化工仪表及自动化论文
《化工仪表及自动化》课程论文
《化工仪表及自动化》课程论文题目:DCS技术在化工自动控制中的应用学院:生命科学与化学学院**:***专业:化学工程与工艺学号:292090137****:***订稿日期:2011年11月10日原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文作者签名:杨国涛2011年11月10日论文指导教师签名:目录原创性声明 (1)目录 (2)摘要 (3)关键词 (3)1.化工行业基本现状 (4)1.1 我国化工企业自动控制水平现状 (4)1.2 化工行业特点 (4)2.DCS的概念及特点 (5)2.1 DCS的概念 (5)2.2 DCS的特点 (5)3.DCS的体系结构和系统的功能 (6)3.1 DCS的体系结构 (6)3.2 DCS的体系结构的技术特点 (6)3.3 系统的功能 (7)4.DCS在化工行业中的应用和市场占有情况 (8)4.1 应用水平 (8)4.2 市场占有情况 (8)5.DCS技术在化工行业中的应用情况 (8)5.1 炼油厂DCS 应用情况 (8)5.2 DCS 在乙烯装置上的应用情况 (9)5.3 聚氯乙烯(PVC)装置中DCS的应用情况 (9)6.DCS技术的发展展望 (9)6.1 新型DCS的特征 (10)6.2 新型DCS的突出优点 (10)6.3 DCS技术的发展关键问题 (10)参考文献 (12)致谢 (13)杨国涛(甘肃省天水师范学院 741001)摘要最近十多年以来,自动控制技术在我国石油化工行业中得到了广泛应用,特别是在采用DCS 技术进行过程控制方面取得了长足进展。
据统计,在我国石化企业中已有200 多套DCS 投入使用。
这些系统在提高企业生产自动化水平、保证安全稳定生产、提高控制精度及节能降耗等方面发挥了重要作用。
化工仪表及自动化论文
化工仪表及自动化论文化工仪表及自动化论文控制阀在水处理中的发展方向系别、班级:盐湖系班级:化学工程与工艺(3)班指导老师:姓名:马晓红(0922305026)日期:20__年10月12日控制阀在水处理中的发展方向(青海大学化工学院盐湖系09化工(3)班马晓红邮编810016)摘要:控制阀又称调节阀,是工业过程控制中的主要执行单元仪表,通过接受调节控制单元阀是自控系统中的执行器,它的应用质量直接反应在系统的调节品质上。
作为过程控制中的终端元件,人们对它的重要性较过去有了更新的认识。
调节阀应用的好坏,除产品自身质量、用户是否正确安装、使用、维护外,正确地计算、选型十分重要。
关键字:控制阀,水处理,流量,发展。
1、控制阀在水处理中的发展方向的目的和意义控制阀广泛应用于制造业领域,实现优化生产和降低成本的目的。
长远来看,控制阀市场会保持适度的增长。
水处理中一般采用流量控制阀,流量控制阀是一种采用高精度先导方式控制流量的多功能阀门。
适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。
在现代化工厂的自动控制中,控制阀起着十分重要的作用,这些工厂的生产取决于流动着的液体和气体的正确分配和控制。
这些控制无论是能量的交换、压力的降低或者是简单的容器加料,都需要某些最终控制元件去完成。
最终控制元件可以认为是自动控制的“体力”。
在调节器的低能量级和执行流动流体控制所需的高能级功能之间,最终控制元件完成了必要的功率放大作用,控制阀是最终控制元件的最广泛使用的型式。
