,∴抛物线:,设斜率为,:,由抛物线方程联立,利用判别式为零可得,从而可得的方程;(2)由四边形面积为,可求得,设:,联立得,根据韦达定理及弦长公式列方程可求得.所以方程为. 试题解析:(1)把代入得,∴抛物线:,设斜率为,:,联立:得,由,化简得,∴,:.(2)联立易得,则,∵,∴,∴.设:,联立得,设,,则,,,解得.所以方程为.21. 已知.(1)求的单调递减区间;(2)证明:当时,恒成立.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)令,利用导数研究函数的单调性可得时,,时,,∴时,,从而可得结论.试题解析:(1)易得定义域为,,解得或.当时,∵,∴,解得,∴的单调递减区间为;当时,i.若,即时,时,,时,,时,,∴的单调递减区间为;ii.若,即时,时,恒成立,没有单调递减区间;iii.若,即时,时,;时,,时,,∴的单调递减区间为.综上:时,单调递减区间为;时,单调递减区间为;时,无单调递减区间;时,单调递减区间为.(2)令,则.令,,时,,时,,∴时,,即时,恒成立.解得或,时,,时,,∴时,,得证.22. 在直角坐标系中,曲线的参数方程为(为参数),其中.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求出曲线的普通方程和曲线的直角坐标方程;(2)已知曲线与交于,两点,记点,相应的参数分别为,,当时,求的值.【答案】(1),;(2)4试题解析:(1)曲线的参数方程为(为参数),所以:的普通方程:,其中;曲线的极坐标方程为,所以:的直角坐标方程:.(2)由题知直线恒过定点,又,由参数方程的几何意义知是线段的中点,曲线是以为圆心,半径的圆,且.由垂径定理知:.23. 已知,.(1)求不等式的解集;(2)若对任意的,,恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得到不等式的解集;;(2)分别求出的最小值和的最大值,利用,得到关于的不等式,解不等式即可求得的取值范围.试题解析:(1)不等式,即.可得,或或,解得或,所以不等式的解集为.(2)依题意可知,由(1)知,,所以,故得的取值范围是.。

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题(含答案)

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题(含答案)

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}2230,3M x x x N x R x =--<=∈≤,P M N =⋂,则P 中所有元素的和为( ) A .2 B .3 C. 5 D .6 2.已知i 是虚数单位,复数952ii +的共轭复数在复平面上所对应的点位于( ) A .第一象限B.第二象限C.第三象限D.第四象限3.下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生产能耗y (单位:吨)的几组对应数据:根据上表提供的数据,求得y 关于x 的线性回归方程为0.70.35y x =+,那么表格中t 的值为( ) A .3 B .3.15 C.3.25 D .3.54.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )A .13B .49 C. 59D .235.已知平面α⊥平面β,则“直线m ⊥平面α”是“直线//m 平面β”的( ) A .充分不必要条件 B.必要不充分条件 C .充要条件D.既不充分也不必要条件6. 若变量,x y 满足约束条件1021010x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩,则目标函数2z x y =+的最小值为( )A .4B .1- C. 2- D .3-7.设点P 是双曲线()222210,0x y a b a b -=>>与圆2222x y a b +=+在第一象限的交点,12,F F 分别是双曲线的左、右焦点,且123PF PF =,则双曲线的离心率为( )A .52 B .102C. 5 D .10 8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的2,2x n ==,依次输入的a 为3, 3, 7,则输出的s =( )A .9B .21 C. 25 D .349.已知函数()()2,log x a f x a g x x -== (其中0a >且1a ≠),若()()440f g -<,则()(),f x g x 在同一坐标系内的图象大致是( )A .B . C. D .10.已知偶函数()f x 满足()()11f x f x -=+,且当[]0,1x ∈时,()1f x x =-+,则关于x 的方程()()lg 1f x x =+在[]0,9x ∈上实根的个数是( )A .7B .8 C. 9 D .10 11. 在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a bc B A+=,则A 的大小是( ) A .2π B .3π C.4π D .6π 12.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,且直线2PA 斜率的取值范围是[]2,1--,则直线1PA 斜率的取值范围是( )A .33,84⎡⎤⎢⎥⎣⎦B .13,24⎡⎤⎢⎥⎣⎦ C.1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数()2ln f x x a x =-,且()f x 在1x =处的切线与直线10x y ++=垂直,则a = . 14. 在平行四边形ABCD 中,3,4AB AD ==,则AC DB ⋅= .15.若0,2πα⎛⎫∈ ⎪⎝⎭,且2cos 2sin 54παα⎛⎫=+ ⎪⎝⎭,则tan α= .16.某几何体的三视图如图所示,若该几何体的所有顶点都在一个球面上,则该球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 中,159,1a a ==. (1)求{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:49n T ≤.18.如图,在矩形ABCD 中,2,1BC AB ==,PA ⊥平面ABCD ,1//,2BE PA BE PA =,F 为PA 的中点.(1)求证://DF 平面PEC ;(2)记四棱锥C PABE -的体积为1V ,三棱锥P ACD -的体积为2V ,求12V V . 19. 甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩清况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算,x y 的值;(2)若规定考试成绩在[]120,150内为优秀,请根据样本估计乙校数学成绩的优秀率;(3)由以上统计数据填写下面22⨯列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.附:()()()()()22n ad bc K a b c d a c b d -=++++;n a b c d =+++.20. 已知抛物线2:2C y px =的焦点为()1,0F ,过点F 的直线l 交抛物线C 于,A B 两点,直线,AO BO 分别与直线:2M x =-相交于,M N 两点.(1)求抛物线C 的方程;(2)证明:ABO ∆与MNO ∆的面积之比为定值. 21. 已知函数()11ln ,f x x a R ax a=+-∈且0a ≠. (1)若函数()f x 区间[)1,+∞上单调递增,求实数a 的取值范围;(2)设函数()x g x e x p =-+,e 为自然对数的底数.若存在[]01,x e ∈,使不等式()000ln x g x e x ≥成立,求实数p 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28150sin ρρθ-+=.(1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程; (2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值.23.选修4-5:不等式选讲 已知函数()54f x x x =-++. (1)求不等式()12f x ≥的解集;(2)若关于x 的不等式()13210a f x ---≥恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: BDAAD 6-10: CBCBC 11、12:CA二、填空题13. 1 14.7- 15.34 16.283π 三、解答题17. 设等差数列{}n a 的公差为d ,则151941a a a d =⎧⎨=+=⎩,解得2d =,∴()()912112n a n n =+-⨯-=-. (2)由(1)知,()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, ∴11111112795792112n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦1112929n ⎛⎫=-⎪-⎝⎭, 令192n b n =-,由函数()192f x x =-的图象关于点9,02⎛⎫⎪⎝⎭对称及其单调性知, 12340b b b b <<<<,5670b b b <<<<,∴41n b b ≤=,∴1141299n T ⎛⎫≤-= ⎪⎝⎭.18. (1)连接EF ,∵//BE AF =,∴四边形ABEF 为平行四边形,∴//EF AB =, 在矩形ABCD 中,//AB CD =,∴//EF CD =,∴四边形CDFE 为平行四边形, ∴//DF EC .∴//DF 平面PEC .(2)连接PB ,由题意知,P ACD P ABC C PAB V V V ---==,∴()12132122PABEPABEB PA ABV S V S AB PA ∆⋅+⋅===⋅⋅.19.(1)由题意知,甲校抽取1100105552100⨯=人,乙校抽取1000105502100⨯=人, ∴6,7x y ==.(2)由题意知,乙校优秀率为2040%50=. (3)()22105103020453366.109 5.024********55K ⨯⨯-⨯==≈>⨯⨯⨯, ∴有97.5%的把握认为两个学校的数学成绩有差异. 20. (1)由题意知,12p=,∴2p =,∴抛物线C 的方程为24y x =. (2)证明:当直线l 垂直于x 轴时,ABO ∆与MNO ∆相似,∴2124ABO MNO OF SS ∆∆⎛⎫== ⎪⎝⎭.当直线l 与x 轴不垂直时,设直线AB 的方程为()1y k x =-. ()()()()11222,,2,,,,,M N M y N y A x y B x y --,联立()214y k x y x⎧=-⎪⎨=⎪⎩,得()2222420,0k x k x k -++=∆>, ∴121x x =,且120,0x x >>. ∵AOB MON ∠=∠, ∴121sin 121224sin 2ABO MNOAO BO AOB AO BO S x x S MO NO MO NO MON ∆∆⋅⋅∠==⋅=⋅=⋅⋅∠. 综上所述,14ABO MNO S S ∆∆=. 21. (1)解法一:当0a <时,函数()f x 在()0+∞,上单调递增,符合题意; 当0a >时,令()201ax f x ax -'>=,解得1x a>, ∵函数()f x 在[)1,+∞上单调递增,∴11a≤,则1a ≥. 综上所述,实数a 的取值范围是()[),01,-∞⋃+∞. 解法二:∵()210ax f x ax-'=>对[)1,x ∈+∞恒成立, ∴当0a <时,()0f x '>恒成立,符合题意; 由0a >时,10ax -≥,即1a x≥,∴1a ≥. 综上所述,实数a 的取值范围是()[),01,-∞⋃+∞. (3)∵存在[]01,x e ∈,使不等式()000ln x g x e x ≥成立, ∴存在[]01,x e ∈,使()00ln 1x p x e x ≥-+成立.令()()[]()ln 11,x h x x e x x e =-+∈,∴()1ln 11x h x x e x ⎛⎫'=+-+ ⎪⎝⎭,()min p h x ≥,由(1)知,当1a =时,()1ln 1f x x x=+-在[]1,e 上单调递增,∴()()10f x f ≥=,∴()0h x '>在[]1,e 上恒成立. ∴()h x 在[]1,e 上单调递增,∴()()min 11h x h e ==-, ∴1p e ≥-,即实数p 的取值范围为[)1,e -+∞.22. (1)曲线1C 的参数方程为3cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),曲线2C 的直角坐标方程为228150x y y +-+=,即()2241x y +-=.(2)由(1)知,曲线2C 是以()20,4C 为圆心,1为半径的圆.设()cos ,sin P ϕϕ, 则()()()()222223cos sin 491sin sin 8sin 16PC ϕϕϕϕϕ=+-=-+-+218sin 272ϕ⎛⎫=-++ ⎪⎝⎭.当1sin 2ϕ=-时,2PC 取得最大值2733=. 又21PQ PC ≤+,当且仅当2,,P Q C 三点共线,即2C 在线段PQ 上时等号成立. ∴max 331PQ =+.23.(1)原不等式等价于55412x x x >⎧⎨-++≥⎩或455412x x x -≤≤⎧⎨-++≥⎩或()45412x x x <-⎧⎪⎨--+≥⎪⎩,解得132x ≥或x ∈∅或112x ≤-. ∴不等式的解集为132x x ⎧≥⎨⎩或112x ⎫≤-⎬⎭.(2)不等式()13210a f x ---≥恒成立等价于()13min 21a f x -≥+, 即()13min 5421a x x --++=+, ∵()()54549x x x x -++≥--+=,∴13921a -≥+,则133a -≤,解得23a ≥-,∴实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.。