2、控制阀在水处理中的发展方向在国内外的现状从控制阀应用看,发展方向如下:(1)小型执行机构:可降低成本,提高流通能力.(2)套筒导向:采用套筒导向,有利于对中,有利于降低摩擦,有利于降噪,有利于流量特性的互换(3)平衡式阀芯:为降低执行机构推力或推力矩,采用平衡式阀芯是重要的,它对系统的动态性能也有改善(4)一体化阀芯和阀座:为克服双座阀密封性差的缺点,采用相同材质的一体化阀芯和阀座组成阀内件,将泄漏量和不平衡力同时减到最小.(5)简单流路:流路简单,流阻减小,不仅可使阀两端压损下降,而且可降低成本。
最新 化工自动化控制及化工仪表研究-精品
随着化工自动化技术的快速发展及化工产业的不断壮大,对化工自动化仪表的要求日益上升,从化工生产过程中自动化仪表的重要性入手,概述了化工仪表的分类及其用途,介绍了化工生产中自动化控制仪表的功能。
下面是小编搜集整理的相关内容的论文,欢迎大家阅读参考。
摘要:社会在不断进步,科技也在持续发展,我国的化工生产领域有了新的突破,其中现代化工业仪表和化工自动化技术备受青睐,得到了更加广泛的应用。
本文主要针对现阶段化工生产领域中自动化控制和仪表展开深入的研究,不断完善和加强现代化工仪表自动化控制的功能,推动现代化化工生产领域的长远发展。
关键词:化工自动化控制;化工仪表;研究前言信息化时代的到来,传统生产模式已经不能满足现代社会的需求,也无法适应我国各项建设的快速发展。
科技的更新推动了自动化技术的不断进步,并被普遍应用到各个领域之中。
自动化控制具有良好的性能,可以提高我国的各项生产效率,保证工作质量,彻底摒弃传统的劳动模式,解放出更多的劳动力,有效的确保我国经济的稳定发展。
尤其在化工领域,自动化技术有着更加广泛的应用,不仅提高生产效率,而且保障了过程安全,从而使整个化工行业的收益得到大幅增加。
其中仪表的自动化控制非常重要,提升了总体的化工生产水平,为我国的现代化建设提供有效的保障。
1.化工自动化的概念及意义所谓化工自动化,就是用自动化装置(自动化仪表、自动装置、等)来代替人,对化工生产过程进行控制和管理的措施,将整个化工生产的过程实现自动化。
目前我国现阶段的经济发展形势,化工生产在全国范围内,处于十分重要的地位。
传统的生产设备,需要大量人力操作,由于化工生产的特殊性,人员在操作过程中会存在不安全因素,操作中稍有不慎,很有可能会造成事故,对人员安全及公司财产造成重大损害,所以采用现代化工仪表及化工自动化有效减少了人工的辅助,替换掉了繁琐的工作程序,严格控制和监督整个生产过程,提高各项生产指标,让生产过程更加高效、安全。
化工自动化控制及化工仪表的研究
化工自动化控制及化工仪表的研究化工自动化控制及化工仪表是化工工程中非常重要的一个领域,它涉及到化工生产过程中的各种控制和测量技术,是保障化工生产安全、高效运行的重要保障。
随着科技的不断进步,化工自动化控制及化工仪表的研究和应用也在不断地发展和完善,为化工生产提供了更加先进和可靠的技术手段。
化工自动化控制及化工仪表的研究内容涉及到过程控制、自动化系统、传感器技术、仪表技术、智能控制、数据采集与处理、网络通信等方面。
这些技术的应用使得化工生产的过程控制更加精准、自动化水平更高、安全性更可靠。
本文将从化工自动化控制及化工仪表的发展历程、技术发展趋势、应用案例等方面进行探讨。
化工自动化控制及化工仪表的发展可追溯到20世纪初,当时化工生产过程主要依靠人工操作和经验控制,生产效率低、安全隐患多。
随着电子技术的发展,20世纪50年代出现了第一批模拟控制系统,化工生产过程中的控制开始部分实现了自动化。