湖南省(长郡中学)、江西省(南昌二中)等十四校2018届高三第二次联考数学(文)试题+Word版含答案

湖南省(长郡中学)、江西省(南昌二中)等十四校2018届高三第二次联考数学(文)试题+Word版含答案

2018届高三·十四校联考 第二次考试数学(文科)试卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340}M x x x =--≤,1|,14xN y y x ⎧⎫⎪⎪⎛⎫==≥-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则( )A .N M ⊇B .M N ⊇C .M N =D .R C N M Ø 2.复数(1)(2)z i i i =+--的共轭复数为( )A .3iB .3C .3i -D .3-3.函数21()xx f x e -=的图象大致为( )A .B .C .D .4.若实数x ,y 满足632y x x y y x ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .9B .8C .4D .3 5.长方体内部挖去一部分的三视图如图所示,则几何体的体积为( )A .8163π-B .403C .4163π-D .3236.已知命题p :x R ∀∈,22log (23)1x x ++>;命题q :0x R ∃∈,0sin 1x >,则下列命题中为真命题的是( )A .p q ⌝∧⌝B .p q ∧⌝C .p q ⌝∧D .p q ∧ 7.函数()()()sin 0f x x ωϕω=+>的部分图象如图所示,已知5,112A π⎛⎫ ⎪⎝⎭,11,112B π⎛⎫-- ⎪⎝⎭,则()f x 的对称中心为( )A .5,026k ππ⎛⎫+⎪⎝⎭ B .5,06k ππ⎛⎫+ ⎪⎝⎭C .,026k ππ⎛⎫+⎪⎝⎭ D .,06k ππ⎛⎫+ ⎪⎝⎭8.如图是为了求出满足122222018n++⋅⋅⋅+>的最小整数n ,和两个空白框中,可以分别填入( )A .2018?S >,输出1n -B .2018?S >,输出nC .2018?S ≤,输出1n -D .2018?S ≤,输出n9.已知某地春天下雨的概率为40%.现采用随机模拟的方法估计未来三天恰有一天下雨的概率;先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示下雨,5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表未来三天是否下雨的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该地未来三天恰有一天下雨的概率为( )A .0.2B .0.25C .0.4D .0.3510.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 3b a C C ⎛⎫=+⎪ ⎪⎝⎭,2a =,c =C =( ) A .34π B .3π C .6π D .4π 11.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为( )A B 12.已知函数2()()x x f x e e x -=-,若实数m 满足313(log )(log )2(1)f m f m f -≤,则实数m的取值范围为( )A .(]0,3B .1,33⎡⎤⎢⎥⎣⎦ C .(]0,9 D .()10,3,3⎛⎫+∞ ⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题后后的横线上.13.已知()1,2a =,()3,4b =,()()2a b a b λ+⊥-,则λ= .14.已知函数2()cos cos f x x x x =,0,2x π⎛⎫∈ ⎪⎝⎭,则()f x 的单调递增区间为 .15.菱形ABCD 边长为6,60BAD ∠=,将BCD ∆沿对角线BD 翻折使得二面角C BD A --的大小为120 ,已知A 、B 、C 、D 四点在同一球面上,则球的表面积等于 .16.设椭圆C :22221(0)x y a b a b +=>>的左、右焦点1F 、2F ,其焦距为2c ,点3,2c Q c ⎛⎫⎪⎝⎭在椭圆的内部,点P 是椭圆C 上的动点,且1124PF PQ F F +<恒成立,则椭圆离心率的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知{}n a 是等差数列,{}n b 是等比数列,11a =,12b =,222b a =,3322b a =+. (1)求{}n a ,{}n b 的通项公式; (2)n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:2n S <. 18.已知如图,PA ⊥平面ABCD ,四边形ABCD 为等腰梯形,//AD BC ,2224BC AB AD PA ====.(1)求证:平面PAC ⊥平面PAB ;(2)已知E 为PC 中点,求AE 与平面PBC 所成角的正弦值.19.随着智能手机和电子阅读器越来越普及,人们的阅读习惯也发生了改变,手机和电子阅读产品方便易携带,越来越多的人习惯通过手机或电子阅读器阅读.某电子书阅读器厂商随机调查了100人,统计了这100人每日平均通过手机或电子阅读器阅读的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知阅读时间在[)60,80,[)20,40,[)40,60三组对应的人数依次成等差数列.(1)求频率分布直方图中a ,b 的值;(2)若将日平均阅读时间不少于80分钟的用户定义为“电子阅读发烧友”,将日平均阅读时间少于40分钟的用户定义为“电子阅读潜在爱好者”,现从上述“电子阅读发烧友”与“电子阅读潜在爱好者”的人中按分层抽样选出5人,再从这5人中任取3人,求恰有1人为“电子阅读发烧友”的概率.20.已知抛物线C :22y px =上一点()1,2A ,直线1l 过A 与C 相切,直线2l 过坐标原点O 与直线1l 平行交C 于B .(1)求2l 的方程;(2)3l 与2l 垂直交C 于M ,N 两点,已知四边形OMBN 面积为32,求3l 的方程.21.已知2()()ln f x x ax x =-2322x ax -+. (1)求()f x 的单调递减区间; (2)证明:当1a =时,3225()32f x x x ≤-112ln 246x +++(0)x >恒成立. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数),其中2k παπ≠+.以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为24cos 50ρρθ--=.(1)求出曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知曲线2C 与1C 交于A ,B 两点,记点A ,B 相应的参数分别为1t ,2t ,当120t t +=时,求AB 的值. 23.选修4-5:不等式选讲已知()31f x x x =++-,2()2g x x mx =-+. (1)求不等式()4f x >的解集;(2)若对任意的1x ,2x ,12()()f x g x ≥恒成立,求m 的取值范围.2018届高三·十四校联考 第二次考试数学(文科)参考答案一、选择题1-5: BBDBC 6-10: ACACD 11、12:BA 二、填空题 13.6127 14. 0,6π⎛⎤ ⎥⎝⎦(或0,6π⎛⎫⎪⎝⎭) 15. 84π 16. 41,132⎛⎫ ⎪⎝⎭ 三、解答题17.【解析】(1)设{}n a 公差为d ,{}n b 公比为q ,由题意得:222(1)22(12)2q d q d =+⎧⎨=++⎩,解得12d q =⎧⎨=⎩,或1d q =-⎧⎨=⎩(舍),∴n a n =,2n n b =. (2)23123222n S =++1122n n n n --+⋅⋅⋅++, 23112222n S =+1121222n n n n n n-+--+⋅⋅⋅+++, 相减得:2311112222n S =++1122n n n ++⋅⋅⋅+-11122112n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-12n n +-,∴11222n n n nS -⎛⎫=--⎪⎝⎭,∴2n S <. 18.【解析】(1)连接AC ,过A 作AG BC ⊥于G ,过D 作DH BC ⊥于H . 在等腰梯形ABCD 中,∵24BC AD ==,∴1BG CH ==.∴60ABC DCB ∠=∠=,则120ADC BAD ∠=∠=,30ACD DAC ∠=∠=,∴90BAC ∠=即AC B ⊥A ,∵PA ⊥平面ABCD ,AC ⊂平面ABCD , ∴PA AC ⊥,∴AC ⊥平面PAB ,又AC ⊂平面PAC ,∴平面PAC ⊥平面PAB.(2)∵由(1)知,PA AC ⊥,∴PAC ∆为直角三角形,E 为PC 中点,设A 到平面PBC 距离为h , ∴12AE PC==2==, ∵P ABC A PBC V V --=三棱锥三棱锥, ∴1133ABC PBC S PA S h ∆∆⨯=⨯,即114232⨯⨯1132h =⨯⨯,∴h =. ∴AE 与平面PBC所成角的正弦值等于72=.19.【解析】(1)由(0.002520.00753)201a ⨯++⨯=, 解得0.0125a =,又0.016520.025b a +==,∴0.0085b =.(2)“电子阅读发烧友”“电子阅读潜在爱好者”的人数之比为:(0.00750.0025):(0.01250.0025)++2:3=,所以“发烧友”抽取2525⨯=人, “潜在爱好者”抽取3535⨯=人, 记事件A :从5人中任取3人恰有1人为“电子阅读发烧友”,设两名“电子阅读发烧友”的人记为:1B ,2B ,三名“电子阅读潜在爱好者”的人记为:1b ,2b ,3b ,则这5人中任选3人有:121(,,)B B b ,122(,,)B B b ,123(,,)B B b ,112(,,)B b b ,113(,,)B b b ,123(,,)B b b ,212(,,)B b b ,213(,,)B b b ,223(,,)B b b ,123(,,)b b b ,共10种情形,符合题设条件的有:112(,,)B b b ,113(,,)B b b ,123(,,)B b b ,212(,,)B b b ,213(,,)B b b ,223(,,)B b b 共有6种,因此恰有1人为“电子阅读发烧友”的概率为63()105P A ==. 20.【解析】(1)把()1,2A 代入得2p =,∴抛物线C :24y x =, 设1l 斜率为k ,1l :2(1)y k x -=-,联立:242(1)y x y k x ⎧=⎨-=-⎩得24840k y y k k --+=,由248440k k k -⎛⎫∆=--⋅= ⎪⎝⎭,化简得2210k k -+=,∴1k =,2l :y x =.(2)联立24y x y x=⎧⎨=⎩易得(4,4)B ,则OB =,∵23l l ⊥,∴OMBN S 四边形1322OB MN =⨯=,∴MN =. 设3l :y x b =-+, 联立24y x by x=-+⎧⎨=⎩得22(24)0x b x b -++=,设11(,)M x y ,22(,)N x y , 则1224x x b +=+,212x x b =,MN ===,解得3b =.所以3l 方程为3y x =-+.21.【解析】(1)易得()f x 定义域为(0,)+∞,'()(2)ln f x x a x =-32x a x a +--+ (2)ln (2)x a x x a =---(2)(ln 1)x a x =--,解'()0f x =得2ax =或x e =. 当0a ≤时,∵0x >,∴20x a ->,解'()0f x <得x e <,∴()f x 的单调递减区间为(0,)e ; 当0a >时, i.若2a e <,即02a e <<时,0,2a x ⎛⎫∈ ⎪⎝⎭时,'()0f x >, ,2a x e ⎛⎫∈ ⎪⎝⎭时,'()0f x <,(,)x e ∈+∞时,'()0f x >,∴()f x 的单调递减区间为,2a e ⎛⎫ ⎪⎝⎭; ii.若2ae =,即2a e =时,(0,)x ∈+∞时,'()0f x ≥恒成立, ()f x 没有单调递减区间;iii.若2a e >,即2a e >时,(0,)x e ∈时,'()0f x >;,2a x e ⎛⎫∈ ⎪⎝⎭时,'()0f x <, ,2a x ⎛⎫∈+∞ ⎪⎝⎭时,'()0f x >,∴()f x 的单调递减区间为,2a e ⎛⎫ ⎪⎝⎭.综上:0a ≤时,单调递减区间为(0,)e ;02a e <<时,单调递减区间为,2a e ⎛⎫⎪⎝⎭; 2a e =时,无单调递减区间;2a e >时,单调递减区间为,2a e ⎛⎫⎪⎝⎭.(2)令()()g x f x =3225232x x x ⎛⎫--+⎪⎝⎭11ln 46x ⎛⎫-+ ⎪⎝⎭,则'()(21)(ln 1)g x x x =--2(252)x x +-+-(21)(ln 1)(21)(2)x x x x =--+-- (21)(ln 1)x x x =-+-.令()ln 1m x x x =+-,11'()1xm x x x-=-=, (0,1)x ∈时,'()0m x >,(1,)x ∈+∞时,'()0m x <,∴1x =时,max ()0m x =,即0x >时,()0m x ≤恒成立. 解'()0g x =得12x =或1x =,10,2x ⎛⎫∈ ⎪⎝⎭时,'()0g x >,1,2x ⎛⎫∈+∞ ⎪⎝⎭时, '()0g x ≤,∴12x =时,max ()0g x =,得证. 22.【解析】(1)曲线1C 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数),所以:1C 的普通方程:(1)tan 2y x α=-+,其中2k παπ≠+;- 11 - 曲线2C 的极坐标方程为24cos 50ρρθ--=,所以:2C 的直角坐标方程:22(2)9x y -+=.(2)由题知直线恒过定点(1,2)P ,又120t t +=,由参数方程的几何意义知P 是线段AB 的中点,曲线2C 是以2(2,0)C 为圆心,半径3r =的圆, 且225PC =.由垂径定理知:AB =4==.23.【解析】(1)不等式()4f x >,即314x x ++->. 可得1314x x x ≥⎧⎨++->⎩,或31314x x x -<<⎧⎨++->⎩或3314x x x ≤-⎧⎨--+->⎩,解得3x <-或1x >,所以不等式的解集为{|31}x x x <->或.(2)依题意可知min max ()()f x g x ≥,由(1)知min ()4f x =,2()2g x x mx =-+22()x m m =--+, 所以2max ()g x m =,故24m ≤得m 的取值范围是22m -≤≤.。

湖南省长望浏宁四县2018届高三联合调研考试数学文

湖南省长望浏宁四县2018届高三联合调研考试数学文

xy20
x 2 y 4 0 ,则 z 2x y 的最小值为 .
2x y 1 0
15. 已知抛物线 C : y2 2 px( p 0) 的焦点为 F ,准线 l : x
· 2·
3 ,点 M 在抛物线 C 上,点 A 在 2
A. 1, 3
B . 1,0
C . 1,3
D . 1,5
2. 在复平面内,复数 z
A.第一象限
B
C.第三象限
D
i ( i 是虚数单位)对应的点位于
i1 .第二象限 .第四象限
3. 公比为 2 的等比数列 { an } 的各项都是正数,且 a3a11 16 ,则 log 2 a10
A. 4
B
.5
C
.6
2018 年长望浏宁高三调研考试
数学 (文科) 试卷
时量: 120 分钟总分: 150 分 一、选择题:(本大题共 12 个小题,每小题 5 分,满分 60 分.在每个小题给出的四个选项中, 只有一项是符合题目要求的)
1. 设集合 A 1,2,4 , B x x2 4x m 0 ,若 A B 1 ,则 B
y2 b2
1的一条渐近线与圆 x2
y2
6x 2y 9
0 相切,则双曲线 C的
离心率等于
5
5
A.
B.
C.
4
3
3
4
D.
2
3
6. 若 sin
x
6
4
,则 sin
2x 的值为ห้องสมุดไป่ตู้
5
6
24
24
7
7
A. 25
B. 25
C . 25 D . 25

湖南省长望浏宁四县2018届高三联合调研考试数学(文)试卷(含答案)

湖南省长望浏宁四县2018届高三联合调研考试数学(文)试卷(含答案)

3 的正三角形. 若
P 为底面 A1B1C1的中心,则 PA 与平面 ABC 所成角的大小为
5 A.
12
B

C.
D

3
4
6
12. 设 f x 满足 f -x = f x ,且在 1,1 上是增函数,且 f 1 1 ,若函数
f x t2 2at 1 对所有 x
1
1
A.
t
B
2
2
C. t 1 或 t 2
1 或t 0
2
1,1 ,当 a 1,1 时都成立,则 t 的取值范围是 .t 2或t 2或t 0
D .2 t 2
二、填空题:(本大题共 4 小题,每小题 5 分,满分 20 分)
13. 已知两个不相等的平面向量 a (2,1), b (2, x). 且 ( a 2b) (a b) ,则 x
.
xy20
14. 若 x、 y 满足约束条件 x 2 y 4 0 ,则 z 2x y 的最小值为
D .1
3
8. 在等差数列 an 中,若 a3 a5 2a10 4 ,则此数列
的前 13
项的和等于
· 1·
A. 8
B . 13 C . 16 D . 26
9. 如图, 给出的是计算 1 1 1 1 4 7 10
1 的值的一个 100
程序框图,则图中判断框内( 1)处和执行框中的( 2)
处应填的语句是
2018 年长望浏宁高三调研考试
数学 (文科) 试卷
时量: 120 分钟
总分: 150 分
一、选择题:(本大题共 12 个小题,每小题 5 分,满分 60 分.在每个小题给出的四个选项中,
只有一项是符合题目要求的)

2018年最新 湖南省2018届高三十二校联考第一次考试数

2018年最新 湖南省2018届高三十二校联考第一次考试数

湖南省2018届高三十二校第一次联考数学试卷(文科)总分:150分 时量:120分钟 2018年3月2日一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 设全集U Z =,集合{1,1,2}A =-,{1,1}B =-,则)(B C A U ⋂为( )A .{1,2}B .{1}C .{2}D .{1,1}-2.已知||1a =,||2b =,且()a a b ⊥-,则向量a 与向量b 的夹角是( )A .30︒B .45︒C .90︒D .135︒3. 一个正方体的体积是8,则这个正方体的内切球的表面积是 ( )A .8πB .6πC .4πD .π 4.已知函数)(,|3||4|1)(2x f x x x x f 则++--=的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y=x 对称5.下列函数中,图像的一部分如右图所示的是( )A .sin()6y x π=+B .sin(2)6y x π=-C .cos(4)3y x π=-D .cos(2)6y x π=-6.若二项式nxx )2(-的展开式的第5项为常数项,则n 的值为 ( )A .6B .10C .12D .15 7.在等比数列==+=101810275,5,6,}{a a a a a a a n 则中( )A .2332--或 B .32C .23 D .2332或 8.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20长郡中学;衡阳八中;永州四中;岳阳县一中;湘潭县一中;湘西州民中隆回一中;澧县一中;郴州一中;益阳市一中;桃源县一中;株洲市二中由联合命题种,现从中抽取一个容量为20的样本进行食品安全检测。

若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是A .4B .5C .6D .79.设实数x 满足0log 22=+x x ,则有 A .x x<<12B .xx 21<<C .xx 21<<D .x x<<2110.若a 是 b 21+与b 21-的等比中项,则||2||2b a ab+的最大值为( )A .42 B .22 C .55D .1552 二、填空题:本大题共5小题,每小题5分 ,共25分,把答案填在答题卡中对应题号后的横线上. 11.已知函数)2(4)(2-<+=x x x x f 的反函数为)12()(11--f x f,则=12.点)3,(a P 到直线0134=+-y x 的距离等于4,且在不等式032>-+y x 表示的平面区域内,则点P 的坐标是 .13.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直线坐标系中,利用求动点轨迹方程的方法,可以求出过点(3,4)A -,且法向量为(1,2)n =-的直线(点法式)方程为1(3)(2)(4)0x y ⨯++-⨯-=,化简得2110x y -+=. 类比以上方法,在空间直角坐标系中,经过点(1,2,3)A 且法向量为(1,2,1)n =--的平面(点法式)方程为.(请写出化简后的结果)14.如图,正五边形ABCDE 中,若把顶点A 、B 、C 、D 、E 染上红、黄、绿、三种颜色中的一种,使得相邻顶点所染颜 色不相同,则不同的染色方法共有 种 。

湖南省岳阳市城南乡学区联校2018年高三数学文联考试题含解析

湖南省岳阳市城南乡学区联校2018年高三数学文联考试题含解析

湖南省岳阳市城南乡学区联校2018年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 当时,函数f(x)=的最小值为A.2 B.2 C.4 D.4参考答案:C2. “数列{a n}既是等差数列又是等比数列”是“数列{a n}是常数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据等比数列和等差数列的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若数列{a n}既是等差数列又是等比数列,则数列{a n}为常数列,且a n≠0,则反之当a n=0时,满足数列{a n}为常数列,但数列{a n}不是等比数列,即“数列{a n}既是等差数列又是等比数列”是“数列{a n}是常数列”的充分不必要条件,故选:A3. 已知在△ABC中,D是BC的中点,那么下列各式中正确的是()A.B.C.D.参考答案:D4. 已知是上的增函数,令,则是上的A.增函数B.减函数C.先增后减D.先减后增参考答案:B5. 取棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为;⑤体积为。

以上结论正确的是 ( )A.①②⑤ B.①②③C.②④⑤ D.②③④⑤参考答案:A略6. 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是A.4a B. C.D.以上答案均有可能参考答案:D7. 在△ABC中,(a,b,c分别为角A,B,C的对边),则△ABC 的形状为()A.正三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形参考答案:B∵,∴=,∴1+=,化简得a2+b2=c2,故△ABC是直角三角形.故选B.8. 如图,给出的是的值的一个程序框图,框内应填入的条件是()A.i≤99B.i<99 C.i≥99D.i>99参考答案:A【考点】程序框图.【分析】由已知中该程序的功能是计算的值,由循环变量的初值为1,步长为2,则最后一次进入循环的终值为99,即小于等于99的数满足循环条件,大于99的数不满足循环条件,由此易给出条件中填写的语句.【解答】解:∵该程序的功能是计算的值,由循环变量的初值为1,步长为2,则最后一次进入循环的终值为99,即小于等于99的数满足循环条件,大于99的数不满足循环条件,故判断框中应该填的条件是:i≤99故选A.9. 设,当0时,恒成立,则实数的取值范围是 ( )(A).(0,1)(B).(C).(D).参考答案:D10. 已知函数给出下列两个命题,p:存在,使得方程f(x)=0有实数解;q:当时,f(f(1))=0,则下列命题为真命题的是()参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 在平面直角坐标系xOy中,若抛物线的焦点恰好是双曲线的右焦点,则该抛物线的准线方程为_______.参考答案:【分析】先求出双曲线的右焦点,由题意得抛物线的焦点,进而求出抛物线的准线方程.【详解】双曲线中,,=,双曲线右焦点为(,0),因为抛物线的焦点恰好是双曲线的右焦点,所以抛物线的焦点为(,0),即抛物线的准线方程为:.故答案为:【点睛】本题考查了双曲线和抛物线的焦点坐标等几何性质,属于基础题.12. 已知函数f(x)=x2+1,x<0,若f(x)=10,则x = 。