20世纪70年代,随着计算机技术的普及和发展,数字控制技术开始应用于化工生产中,使得控制精度和灵活性得到了显著提高。
80年代以后,随着微处理器技术的应用,化工自动化控制及化工仪表的发展进入了一个新的阶段,控制系统的可靠性和智能化水平大幅提升,使得化工生产过程更加安全、高效。
二、化工自动化控制及化工仪表的技术发展趋势1. 传感器技术的发展传感器技术是化工仪表中的核心技术,它直接影响到化工生产过程中各种参数的测量精度和可靠性。
随着纳米技术、智能化技术的不断发展,传感器的敏感度、稳定性、抗干扰能力得到了显著提高,使得传感器在化工生产中的应用效果更加显著。
2. 智能化控制技术的应用智能化控制技术是化工自动化控制的发展趋势之一,它通过人工智能、模糊控制、专家系统等技术手段,使得控制系统具备了一定的自我学习、适应能力,对于复杂的化工生产过程具有更好的控制效果。
3. 仪表技术的创新4. 网络通信技术的应用随着物联网、5G技术的发展,网络通信技术在化工自动化控制中的应用将会更加广泛。
浅谈化工行业自动化仪表的常见种类与功能毕业论文
浅谈化工行业自动化仪表的常见种类与功能毕业论文现代科学技术的发展,给我们的生活、生产都带来了极大的改变,尤其是自动化技术的出现,更是极大的解放了劳动力,提高了生产的效率和质量,保障了生产的安全性。
从技术层面来讲,自动化生产的体系结构非常复杂,它需要依靠众多技术设备在空间和逻辑上的组合协调才能正常有效地运行,如监控传感技术设备、信息传输技术设备、控制技术设备等。
文章主要就化工行业自动化生产中的自动化仪表进行相关的分析与探讨。
自动化指机器设备、系统或是管理过程、生产过程等,在没有人或少有人直接参与的情况下,按照预先设定的计划,通过自动检测、信息处理、分析判断、操纵控制,来实现预期目标。
自动化是伴随多种现代科学技术发展而出现的,它对这些多种科学技术进行了整合,其中涉及到计算机技术、电子学技术、系统工程技术、控制技术、信息传输技术等。
如今,不论是生产领域还是交通运输、医疗、军事、家居等领域,都在向着自动化的方向发展。
因为自动化技术可以有效代替人的劳动力投入,使人可以更加专注于更有价值的事务,改善人们的生活、生产模式,提升人的创造力、创新力。
化工自动化生产是指通过对自动化技术的应用,实现自动化生产。
它是通过将若干的自动化技术设备在空间和逻辑上组合成一个系统,并直接作用于化工生产设备,以代替以往的人工操作,实现自动化的生产过程。
化工生产是非常重要而且对于当前的社会来说是不可缺少的,与其他的行业生产不同,化工生产具有一定的特殊性,如操作精准度要求高、生产环境封闭、危险性高等。
人工进行操作容易对工作人员的健康造成损害,而且较为容易出错,轻者会导致生产不合格,降低生产质量,重者会引起安全事故,造成人员伤亡。
而自动化技术在化工生产中的应用,则可以取代人的劳动,提高生产操作的精准度,严格控制生产工艺指标,确保生产效率、生产质量,同时有效保障人的安全。
自动化生产的体系结构非常复杂,需要依靠众多技术设备在空间和逻辑上的组合协调才能正常有效地运行。
化工自动化仪表论文:浅议化工自动化仪表的应用
化工自动化仪表论文:浅议化工自动化仪表的应用【摘要】现代自动化仪表的智能化技术不但改善了仪表本身的性能,还影响到了控制网络的体系结构,它不再是功能单一的固定结构,其适应性越来越强,功能也越来越丰富。
笔者跟据自己的实践工作经验,针对检测执行仪表及相关控制策略进行了分析。
【关键词】石油化工;自动化仪表;控制1.检测执行仪表1.1温度仪表石化现场设备或管道内界质温度一般都需要指示控制,温度范围为-200℃到1800℃。
大多数采用接触式测量。
在现场指示的水银玻璃温度计多被双金属温度计取代,最常用的是热电阻、热电偶。
特殊热电阻有油罐平均温度计等特殊热电偶和耐磨热电偶(如乙烯裂解炉、催化裂化及丙烯腈装置用高速流动状态下测量高温)、表面热电偶(根据测量物体表面形状而定)、多点式热电偶(用在反应器、合成塔、转化炉等处)、防爆热电偶等。
热电阻、热电偶信号多直接进入dcs 或其它温度采集仪表,一体化的温度变送器(两线制)等因现场总线技术兴起而逐渐普及。
1.2压力仪表因为与安全密切相关,所以压力仪表受到工程重视。
压力范围为到300mpa(高压聚乙烯反应器)。
压力传感器、变送器和特种压力仪表采用多种原理,而且可用于高温介质、脉动介质、粘稠状、粉状、易结晶介质的压力测量,精度可达01级。
压力表分液柱式、弹性式、活塞式(压力校验仪)三类。
1.3物位仪表石化行业一般以液位测量为主,由于测量过程与被测物料特性关系密切,所以除浮力式仪表外,物料仪表没有通用产品。
按测量方式分为直读式、浮力式、静电式(差压、压力)、电接触式、电容式、超声波式、雷达式、重锤式、辐射式、激光式、磁致伸缩式、矩阵涡流式等,其中雷达式、磁致伸缩式以及矩阵涡流式液位计精度高,在石化行业正在逐步普及。
1.4流量仪表流量仪表是石化行业温、压、液(位)、流四大参数中内容最丰富的一个门类。
从控制的角度看稳定和优化是两大永恒的主题,都要用流量来考核。
而流量本身与流体及管道的关系又很大。
《化工仪表与自动化》课程教学与环境保护的结合分析论文
《化工仪表与自动化》课程教学与环境保护的结合分析论文《化工仪表与自动化》课程教学与环境保护的结合分析论文《化工仪表及自动化》,是化工类学科一门重要的专业基础课,主要应用自动控制、仪器仪表及计算机等学科的理论与技术为化学工程相关学科服务。
本课程适用于化学工程中的各专业,如化学工程与工艺、生物工程、食品科学与工程、制药工程、高分子材料与工程、环境工程。
该课程主要介绍了化工生产过程中的自动调节及控制系统方面的基础知识,构成自动调节系统的对象和仪表,以及各类简单、复杂控制系统及计算机控制系统等。
近年来,《化工仪表及自动化》已成为绝大多数高等院校的必修或选修课程,高校教师们都试图在理解《化工仪表及自动化》教科书内容、传授主题教学大纲的基础上,探索新的教学方法,寻找新的教学热点,拓展新的教学领域。
石梅、李中等老师提出要突出高新技术、与实验结合。
北京化工大学、天津大学、扬州大学等都探索了互动式教学和研究型教学。
为响应教育部就出台了《关于加强高等学校本科教学工作,提高教学质量的若干意见》,华东理工大学、中国矿业大学(北京)都尝试了《化工仪表及自动化》双语教学模式,效果显著。
对于煤炭类院校的学生,在我国当前煤化工大力发展的阶段,煤炭院校化工及相关专业的学生,充分了解我国当前煤化工领域工作环境,在走出大学校门、涉及化工仪表及自动化方面工作时,才能工作的得心应手。
我国在经历了过去30 多年的高速发展后,经济社会产生出很多问题,特别是近几年的环境问题,已经成为制约我国长期可持续发展的主要因素。
对于煤化工行业排放的大量废气,是当前以及未来很长一段时间需要解决的问题,也是煤化工专业学生可以涉足的重要工作领域。
本文在总结前人教学经验的同时,使《化工仪表及自动化》教学过程与环境污染防治相结合,特别针对化工仪表的使用及自动化生产过程中产生的废气进行有效治理,对新的教学过程进行了探索与思考,使《化工仪表及自动化》教学既与环保的煤化工生产实际接轨,又生动活跃具有特色,为其他课程与环保主题结合教学提供示范。