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题(含答案)

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题(含答案)

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}2230,3M x x x N x R x =--<=∈≤,P M N =⋂,则P 中所有元素的和为( )A .2B .3 C. 5 D .62.已知i 是虚数单位,复数952i i +的共轭复数在复平面上所对应的点位于( ) A .第一象限 B.第二象限C.第三象限D.第四象限 3.下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生产能耗y (单位:吨)的几组对应数据:根据上表提供的数据,求得y 关于x 的线性回归方程为0.70.35y x =+,那么表格中t 的值为( )A .3B .3.15 C.3.25 D .3.54.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )A .13B .49 C. 59D .23 5.已知平面α⊥平面β,则“直线m ⊥平面α”是“直线//m 平面β”的( )A .充分不必要条件B.必要不充分条件 C .充要条件 D.既不充分也不必要条件6. 若变量,x y 满足约束条件1021010x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩,则目标函数2z x y =+的最小值为( )A .4B .1- C. 2- D .3-7.设点P 是双曲线()222210,0x y a b a b-=>>与圆2222x y a b +=+在第一象限的交点,12,F F 分别是双曲线的左、右焦点,且123PF PF =,则双曲线的离心率为( )A .52B .102 C. 5 D .10 8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的2,2x n ==,依次输入的a 为3, 3, 7,则输出的s =( )A .9B .21 C. 25 D .349.已知函数()()2,log x a f x a g x x -== (其中0a >且1a ≠),若()()440f g -<,则()(),f x g x 在同一坐标系内的图象大致是( )A .B . C. D .10.已知偶函数()f x 满足()()11f x f x -=+,且当[]0,1x ∈时,()1f x x =-+,则关于x 的方程()()lg 1f x x =+在[]0,9x ∈上实根的个数是( )A .7B .8 C. 9 D .1011. 在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a b c B A +=,则A 的大小是( ) A .2π B .3π C.4π D .6π 12.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,且直线2PA 斜率的取值范围是[]2,1--,则直线1PA 斜率的取值范围是( )A .33,84⎡⎤⎢⎥⎣⎦B .13,24⎡⎤⎢⎥⎣⎦ C.1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数()2ln f x x a x =-,且()f x 在1x =处的切线与直线10x y ++=垂直,则a = .14. 在平行四边形ABCD 中,3,4AB AD ==,则AC DB ⋅= .15.若0,2πα⎛⎫∈ ⎪⎝⎭,且2cos 2sin 54παα⎛⎫=+ ⎪⎝⎭,则tan α= . 16.某几何体的三视图如图所示,若该几何体的所有顶点都在一个球面上,则该球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 中,159,1a a ==.(1)求{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:49n T ≤. 18.如图,在矩形ABCD 中,2,1BC AB ==,PA ⊥平面ABCD ,1//,2BE PA BE PA =,F 为PA 的中点.(1)求证://DF 平面PEC ;(2)记四棱锥C PABE -的体积为1V ,三棱锥P ACD -的体积为2V ,求12V V . 19. 甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩清况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算,x y 的值;(2)若规定考试成绩在[]120,150内为优秀,请根据样本估计乙校数学成绩的优秀率;(3)由以上统计数据填写下面22⨯列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.附:()()()()()22n ad bc K a b c d a c b d -=++++;n a b c d =+++.20. 已知抛物线2:2C y px =的焦点为()1,0F ,过点F 的直线l 交抛物线C 于,A B 两点,直线,AO BO 分别与直线:2M x =-相交于,M N 两点.(1)求抛物线C 的方程;(2)证明:ABO ∆与MNO ∆的面积之比为定值.21. 已知函数()11ln ,f x x a R ax a=+-∈且0a ≠. (1)若函数()f x 区间[)1,+∞上单调递增,求实数a 的取值范围;(2)设函数()x g x e x p =-+,e 为自然对数的底数.若存在[]01,x e ∈,使不等式()000ln x g x e x ≥成立,求实数p 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28150sin ρρθ-+=.(1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程;(2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值.23.选修4-5:不等式选讲已知函数()54f x x x =-++.(1)求不等式()12f x ≥的解集;(2)若关于x 的不等式()13210a f x ---≥恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: BDAAD 6-10: CBCBC 11、12:CA二、填空题13. 1 14.7- 15. 34 16.283π 三、解答题17. 设等差数列{}n a 的公差为d ,则151941a a a d =⎧⎨=+=⎩,解得2d =,∴()()912112n a n n =+-⨯-=-.(2)由(1)知,()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, ∴11111112795792112n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦1112929n ⎛⎫=- ⎪-⎝⎭, 令192n b n =-,由函数()192f x x =-的图象关于点9,02⎛⎫ ⎪⎝⎭对称及其单调性知, 12340b b b b <<<<,5670b b b <<<<,∴41n b b ≤=, ∴1141299n T ⎛⎫≤-= ⎪⎝⎭. 18. (1)连接EF ,∵//BE AF =,∴四边形ABEF 为平行四边形,∴//EF AB =, 在矩形ABCD 中,//AB CD =,∴//EF CD =,∴四边形CDFE 为平行四边形, ∴//DF EC .∴//DF 平面PEC .(2)连接PB ,由题意知,P ACD P ABC C PAB V V V ---==, ∴()12132122PABE PABEB PA AB V S V S AB PA ∆⋅+⋅===⋅⋅. 19.(1)由题意知,甲校抽取1100105552100⨯=人,乙校抽取1000105502100⨯=人, ∴6,7x y ==.(2)由题意知,乙校优秀率为2040%50=. (3)()2210510302045336 6.109 5.0245550307555K ⨯⨯-⨯==≈>⨯⨯⨯, ∴有97.5%的把握认为两个学校的数学成绩有差异.20. (1)由题意知,12p =,∴2p =,∴抛物线C 的方程为24y x =. (2)证明:当直线l 垂直于x 轴时,ABO ∆与MNO ∆相似,∴2124ABO MNO OF S S ∆∆⎛⎫== ⎪⎝⎭.当直线l 与x 轴不垂直时,设直线AB 的方程为()1y k x =-. ()()()()11222,,2,,,,,M N M y N y A x y B x y --,联立()214y k x y x ⎧=-⎪⎨=⎪⎩,得()2222420,0k x k x k -++=∆>, ∴121x x =,且120,0x x >>.∵AOB MON ∠=∠, ∴121sin 121224sin 2ABOMNO AO BO AOB AO BO S x x S MO NO MO NO MON ∆∆⋅⋅∠==⋅=⋅=⋅⋅∠. 综上所述,14ABO MNO S S ∆∆=. 21. (1)解法一:当0a <时,函数()f x 在()0+∞,上单调递增,符合题意; 当0a >时,令()201ax f x ax -'>=,解得1x a >, ∵函数()f x 在[)1,+∞上单调递增,∴11a≤,则1a ≥. 综上所述,实数a 的取值范围是()[),01,-∞⋃+∞. 解法二:∵()210ax f x ax-'=>对[)1,x ∈+∞恒成立, ∴当0a <时,()0f x '>恒成立,符合题意; 由0a >时,10ax -≥,即1a x≥,∴1a ≥. 综上所述,实数a 的取值范围是()[),01,-∞⋃+∞.(3)∵存在[]01,x e ∈,使不等式()000ln x g x e x ≥成立, ∴存在[]01,x e ∈,使()00ln 1x p x e x ≥-+成立.令()()[]()ln 11,x h x x e x x e =-+∈,∴()1ln 11x h x x e x ⎛⎫'=+-+ ⎪⎝⎭,()min p h x ≥, 由(1)知,当1a =时,()1ln 1f x x x=+-在[]1,e 上单调递增, ∴()()10f x f ≥=,∴()0h x '>在[]1,e 上恒成立. ∴()h x 在[]1,e 上单调递增,∴()()min 11h x h e ==-,∴1p e ≥-,即实数p 的取值范围为[)1,e -+∞.22. (1)曲线1C 的参数方程为3cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数), 曲线2C 的直角坐标方程为228150x y y +-+=,即()2241x y +-=.(2)由(1)知,曲线2C 是以()20,4C 为圆心,1为半径的圆.设()cos ,sin P ϕϕ, 则()()()()222223cos sin 491sin sin 8sin 16PC ϕϕϕϕϕ=+-=-+-+ 218sin 272ϕ⎛⎫=-++ ⎪⎝⎭. 当1sin 2ϕ=-时,2PC 取得最大值2733=. 又21PQ PC ≤+,当且仅当2,,P Q C 三点共线,即2C 在线段PQ 上时等号成立. ∴max 331PQ =+.23.(1)原不等式等价于55412x x x >⎧⎨-++≥⎩或455412x x x -≤≤⎧⎨-++≥⎩或()45412x x x <-⎧⎪⎨--+≥⎪⎩, 解得132x ≥或x ∈∅或112x ≤-. ∴不等式的解集为132x x ⎧≥⎨⎩或112x ⎫≤-⎬⎭. (2)不等式()13210a f x ---≥恒成立等价于()13min 21a f x -≥+, 即()13min 5421a x x --++=+, ∵()()54549x x x x -++≥--+=,∴13921a -≥+,则133a -≤,解得23a ≥-, ∴实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.。

【数学】湖南省(长郡中学衡阳八中)等十四校2018届高三第二次联考数学(文)试题

【数学】湖南省(长郡中学衡阳八中)等十四校2018届高三第二次联考数学(文)试题

2018届高三·十四校联考第二次考试数学(文科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】根据一元二次不等式的解法化简集合,根据指数函数的性质化简集合,可得,,故选B.2. 复数的共轭复数为()A. B. C. D.【答案】B【解析】利用复数的乘法法则化简,从而可得复数的共轭复数为,故选B.3. 函数的图象大致为()A. B.C. D.【答案】D..................4. 若实数,满足,则的最大值为()A. B. C. D.【答案】B【解析】画出表示的可行域,如图,由可得,平移直线,由图可知当直线过时,直线在纵轴上的截距最大,此时有最大值等于,故选B.5. 长方体内部挖去一部分的三视图如图所示,则几何体的体积为()A. B. C. D.【答案】C【解析】由三视图可知,该几何体是一个长方体内部挖掉一个半圆锥,其中长方体的长宽高分别为,圆锥的底面半径为,高为,所以该几何体的体积为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.6. 已知命题:,;命题:,,则下列命题中为真命题的是()A. B. C. D.【答案】A【解析】,,故为假命题,为真命题,因为,,所以命题:,,为假命题,所以为真命题,为真命题,故选A.7. 函数的部分图象如图所示,已知,,则的对称中心为()A. B.C. D.【答案】C【解析】,由五点作图法可得是第二点,可得,,由,得,的对称中心为,故选C.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出 ,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点) 时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点) 时;“第四点”(即图象的“谷点”) 时;“第五点”时.8. 如图是为了求出满足的最小整数,和两个空白框中,可以分别填入()A. ,输出B. ,输出C. ,输出D. ,输出【答案】A【解析】为了求出满足的最小整数,就是使的第一个整数,所以判断框内应该填写;根据程序框图可知,当时,已经被替换,所以应输出,才能得到满足的最小整数,故选A. 9. 已知某地春天下雨的概率为.现采用随机模拟的方法估计未来三天恰有一天下雨的概率;先由计算器产生到之间取整数值的随机数,指定,,,表示下雨,,,,,,表示不下雨;再以每三个随机数作为一组,代表未来三天是否下雨的结果.经随机模拟产生了如下组随机数:,,,,,,,,,,,,,,,,,,,.据此估计,该地未来三天恰有一天下雨的概率为()A. B. C. D.【答案】C【解析】根据题意,表示未来三天是否下雨的结果,当未来三天恰有一天下雨,就是三个数字中只有一个数字在集合,考查这组数据,以下个数据符合题意,按次序分别为,其概率,故选C.10. 的内角,,的对边分别为,,,已知,,,则角()A. B. C. D.【答案】D【解析】由正弦定理可得,可得,,由,可得,,由为三角形内角,可得,由正弦定理可得由,可得,故选D.11. 已知直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,则实数的值为()A. 或B. 或C.D.【答案】B【解析】因为直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,到直线的距离为,由点到直线距离公式可得,故选B.12. 已知函数,若实数满足,则实数的取值范围为()A. B. C. D.【答案】A【解析】由题意得函数的定义域为,函数为奇函数,又当时,,函数在上单调递增,则上奇函数为增函数,,即,,解得,故选A.【方法点睛】本题主要考查函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题后后的横线上.13. 已知,,,则__________.【答案】【解析】因为,所以可得,又,,解得,故答案为.14. 已知函数,,则的单调递增区间为__________.【答案】或【解析】,根据正弦函数的单调性可得,解得得,又的单调递增区间为,故答案为或.15. 菱形边长为,,将沿对角线翻折使得二面角的大小为,已知、、、四点在同一球面上,则球的表面积等于__________.【答案】【解析】如图,点分别为外接圆的圆心,点为球心,因为菱形边长为,,所以,,,故答案为.16. 设椭圆:的左、右焦点、,其焦距为,点在椭圆的内部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是__________.【答案】【解析】点在椭圆的内部,,,即,,解得,又,且,要恒成立,即,,则椭圆离心率的取值范围是,故答案为.【方法点晴】本题主要考查利用椭圆的简单性质求双曲线的离心率范围,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点在椭圆的内部以及三角形的性质构造出关于的不等式,最后解出的范围.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知是等差数列,是等比数列,,,,.(1)求,的通项公式;(2)的前项和为,求证:.【答案】(1),;(2)见解析【解析】试题分析:(1)根据是等差数列,是等比数列,,,,列出关于公比、公差的方程组,解方程组可得与的值,从而可得数列,的通项公式;(2)由(1)可知,根据错位相减法结合等比数列的求和公式可得的前项和为,利用放缩法可得结论.试题解析:(1)设公差为,公比为,由题意得:,解得,或(舍),∴,.(2),,相减得:,∴,∴.【方法点睛】本题主要考查等比数列和等差数列的通项以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.18. 已知如图,平面,四边形为等腰梯形,,.(1)求证:平面平面;(2)已知为中点,求与平面所成角的正弦值.【答案】(1)见解析;(2)【解析】试题分析:(1)连接,过作于,过作于,由三角形内角和定理可得,由平面,可得,从而可得平面,由面面垂直的判定定理可得结论;(2)由(1)知,,∴为直角三角形,为中点,设到平面距离为,根据“等积变换”可求得,进而可得与平面所成角的正弦值.试题解析:(1)连接,过作于,过作于.在等腰梯形中,∵,∴.∴,则,,∴即,∵平面,平面,∴,∴平面,又平面,∴平面平面.(2)∵由(1)知,,∴为直角三角形,为中点,设到平面距离为,∴,∵,∴,即,∴.∴与平面所成角的正弦值等于.19. 随着智能手机和电子阅读器越来越普及,人们的阅读习惯也发生了改变,手机和电子阅读产品方便易携带,越来越多的人习惯通过手机或电子阅读器阅读.某电子书阅读器厂商随机调查了人,统计了这人每日平均通过手机或电子阅读器阅读的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知阅读时间在,,三组对应的人数依次成等差数列.(1)求频率分布直方图中,的值;(2)若将日平均阅读时间不少于分钟的用户定义为“电子阅读发烧友”,将日平均阅读时间少于分钟的用户定义为“电子阅读潜在爱好者”,现从上述“电子阅读发烧友”与“电子阅读潜在爱好者”的人中按分层抽样选出人,再从这人中任取人,求恰有人为“电子阅读发烧友”的概率.【答案】(1);(2)【解析】试题分析:(1)由,解得,又,∴;(2)根据分层抽样方法可得抽取“发烧友”抽取人,“潜在爱好者”抽取人,利用列举法可得这人中任选人的事件有个,其中从人中任取人恰有人为“电子阅读发烧友”的事件共有种,根据古典概型概率公式可得结果.试题解析:(1)由,解得,又,∴.(2)“电子阅读发烧友”“电子阅读潜在爱好者”的人数之比为:,所以“发烧友”抽取人,“潜在爱好者”抽取人,记事件:从人中任取人恰有人为“电子阅读发烧友”,设两名“电子阅读发烧友”的人记为:,,三名“电子阅读潜在爱好者”的人记为:,,,则这人中任选人有:,,,,,,,,,,共种情形,符合题设条件的有:,,,,,共有种,因此恰有人为“电子阅读发烧友”的概率为.【方法点睛】本题主要考查直方图的应用以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….… 这样才能避免多写、漏写现象的发生.20. 已知抛物线:上一点,直线过与相切,直线过坐标原点与直线平行交于.(1)求的方程;(2)与垂直交于,两点,已知四边形面积为,求的方程.【答案】(1);(2)【解析】试题分析:(1)把代入:得,∴抛物线:,设斜率为,:,由抛物线方程联立,利用判别式为零可得,从而可得的方程;(2)由四边形面积为,可求得,设:,联立得,根据韦达定理及弦长公式列方程可求得.所以方程为.试题解析:(1)把代入得,∴抛物线:,设斜率为,:,联立:得,由,化简得,∴,:.(2)联立易得,则,∵,∴,∴.设:,联立得,设,,则,,,解得.所以方程为.21. 已知.(1)求的单调递减区间;(2)证明:当时,恒成立.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)令,利用导数研究函数的单调性可得时,,时,,∴时,,从而可得结论.试题解析:(1)易得定义域为,,解得或.当时,∵,∴,解得,∴的单调递减区间为;当时,i.若,即时,时,,时,,时,,∴的单调递减区间为;ii.若,即时,时,恒成立,没有单调递减区间;iii.若,即时,时,;时,,时,,∴的单调递减区间为.综上:时,单调递减区间为;时,单调递减区间为;时,无单调递减区间;时,单调递减区间为.(2)令,则.令,,时,,时,,∴时,,即时,恒成立.解得或,时,,时,,∴时,,得证.22. 在直角坐标系中,曲线的参数方程为(为参数),其中.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求出曲线的普通方程和曲线的直角坐标方程;(2)已知曲线与交于,两点,记点,相应的参数分别为,,当时,求的值.【答案】(1),;(2)4试题解析:(1)曲线的参数方程为(为参数),所以:的普通方程:,其中;曲线的极坐标方程为,所以:的直角坐标方程:.(2)由题知直线恒过定点,又,由参数方程的几何意义知是线段的中点,曲线是以为圆心,半径的圆,且.由垂径定理知:.23. 已知,.(1)求不等式的解集;(2)若对任意的,,恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得到不等式的解集;;(2)分别求出的最小值和的最大值,利用,得到关于的不等式,解不等式即可求得的取值范围.试题解析:(1)不等式,即.可得,或或,解得或,所以不等式的解集为.(2)依题意可知,由(1)知,,所以,故得的取值范围是.2018年高考考前猜题卷理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足iii z 2|2|++=,则=||z ( ) A .3 B .10 C .9 D .102.已知全集R U =,集合}012|{2≥--=x x x M ,}1|{x y x N -==,则=N M C U )(( )A .}1|{≤x xB .}121|{≤<-x xC .}121|{<<-x x D .}211|{<<-x x3.已知蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点的距离都大于2的区域内的概率P 为( ) A .631π-B .43C .63π D .414.已知双曲线)0,0(12222>>=-b a by a x ,过双曲线左焦点1F 且斜率为1的直线与其右支交于点M ,且以1MF 为直径的圆过右焦点2F ,则双曲线的离心率是( ) A .12+ B .2 C .3 D .13+5.一个算法的程序框图如图所示,如果输出y 的值是1,那么输入x 的值是( )A .2-或2B .2-或2C .2-或2D .2-或2 6.已知函数)2||,0)(3sin()(πϕωπω<>+=x x f 的图象中相邻两条对称轴之间的距离为2π,将函数)(x f y =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么)(x f y =的图象( ) A .关于点)0,12(π对称 B .关于点)0,12(π-对称C .关于直线12π=x 对称 D .关于直线12π-=x 对称7.如下图,网格纸上小正方形的边长为1,图中实线画的是某几何体的三视图,则该几何体最长的棱的长度为( )A.32 B.43C. 2D. 411 8.已知等差数列}{n a 的第6项是6)2(xx -展开式中的常数项,则=+102a a ( )A .160B .160-C .350D .320- 9.已知函数)0(212)(<-=x x f x与)(log )(2a x x g +=的图象上存在关于y 轴对称的点,则a 的取值范围是( )A .)2,(--∞B .)2,(-∞C .)22,(--∞D .)22,22(- 10.已知正四棱台1111D C B A ABCD -的上、下底面边长分别为22,2,高为2,则其外接球的表面积为( )A .π16B .π20C .π65D .π465 11.平行四边形ABCD 中,2,3==AD AB ,0120=∠BAD ,P 是平行四边形ABCD 内一点,且1=AP ,若y x +=,则y x 23+的最大值为( ) A .1 B .2 C .3 D .412.设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为,3,2,1,=n S n …,若n n a a a c b ==++1111,2,2,211nn n n n n a b c a c b +=+=++,则( ) A .}{n S 为递减数列 B .}{n S 为递增数列C .}{12-n S 为递增数列,}{2n S 为递减数列D .}{12-n S 为递减数列,}{2n S 为递增数列二、填空题(每题4分,满分20分,将答案填在答题纸上)13.函数x a x a x x f )3()1()(24-+--=的导函数)('x f 是奇函数,则实数=a .14.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤-≥+-002043y x x y x (R y x ∈,),则22y x +的最大值为 .15.已知F 为抛物线x y C 4:2=的焦点,过点F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为 . 16.在锐角三角形ABC 中,角C B A ,,的对边分别为c b a ,,,且满足ac a b =-22,则BA tan 1tan 1-的取值范围为 . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列}{n a 的前n 项和为n S ,且满足)(221R m m S n n ∈+=+. (1)求数列}{n a 的通项公式; (2)若数列}{n b 满足)(log )12(112+⋅+=n n n a a n b ,求数列}{n b 的前n 项和n T .18.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况:1:A 个黑球2个红球;3:B 个红球;:c 恰有1个白球;:D 恰有2个白球;3:E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可); (2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X 元,求变量X 的分布列;若小张不打算在活动中亏本,求a 的最大值.19.如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,0160=∠CBB ,1AC AB =.(1)证明:平面⊥C AB 1平面C C BB 11;(2)若C B AB 1⊥,直线AB 与平面C C BB 11所成的角为030,求直线1AB 与平面C B A 11所成角的正弦值.20.如图,圆),(),0,2(),0,2(,4:0022y x D B A y x O -=+为圆O 上任意一点,过D 作圆O 的切线,分别交直线2=x 和2-=x 于F E ,两点,连接BE AF ,,相交于点G ,若点G 的轨迹为曲线C .(1)记直线)0(:≠+=m m x y l 与曲线C 有两个不同的交点Q P ,,与直线2=x 交于点S ,与直线1-=y 交于点T ,求OPQ ∆的面积与OST ∆的面积的比值λ的最大值及取得最大值时m 的值.(注:222r y x =+在点),(00y x D 处的切线方程为200r yy xx =+)21.已知函数x a x g x x f ln )(,21)(2==. (1)若曲线)()(x g x f y -=在2=x 处的切线与直线073=-+y x 垂直,求实数a 的值;(2)设)()()(x g x f x h +=,若对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,求实数a 的取值范围;(3)若在],1[e 上存在一点0x ,使得)(')()('1)('0000x g x g x f x f -<+成立,求实数a 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==21t a y t x (其中t 为参数,0>a ),以坐标原点O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l :0sin cos =+-b θρθρ与2C :θρcos 4-=相交于B A ,两点,且090=∠AOB . (1)求b 的值;(2)直线l 与曲线1C 相交于N M ,两点,证明:||||22N C M C ⋅(2C 为圆心)为定值. 23.选修4-5:不等式选讲已知函数|1||42|)(++-=x x x f . (1)解不等式9)(≤x f ;(2)若不等式a x x f +<2)(的解集为A ,}03|{2<-=x x x B ,且满足A B ⊆,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分. 13.3 14.8 15.16 16.)332,1( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.解:(1)由)(221R m m S n n ∈+=+得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=282422321m S m S m S ,)(R m ∈,从而有4,2233122=-==-=S S a S S a , 所以等比数列}{n a 的公比223==a a q ,首项11=a ,因此数列}{n a 的通项公式为)(2*1N n a n n ∈=-.(2)由(1)可得12)22(log )(log 1212-=⋅=⋅-+n a a n n n n , ∴)121121(21)12)(12(1+--⨯=-+=n n n n b n ∴)1211215131311(2121+--++-+-⨯=+++=n n b b b T n n 12+=n n. 18.解:(1)4011203)(31023===C C A P ;12011)(310==C B P ,10312036)(3102416===C C C C P ,2112060)(3101426===C C C D P ,6112020)(31036===C C E P∵)()()()()(D P C P E P A P B P <<<<, ∴中一至四等奖分别对应的情况是C E A B ,,,.(2)记事件F 为顾客摸出的第一个球是红球,事件G 为顾客获得二等奖,则181)|(2912==C C F G P .(3)X 的取值为3,2,2,7,3---a ,则分布列为由题意得,若要不亏本,则03212103)2(61)7(401)3(1201≥⨯+⨯+-⨯+-⨯+-⨯a , 解得194≤a ,即a 的最大值为194.19.解:(1)证明:连接1BC ,交C B 1于O ,连接AO , ∵侧面C C BB 11为菱形,∴11BC C B ⊥ ∵为1BC 的中点,∴1BC AO ⊥ 又O AO C B = 1,∴⊥1BC 平面C AB 1又⊂1BC 平面C C BB 11,∴平面⊥C AB 1平面C C BB 11.(2)由B BO AB C B BO C B AB =⊥⊥ ,,11,得⊥C B 1平面ABO 又⊂AO 平面ABO ,∴C B AO 1⊥,从而1,,OB OB OA 两两互相垂直,以O 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz O -∵直线AB 与平面C C BB 11所成角为030,∴030=∠ABO设1=AO ,则3=BO ,∵0160=∠CBB ,∴1CBB ∆是边长为2的等边三角形∴)0,1,0(),0,1,0(),0,0,3(),1,0,0(1-C B B A ,则)1,0,3(),0,2,0(),1,1,0(1111-==-=-=AB B A C B AB 设),,(z y x =是平面C B A 11的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00111C B n B A n 即⎩⎨⎧=-=-0203y z x ,令1=x ,则)3,0,1(=n设直线1AB 与平面C B A 11所成的角为θ, 则46||||||,cos |sin ==><=n AB θ. 20.解:(1)易知过点),(00y x D 的切线方程为400=+y y x x ,其中42020=+y x ,则)24,2(),2,2(000y x F y x E +--, ∴4116416416424424220020000021-=-=--=-⋅-+=y y y x y x y x k k 设),(y x G ,则144122412221=+⇒-=+⋅-⇒-=y x x y x y k k (0≠y ) 故曲线C 的方程为1422=+y x (0≠y ) (2)联立⎩⎨⎧=++=4422y x mx y 消去y ,得0448522=-++m mx x ,设),(),,(2211y x Q y x P ,则544,5822121-=-=+m x x m x x ,由0)44(206422>--=∆m m 得55<<-m 且2,0±≠≠m m∴22221221255245444)58(24)(11||m m m x x x x PQ -=-⨯--⨯=-++=,易得)1,1(),2,2(---+m T m S , ∴)3(2)3()3(||22m m m ST +=+++=,∴22)3(554||||m m ST PQ S S OSTOPQ +-===∆∆λ,令)53,53(,3+-∈=+t t m 且5,3,1≠t ,则45)431(4544654222+--⨯=-+-=t t t t λ, 当431=t ,即43=t 时,λ取得最大值552,此时35-=m . 21.解:(1)xax y x a x x g x f y -=-=-=',ln 21)()(2 由题意得322=-a,解得2-=a (2))()()(x g x f x h +=x a x ln 212+=对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,令21x x >,则)(2)()(2121x x x h x h ->-,即2211)(2)(x x h x x h ->-恒成立 则问题等价于x x a x x F 2ln 21)(2-+=在),0(+∞上为增函数 2)('-+=xax x F ,则问题转化为0)('≥x F 在),0(+∞上恒成立,即22x x a -≥在),0(+∞上恒成立,所以1)2(max 2=-≥x x a ,即实数a 的取值范围是),1[+∞. (3)不等式)(')()('1)('0000x g x g x f x f -<+等价于0000ln 1x ax a x x -<+,整理得01ln 000<++-x ax a x ,构造函数x a x a x x m ++-=1ln )(, 由题意知,在],1[e 上存在一点0x ,使得0)(0<x m2222)1)(1()1(11)('x x a x x a ax x x a x a x m +--=+--=+--=因为0>x ,所以01>+x ,令0)('=x m ,得a x +=1①当11≤+a ,即0≤a 时,)(x m 在],1[e 上单调递增,只需02)1(<+=a m ,解得2-<a ; ②当e a ≤+<11,即10-≤<e a 时,)(x m 在a x +=1处取得最小值.令01)1ln(1)1(<++-+=+a a a a m ,即)1l n (11+<++a a a ,可得)1ln(11+<++a aa (*) 令1+=a t ,则e t ≤<1,不等式(*)可化为t t t ln 11<-+ 因为e t ≤<1,所以不等式左端大于1,右端小于或等于1,所以不等式不能成立. ③当e a >+1,即1->e a 时,)(x m 在],1[e 上单调递减,只需01)(<++-=eaa e e m 解得112-+>e e a .综上所述,实数a 的取值范围是),11()2,(2+∞-+--∞e e . 22.解:(1)由题意可得直线l 和圆2C 的直角坐标方程分别为0=+-b y x ,4)2(22=++y x∵090=∠AOB ,∴直线l 过圆2C 的圆心)0,2(2-C ,∴2=b . (2)证明:曲线1C 的普通方程为)0(2>=a ay x ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22222(t 为参数),代入曲线1C 的方程得04)2222(212=++-t a t , 04212>+=∆a a 恒成立,设N M ,两点对应的参数分别为21,t t ,则821=t t , ∴8||||22=N C M C , ∴||||22N C M C 为定值8.23.解:(1)由9)(≤x f 可得9|1||42|≤++-x x ,即⎩⎨⎧≤->9332x x 或⎩⎨⎧≤-≤≤-9521x x 或⎩⎨⎧≤+--<9331x x解得42≤<x 或21≤≤-x 或12-<≤-x , 故不等式9)(≤x f 的解集为]4,2[-.(2)易知)3,0(=B ,由题意可得a x x x +<++-2|1||42|在)3,0(上恒成立⇒1|42|-+<-a x x 在)3,0(上恒成立1421-+<-<+-⇒a x x a x 在)3,0(上恒成立 3->⇒x a 且53+->x a 在)3,0(上恒成立⎩⎨⎧≥≥⇒50a a 5≥⇒a .。