化工仪表及自动化论文1
控制仪表的应用与发展姓名:学号:专业:班级:学院:摘要:过程控制是满足过程工业自动化需求的一门科学技术,它渗透在石油、化工、电力、冶金、食品、饮料等几乎任何工业领域里。
控制仪表和装置是自动化控制系统的重要设备(硬件),本文就控制仪表的分类及特点进行分析,并进一步阐述了在工业自动化生产中的应用,最后对其发展趋势做以展望。
关键词:控制仪表;装置自动化;应用;发展。
1 控制仪表的分类按控制仪表与装置所用能源的不同,可以将其分为电动、气动、液动和混合式等几大类。
其中,气动和液动控制仪表和装置发展最早,但电动控制仪表与装置发展趋势宜昌迅速,现在已经占绝对统治地位。
气动控制仪表的特点是:性能稳定,可靠性强,具有本质安全防爆性能,不受电磁场干扰、结构简单、维护方便。
在电子技术和计算机技术高度发展的今天,气动控制仪表所占领域虽然已十分狭小,但在一些大型装置的主体设备周围仍有采用。
基地式气动控制仪表对单一的工艺参数进行就地单回路调节。
尤其是气动执行器,具有安全、可靠及工作平衡等优点。
应用扔十分广阔,在许多由电动控制仪表和装置构成的系统中,执行器扔采气动式的。
因此,我国及世界上一些大型自动控制仪表装置生产公司仍在生产气动控制仪表。
随着生产过程自动化的发展,远距离集中控制日益增多,控制系统规模和复杂程度不断增加,气动和液动控制仪表在许多场合已不能满足要求,而电动控制仪表与装置则得到越广泛的应用和飞速的发展。
电动控制仪表与装置都采用了电子技术,从原理上分,电子控制仪表与装置又可分为两大类:模拟式控制仪表与装置和数字式控制仪表与装置。
模拟式控制仪表与装置按结构形式可分为基地式、单元组合式、组件组装式三大类。
一是基地式控制仪表一般结构比较简单,价格低廉,它不仅能够进行控制,同时还可以指示、记录。
因此适用于小型企业的单机自动控制系统。
二是单元组合式控制仪表应用灵活、通用性强,便于控制仪表的生产、维护及备品库存等。
三是组件组装式控制仪表可由仪表制造厂预先根据用户要求,组装好整套自控系统,再以成套装置形式提供给用户,从而可使自控系统的现场施工、系统安装和调试工作量大大减小,也使维护、检修和系统改装工作大大简化。
仪表自动化在化工生产中的应用 毕业论文
摘要随着我国工业化水平不断提高,化工仪表自动化研究备受关注。
生产实践中的自动化控制是一门综合性的技术学科,自动化仪表的应用为化工行业过程控制提供了先进的手段,同时其必不可少的控制仪器为自动控制仪表。
本文从化工生产的角度出发探讨了自动化仪表的含义分类、产生发展、工作属性、功能开发及其未来的发展趋势,对提升化工效率、企业经济效益、社会综合效益,巩固仪表控制安全操作性、灵活应用性有积极有效的促进作用。
化学工业是创造价值经济的重要组成部分,它直接影响国计民生还国民经济的其他部门密切相关。
化工生产过程,往往是在密闭的容器和设备中,在对于工作人员不利的情况下连续进行的。
此外,不少介质还具直接伤害人体的化学性质。
因此,为了响应“以人为本”的号召,使化工生产正常地、高效地进行,就必须把各项工艺参数维持在某一最佳的范围之内,并尽量使生产过程自动化,而这些数据的控制和维持,最直观的就是化工生产自动化仪表的部分。
关键词:自动化,化工生产,控制仪表目录第一章绪论 (1)1.1仪表自动化的产生和定义 (1)1.2自动化的工业应用 (2)1.2.1 环保仪器仪表 (2)1.2.2 电工仪器仪表 (2)1.2.3 工业自动化仪表 (2)第二章仪表自动化的介绍 (3)2.1概述 (3)2.1.1 什么是自动化 (3)2.1.2 工业控制系统的组成 (3)2.2工业自动化的优点 (4)第三章自动化仪表的分类 (5)3.1检测仪表 (5)3.1.1 温度仪表 (5)3.1.2 压力仪表 (5)3.1.3 物位仪表 (5)3.1.4 流量仪表 (6)3.1.5 在线过程分析仪 (6)3.2控制仪表 (6)3.2.1 DCS集散控制系统 (6)3.2.2 PLC可编程控制系统 (7)第四章自动化系统在化工生产中的应用 (8)4.1锅炉汽包水位控制方面的研究 (8)4.1.1 单冲量控制系统 (8)4.1.2 双冲量控制系统 (9)4.1.3 三冲量控制系统 (10)4.2冷却器控制方案的研究 (12)4.2.1 控制冷却剂的流量 (12)4.2.2 控制气氨排量 (12)第五章自动化在化工生产中的发展方向 (14)第六章结论 (15)参考文献 (16)致谢 (17)第一章绪论1.1仪表自动化的产生和定义工业仪表在我国出现较早,刚开始出现时主要运载在冶金、热能动力、石油炼制以及化工等热力生产行业中,所以在当时工业仪表被称作是热工表。
化工仪表及自动化论文
化工仪表及自动化信息技术学院11级计算机科学与技术********自动化仪表是用以实现信息的获取、传输、变换、存储、处理与分析,并根据处理结果对生产过程进行控制的重要技术工具。
近年来,微电子技术、计算机技术、网络通信技术和数字信息处理技术等日新月异发展的新技术对自动化仪表产生了深远的影响。
化工仪表及自动化分为两部分内容,第一部分是化工检测仪表,讲述检测仪表的基本知识,重点介绍工业生产过程中的压力、流量、物位、温度的检测原理及相应的仪表结构选用,并介绍了工厂中常用的显示仪表。
第二部分是化工自动化基础,除介绍工业生产过程中的自动控制系统方面的知识,还分别介绍了构成自动控制系统的被控对象、控制仪表及装置,在简单、复杂控制系统的基础上,介绍了高级控制系统与计算机控制系统,最后结合生产过程介绍了典型化工单元操作的控制方案。
自动化仪表综述。
自动化仪表,是由若干自动化元件构成的,具有较完善功能的自动化技术工具。
它一般同时具有数种功能,如测量、显示、记录或测量、控制、报警等。
自动化仪表本身是一个系统,又是整个自动化系统中的一个子系统。
自动化仪表是一种“信息机器”,其主要功能是信息形式的转换,将输入信号转换成输出信号。
信号可以按时间域或频率域表达,信号的传输则可调制成连续的模拟量或断续的数字量形式。
自动化仪表的发展历程。
仪器仪表发展已有悠久的历史。
据《韩非子·有度》记载,中国在战国时期已有了利用天然磁铁制成的指南仪器,称为司南。
古代的仪器在很长的历史时期中多属用以定向、计时或供度量衡用的简单仪器。
17~18世纪,欧洲的一些物理学家开始利用电流与磁场作用力的原理制成简单的检流计;利用光学透镜制成的望远镜,奠定了电学和光学仪器的基础。
19世纪到20世纪,工业革命和现代化大规模生产促进了新学科和新技术的发展,后来又出现了电子计算机和空间技术等,仪器仪表因而也得到迅速的发展。
70年代初世界上出现了第一种微处理器以来,计算机技术发展迅猛,带来了测量仪器仪表产业的一次技术革命,并取得了巨大的进步。
浅谈现代化工仪表及化工自动化的过程控制
浅谈现代化工仪表及化工自动化的过程控制化工自动化是化工工业领域普遍采用的新技术,它在化工生产中实现了自动化控制,使得生产过程更加规范化、高效化、节能环保化。