最新-湖南省四大名校2018届高三下学期3月联考文科数学

最新-湖南省四大名校2018届高三下学期3月联考文科数学

湖南省2018届高三四校联考试题数学(文科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数(3)i i -的共轭复数是( )A .13i +B .13i -C .13i -+D .13i -- 2、设2,{|21},{|log 0}x U R A x B x x ==>=>,则U AC BA .{}|0x x <B .{}|1x x >C .{}|01x x <≤D .{}|01x x ≤< 3、计算sin 47cos17cos 47cos17+的结果等于A .12- B .2 C .2D .124、已知向量(1,1),(1,)a b m =-=,若(2)4a b a -⋅=,则m = A .1- B .0 C .1 D .25、已知抛物线2(0)y ax a =>的焦点到准线的距离为1,则a = A .4 B .2 C .14D .126、下列命题是假命题的是A .R ϕ∀∈,函数()sin(2)f x x ϕ=+都不是偶函数B .,R αβ∃∈,使cos()cos cos αβαβ+=+C .向量(2,1),(3,0)a b =-=-,则a 在b 方向上的投影为2D .“1x ≤”是“1x <”的既不充分也不必要条件7、已知双曲线22221(0,0)x y a b a b -=>>的离心率为两渐近线的夹角为A .6π B .4π C .3π D .2π8、在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若222()tan a b c C ab +-=,则角C 的值为A .6π或56π B .3π或23π C .6π D .23π9、已知实数,x y 满足约束条件0121x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则23x y z -=的最大值为 A..3 D .910、如图所示的程序框图,如果输入三个实数,,a b c ,要求输出的三个数中最小的数,那么在空白的判断框中,应填入下面四个选项 中的A .c x >B .c x <C .c b >D .b c > 11、一个正三棱柱的侧棱长和底面边长相等,体积为2,它的三视图中俯视图如图所示,侧视图是一个矩形,则侧视图 的面积是A .8 B..4 D.12、对于函数()f x ,若()()(),,,,,a b c R f a f b f c ∀∈为某三角形的三边长,则称()f x 为“可构造三角形函数”,已知()221x x tf x -=+是“可构造三角形函数”则实数t 的取值范围是A .[]1,0-B .(,0]-∞C .[]2,1--D .1[2,]2--第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。

2018年湖南G10教育联盟4月高三联考数学(文)试题(图片版)

2018年湖南G10教育联盟4月高三联考数学(文)试题(图片版)
12.D【解析】
f ( x) f ( x), f ( x) 为奇函数,又
高三文科数学 第 2 页 共 8 页
f '( x) cos x 8-5ex -
5 1 = cos x 8-5 ex + x x e e
,ex +
1 2 ex
f '( x) 0, 所以f ( x)是减函数, f (2a 2 ) f (a 1) 0,

2
2x

3
2k
3 , k Z 2
得 k

12
x k
7 11 5 , k Z , k Z . 令 k 1得 x ,函数 g x 在 12 12 12
区间
11π 5π , 上单调递减. 所以选项 D 不正确. 故选 A. 12 12
湖南 G10 教育联盟 2018 年 4 月高三联考 文科数学参考答案
一、选择题:共 12 小题,每小题 5 分,满分 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.请把正确答案涂在答题卡上. 1.C【解析】由题意可得 B x 1 x 3 , A


B x 2 x 3 .故选 C.
F1F2 c 2c a 2a MF2 MF1
e
11.A【解析】离心率
tan MF2 F1
,因为
2 4 ,所以
1 2 2x MF1F2 90 , sin MF2 F1 , MF1 x, MF2 3x, . 故选 A. F1F2 2 2 x ,所以 e 3 3x x
8.C【解析】 a 5, b 2, n 1 ,

湖南省(XXX)、江西省(XXX)等十四校2018届高三第二次联考数学(文)试题+Word版含答案

湖南省(XXX)、江西省(XXX)等十四校2018届高三第二次联考数学(文)试题+Word版含答案

湖南省(XXX)、江西省(XXX)等十四校2018届高三第二次联考数学(文)试题+Word版含答案2018届高三·十四校联考第二次考试数学(文科)试卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $M=\{x|x-3x-4\leq0\}$,$N=\{y|y=\frac{1}{4}x,x\geq-1\}$,则()A。

$N\subseteq M$ B。

$M\subseteq N$ C。

$M=N$ D。

$C_R N\subseteq M$2.复数 $z=(1+i)(2-i)-i$ 的共轭复数为()A。

$3i$ B。

$3$ C。

$-3i$ D。

$-3$3.函数 $f(x)=\frac{e^x}{1-x^2}$ 的图象大致为()A。

B。

C。

D。

4.若实数 $x$,$y$ 满足 $x+y\leq6$,则 $z=2x+y$ 的最大值为()A。

$9$ B。

$8$ C。

$4$ D。

$3$5.长方体内部挖去一部分的三视图如图所示,则几何体的体积为()A。

$16-\frac{8}{\pi}$ B。

$\frac{4}{3}\pi-4\sqrt{3}$ C。

$16-\frac{4}{\pi}$ D。

$\frac{32}{3}$6.已知命题 $p$:$\forall x\in R,\log_2(x^2+2x+3)>1$;命题 $q$:$\exists x\in R,\sin x>1$,则下列命题中为真命题的是()A。

$\neg p\land\neg q$ B。

$p\land\neg q$ C。

$\neg p\land q$ D。

$p\land q$7.函数 $f(x)=\sin(\omega x+\varphi)(\omega>0)$ 的部分图象如图所示,已知 $A\left(\frac{5\pi}{12},1\right)$,则$f(x)$ 的对称中心为()A。

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题(含答案)

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题(含答案)

湖南省五市十校教研教改共同体2018届高三12月联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}2230,3M x x x N x R x =--<=∈≤,P M N =⋂,则P 中所有元素的和为( ) A .2 B .3 C. 5 D .6 2.已知i 是虚数单位,复数952ii +的共轭复数在复平面上所对应的点位于( ) A .第一象限B.第二象限C.第三象限D.第四象限3.下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生产能耗y (单位:吨)的几组对应数据:根据上表提供的数据,求得y 关于x 的线性回归方程为0.70.35y x =+,那么表格中t 的值为( ) A .3 B .3.15 C.3.25 D .3.54.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )A .13B .49 C. 59D .235.已知平面α⊥平面β,则“直线m ⊥平面α”是“直线//m 平面β”的( ) A .充分不必要条件 B.必要不充分条件 C .充要条件D.既不充分也不必要条件6. 若变量,x y 满足约束条件1021010x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩,则目标函数2z x y =+的最小值为( )A .4B .1- C. 2- D .3-7.设点P 是双曲线()222210,0x y a b a b -=>>与圆2222x y a b +=+在第一象限的交点,12,F F 分别是双曲线的左、右焦点,且123PF PF =,则双曲线的离心率为( )A .52 B .102C. 5 D .10 8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的2,2x n ==,依次输入的a 为3, 3, 7,则输出的s =( )A .9B .21 C. 25 D .349.已知函数()()2,log x a f x a g x x -== (其中0a >且1a ≠),若()()440f g -<,则()(),f x g x 在同一坐标系内的图象大致是( )A .B . C. D .10.已知偶函数()f x 满足()()11f x f x -=+,且当[]0,1x ∈时,()1f x x =-+,则关于x 的方程()()lg 1f x x =+在[]0,9x ∈上实根的个数是( )A .7B .8 C. 9 D .10 11. 在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a bc B A+=,则A 的大小是( ) A .2π B .3π C.4π D .6π 12.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,且直线2PA 斜率的取值范围是[]2,1--,则直线1PA 斜率的取值范围是( )A .33,84⎡⎤⎢⎥⎣⎦B .13,24⎡⎤⎢⎥⎣⎦ C.1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数()2ln f x x a x =-,且()f x 在1x =处的切线与直线10x y ++=垂直,则a = . 14. 在平行四边形ABCD 中,3,4AB AD ==,则AC DB ⋅= .15.若0,2πα⎛⎫∈ ⎪⎝⎭,且2cos 2sin 54παα⎛⎫=+ ⎪⎝⎭,则tan α= .16.某几何体的三视图如图所示,若该几何体的所有顶点都在一个球面上,则该球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 中,159,1a a ==. (1)求{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:49nT ≤. 18.如图,在矩形ABCD 中,2,1BC AB ==,PA ⊥平面ABCD ,1//,2BE PA BE PA =,F 为PA 的中点.(1)求证://DF 平面PEC ;(2)记四棱锥C PABE -的体积为1V ,三棱锥P ACD -的体积为2V ,求12V V . 19. 甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩清况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算,x y 的值;(2)若规定考试成绩在[]120,150内为优秀,请根据样本估计乙校数学成绩的优秀率;(3)由以上统计数据填写下面22⨯列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.附:()()()()()22n ad bc K a b c d a c b d -=++++;n a b c d =+++.20. 已知抛物线2:2C y px =的焦点为()1,0F ,过点F 的直线l 交抛物线C 于,A B 两点,直线,AO BO 分别与直线:2M x =-相交于,M N 两点.(1)求抛物线C 的方程;(2)证明:ABO ∆与MNO ∆的面积之比为定值. 21. 已知函数()11ln ,f x x a R ax a=+-∈且0a ≠. (1)若函数()f x 区间[)1,+∞上单调递增,求实数a 的取值范围;(2)设函数()x g x e x p =-+,e 为自然对数的底数.若存在[]01,x e ∈,使不等式()000ln x g x e x ≥成立,求实数p 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28150sin ρρθ-+=.(1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程; (2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值.23.选修4-5:不等式选讲 已知函数()54f x x x =-++. (1)求不等式()12f x ≥的解集;(2)若关于x 的不等式()13210a f x ---≥恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: BDAAD 6-10: CBCBC 11、12:CA二、填空题13. 1 14.7- 15.34 16.283π 三、解答题17. 设等差数列{}n a 的公差为d ,则151941a a a d =⎧⎨=+=⎩,解得2d =,∴()()912112n a n n =+-⨯-=-. (2)由(1)知,()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, ∴11111112795792112n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦1112929n ⎛⎫=-⎪-⎝⎭, 令192n b n =-,由函数()192f x x =-的图象关于点9,02⎛⎫⎪⎝⎭对称及其单调性知, 12340b b b b <<<<,5670b b b <<<<,∴41n b b ≤=,∴1141299n T ⎛⎫≤-= ⎪⎝⎭.18. (1)连接EF ,∵//BE AF =,∴四边形ABEF 为平行四边形,∴//EF AB =, 在矩形ABCD 中,//AB CD =,∴//EF CD =,∴四边形CDFE 为平行四边形, ∴//DF EC .∴//DF 平面PEC .(2)连接PB ,由题意知,P ACD P ABC C PAB V V V ---==,∴()12132122PABEPABEB PA ABV S V S AB PA ∆⋅+⋅===⋅⋅.19.(1)由题意知,甲校抽取1100105552100⨯=人,乙校抽取1000105502100⨯=人, ∴6,7x y ==.(2)由题意知,乙校优秀率为2040%50=. (3)()22105103020453366.109 5.024********55K ⨯⨯-⨯==≈>⨯⨯⨯, ∴有97.5%的把握认为两个学校的数学成绩有差异.20. (1)由题意知,12p=,∴2p =,∴抛物线C 的方程为24y x =. (2)证明:当直线l 垂直于x 轴时,ABO ∆与MNO ∆相似,∴2124ABO MNO OF SS ∆∆⎛⎫== ⎪⎝⎭.当直线l 与x 轴不垂直时,设直线AB 的方程为()1y k x =-. ()()()()11222,,2,,,,,M N M y N y A x y B x y --,联立()214y k x y x⎧=-⎪⎨=⎪⎩,得()2222420,0k x k x k -++=∆>,∴121x x =,且120,0x x >>. ∵AOB MON ∠=∠, ∴121sin 121224sin 2ABO MNOAO BO AOB AO BO S x x S MO NO MO NO MON ∆∆⋅⋅∠==⋅=⋅=⋅⋅∠. 综上所述,14ABO MNO S S ∆∆=. 21. (1)解法一:当0a <时,函数()f x 在()0+∞,上单调递增,符合题意; 当0a >时,令()201ax f x ax -'>=,解得1x a>, ∵函数()f x 在[)1,+∞上单调递增,∴11a≤,则1a ≥. 综上所述,实数a 的取值范围是()[),01,-∞⋃+∞. 解法二:∵()210ax f x ax -'=>对[)1,x ∈+∞恒成立, ∴当0a <时,()0f x '>恒成立,符合题意; 由0a >时,10ax -≥,即1a x≥,∴1a ≥. 综上所述,实数a 的取值范围是()[),01,-∞⋃+∞. (3)∵存在[]01,x e ∈,使不等式()000ln x g x e x ≥成立, ∴存在[]01,x e ∈,使()00ln 1x p x e x ≥-+成立.令()()[]()ln 11,x h x x e x x e =-+∈,∴()1ln 11x h x x e x ⎛⎫'=+-+ ⎪⎝⎭,()min p h x ≥,由(1)知,当1a =时,()1ln 1f x x x=+-在[]1,e 上单调递增,∴()()10f x f ≥=,∴()0h x '>在[]1,e 上恒成立. ∴()h x 在[]1,e 上单调递增,∴()()min 11h x h e ==-, ∴1p e ≥-,即实数p 的取值范围为[)1,e -+∞.22. (1)曲线1C 的参数方程为3cos sin x y ϕϕ=⎧⎨=⎩ (ϕ为参数),曲线2C 的直角坐标方程为228150x y y +-+=,即()2241x y +-=.(2)由(1)知,曲线2C 是以()20,4C 为圆心,1为半径的圆.设()cos ,sin P ϕϕ, 则()()()()222223cos sin 491sin sin 8sin 16PC ϕϕϕϕϕ=+-=-+-+218sin 272ϕ⎛⎫=-++ ⎪⎝⎭.当1sin 2ϕ=-时,2PC 取得最大值2733=.又21PQ PC ≤+,当且仅当2,,P Q C 三点共线,即2C 在线段PQ 上时等号成立. ∴max 331PQ =+.23.(1)原不等式等价于55412x x x >⎧⎨-++≥⎩或455412x x x -≤≤⎧⎨-++≥⎩或()45412x x x <-⎧⎪⎨--+≥⎪⎩,解得132x ≥或x ∈∅或112x ≤-. ∴不等式的解集为132x x ⎧≥⎨⎩或112x ⎫≤-⎬⎭.(2)不等式()13210a f x ---≥恒成立等价于()13min 21a f x -≥+, 即()13min 5421a x x --++=+, ∵()()54549x x x x -++≥--+=,∴13921a -≥+,则133a -≤,解得23a ≥-,∴实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三十四校联考第一次考试试卷数学(文科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3A =,{}2,4B =,则A B =( )A .{}2B .{}4C .{}1,2D .{}1,2,3,42.已知θ的始边与x 轴非负半轴重合,终边上存在点(1,)P a -且sin 2θ=,则a =( )A .1-B .1C .D 3.复数z 满足23i z i ⋅=+,则||z =( )A BC D 4.若三棱锥的三视图如图所示,则该三棱锥的四个面中直角三角形的个数是( )A .1B .2C .3D .45.在区间[]2,3-上随机取一个数x ,则满足|1|1x -≤的概率是( ) A .15B .25C .35D .456.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在最粗的一端截下1尺,重4斤;在最细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其总重量为W ,则W 的值为( )A .4B .12C .15D .187.已知双曲线方程为2212015x y -=,则该双曲线的渐近线方程为( )A .34y x =±B .43y x =±C .y x =D .y x = 8.某程序框图如图所示,该程序运行后输出的值是( )A .1011B .511C .89D .499.已知定义在R 上的奇函数()f x 满足当0x >时,()224xf x x =+-,则()f x 的零点个数是( ) A .2B .3C .4D .510.如图,已知边长为2的正方体1111ABCD A BC D -,点E 为线段1CD 的中点,则直线AE 与平面11A BCD 所成角的正切值为( )A.2B .12C.2D11.已知函数()2sin cos (0)f x x x ωωω=->,若()f x 的两个零点1x ,2x 满足12min ||2x x -=,则(1)f 的值为( )AB. C .2 D .2-12.已知函数()f x 是定义在R 上的奇函数,其导函数为'()f x ,若对任意的正实数x ,都有'()2()0xf x f x +>恒成立,且1f =,则使2()2x f x <成立的实数x 的集合为( )A.(,(2,)-∞+∞B.(C .(-∞D .)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知矩形ABCD 的边2AB =,1AD =,则BD CD ⋅= .14.若实数x ,y 满足约束条件2,6,0,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩则目标函数23z x y =-的最大值是 .15.在ABC ∆中,a ,b ,c 分别是内角A ,B ,C 的对边,sin cos (cos )sin 0A B c A B --⋅=,则边b = .16.已知在三棱锥P ABC -中,90BAC ∠=︒,2AB AC ==,BC的中点为M 且PM =,当该三棱锥体积最大时,它的内切球半径为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列{}n a 满足12a =且235a a a ⋅=. (1)求{}n a 的通项公式;(2)设n n b a n =-,求{}n b 的前n 项和n S .18.已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:(1)求这50名学生本周使用手机的平均时间长;(2)时间长为[0,5)的7名同学中,从中抽取两名,求其中恰有一个女生的概率; (3)若时间长为[0,10)被认定“不依赖手机”,[]10,25被认定“依赖手机”,根据以上数据完成22⨯列联表:能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++)19.在四棱锥P ABCD -中,//AB CD ,24CD AB ==,60ADC ∠=︒,PAD ∆是一个边长为2的等边三角形,且平面PAD ⊥平面ABCD ,M 为PC 的中点.(1)求证://BM 平面PAD ; (2)求点M 到平面PAD 的距离.20.在平面直角坐标系中,动点(,)M x y (0x ≥)到点(1,0)F 的距离与到y 轴的距离之差为1.(1)求点M 的轨迹C 的方程;(2)若(4,2)Q -,过点(4,0)N 作任意一条直线交曲线C 于A ,B 两点,试证明QA QB k k +是一个定值. 21.已知函数3211()332f x ax x x =+--(a 为实数). (1)当()f x 与3y =-切于00(,())A x f x ,求a ,0x 的值;(2)设()'()x F x f x e =⋅,如果()1F x >-在(0,)+∞上恒成立,求a 的范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:4sin ρθ=,在平面直角坐标系xOy 中,直线l的方程为1,22x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t为参数). (1)求曲线C 和直线l 的直角坐标方程;(2)已知直线l 交曲线C 于A ,B 两点,求A ,B 两点的距离. 23.选修4-5:不等式选讲已知函数()|2||1|f x x x =++-. (1)求证:()3f x ≥;(2)求不等式2()f x x ≥的解集.2018届高三十四校联考第一次考试数学(文科)试卷答案一、选择题1-5:ABADB 6-10:CCBBA 11、12:CC 二、填空题13.4 14.2- 15.1 16.三、解答题17.解:(1)因为12a =且235a a a ⋅=,所以2q =, 从而2n n a =.(2)由(1)得2n n n b a n n =-=-, ∴23(2222)(123)nn S n =++++-++++……2(12)(1)(1)2(21)1222n n n n n n -++=-=---. 18.解:(1)1(2.577.52812.5917.5522.51)950⨯+⨯+⨯+⨯+⨯=, 所以,这50名学生本周使用手机的平均时间长为9小时.(2)时间长为[0,5)的有7人,记为A 、B 、C 、D 、E 、F 、G ,其中女生记为A 、B 、C 、D ,从这7名学生中随机抽取两名的基本事件有:{},A B ,{},A C ,{},A D ,{},AE ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G 共21个.设事件M 表示恰有一位女生符合要求的事件有:{},A E ,{},A F ,{},A G ,{},B E ,{},B F ,{},B G ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G 共12个.所以恰有一个女生的概率为24()217P M 1==. (3)2250(1510520)0.397 2.07215352030K ⨯-⨯=≈<⨯⨯⨯,不能在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系. 19.(1)证明:过M 作//MN CD ,交PD 于点N ,连接AN , 可知1//2MN CD ,而1//2AB CD , 所以//MN AB ,从而四边形ABMN 为平行四边形, 所以//AN BM ,又AN ⊂平面PAD ,BM ⊄平面PAD, 所以//BM 平面PAD .(2)由(1)可知M 到平面PAD 的距离等于B 到平面PAD 的距离, 设B 到平面PAD 的距离为h , 由B PAD PABD V V --=,∴1133PAD ABD S h S ∆∆⋅⋅=⋅h = 故M 到平面PAD20.解:(1)M 到定点(1,0)F 的距离与到定直线1x =-的距离相等, ∴M 的轨迹C 是一个开口向右的抛物线,且2p =, ∴M 的轨迹方程为24y x =.(2)设过(4,0)N 的直线的方程为4x my =+,联立方程组24,4,y x x my ⎧=⎨=+⎩整理得24160y my --=,设直线l 与抛物线的交点为11(,)A x y ,22(,)B x y , 则有124y y m +=,1216y y =-, 又212122121222228321448816642QA QBy y y y m k k x x my my m ------+=+=+==-+++++,因此QA QB k k +是一个定值为12-. 21.解:(1)2'()1f x ax x =+-, 由()f x 与3y =-切于点00(,())A x f x ,则320000200011()33,32'()10,f x ax x x f x ax x ⎧=+--=-⎪⎨⎪=+-=⎩解得316a =-,04x =. (2)2()(1)x F x ax x e =+-⋅,∴2'()((21))x F x e ax a x =⋅++,且(0)1F =-.①当0a =时,'()x F x x e =⋅,可知()F x 在(0,)+∞递增,此时()1F x >-成立; ②当102a -<<时,21'()()x a F x e ax x a +=⋅+,可知()F x 在21(0,)a a+-递增,在21(,)a a +-+∞递减,此时11()1a F e a--=-<-,不符合条件;③当12a =-时,21'()()02xF x e x =⋅-<恒成立,可知()F x 在(0,)+∞递减,此时()1F x <-成立,不符合条件; ④当12a <-时,21'()()xa F x e ax x a+=⋅+,可知()F x 在(0,)+∞递减,此时()1F x <-成立,不符合条件;⑤当0a >时,21'()()xa F x e ax x a+=⋅+,可知()F x 在(0,)+∞递增,此时()1F x >-成立. 综上所述,0a ≥.22.解:(1)由题知,曲线C 化为普通方程为22(2)4x y +-=, 直线l 的直角坐标方程为10x y -+=.(2)由题知,直线l的参数方程为1,22x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数), 代入曲线C :22(2)4x y +-=中,化简,得210t -+=,设A ,B 两点所对应的参数分别为1t ,2t,则12121,t t t t ⎧+=⎪⎨⋅=⎪⎩所以21||t t -A ,B23.解:(1)证明:()|2||1||(2)(1)|3f x x x x x =++-≥+--=.(2)21,2,()3,21,21,1,x x f x x x x --≤-⎧⎪=-<<⎨⎪+≥⎩所以22,21,x x x ≤-⎧⎨--≥⎩或221,3,x x -<<⎧⎨≥⎩或21,21,x x x ≥⎧⎨+≥⎩解得1x ≤≤故解集为{|1x x ≤.。

相关文档
最新文档