而化工自动化的控制依托于各种现代化工仪器仪表,这些仪表通过测量、检测、控制等功能实现了对物质和能量流的自动控制。
因此,现代化工仪表的发展和改进为化工自动化提供了强有力的支持。
本文将从现代化工仪表和化工自动化的角度,探讨化工自动化的过程控制和发展。
一、现代化工仪表的发展1. 自动化仪表自动化仪表是化工生产中最常用的类型,它主要用于自动化控制和数据采集。
自动化仪表具有高精度、高可靠性、稳定性好等特点。
在化工过程控制中,自动化仪表可以准确的测量、监测、控制各种物理量,如温度、压力、流量、液位等。
自动化仪表不仅可以对流量、温度等现有参数进行测量,还支持多参数、多模式等功能,实现了更加高效、可靠的化工生产自动化控制。
智能化仪表是现代化工仪表的一个重要组成部分,它采用微处理器、传感器、储存器等技术,实现了自动控制和决策。
智能化仪表具有自诊断、自学习、自适应等特性,对于复杂的化工工艺控制有着不可替代的作用。
智能化仪表不仅提高了化工生产的效率,还实现了化工生产的高效、智能、自主化等特点。
随着现代化学工业进入数字时代,无线化仪表逐渐兴起。
无线化仪表是指通过温度传感器、压力传感器、液位传感器等传感器设备将数据无线传输到接收端,实现全无线化的化工生产自动化控制。
无线化仪表不仅节省了传统有线化仪表的安装、维修成本,而且可以实现遥测、远程监控等功能,从而更加高效、安全、方便的实现化工生产自动化控制。
化工自动化的过程控制是指通过现代化工仪表和相关技术手段,对整个化工生产过程进行自动化控制和管理。
化工自动化的过程控制主要采用分布式控制系统(DCS)、可编程逻辑控制器(PLC)等控制系统,实现化工生产的精确高效控制。
随着技术的不断发展,化工自动化的过程控制经历了从手工控制到自动控制、从单机控制到联网控制的飞跃。
化工自动仪表课程设计论文
化工自动仪表课程设计论文一、课程目标知识目标:1. 让学生理解化工自动仪表的基本原理,掌握仪表的构造、工作原理及其在化工生产中的应用。
2. 使学生掌握各种自动控制系统的类型、特点及适用场合,并能运用相关理论知识分析实际化工生产过程中的自动控制问题。
3. 帮助学生了解现代自动化技术在化工生产中的发展趋势,拓展知识视野。
技能目标:1. 培养学生能够运用所学知识,对化工自动仪表进行选型、调试、维护和故障排除的能力。
2. 提高学生运用自动化软件进行控制策略设计、仿真和优化的技能。
3. 培养学生通过团队合作,解决实际化工生产中自动控制问题的能力。
情感态度价值观目标:1. 培养学生对化工自动仪表和控制技术的兴趣,激发学习热情,形成自主学习、探究学习的习惯。
2. 培养学生的工程意识,使其认识到自动化技术在化工生产中的重要性,增强责任感。
3. 培养学生具有良好的团队合作精神和沟通能力,尊重他人意见,勇于创新。
本课程目标针对性强,符合学生年级特点,注重理论与实践相结合,旨在提高学生的专业知识水平和实践技能,培养具备创新精神和责任感的高素质化工人才。
在教学过程中,教师需关注学生的个体差异,因材施教,确保课程目标的实现。
同时,通过有效的教学评估,及时了解学生学习成果,调整教学策略,提高教学质量。
二、教学内容本章节教学内容依据课程目标,紧密结合教材,涵盖以下三个方面:1. 化工自动仪表基本原理:包括自动控制系统的概述、仪表的分类、构造及工作原理、性能指标等。
主要参考教材第二章内容,使学生掌握自动仪表的基础知识。
2. 自动控制系统的类型与设计:介绍常见的自动控制系统(如PID控制、模糊控制、神经网络控制等),分析各种控制系统的特点、适用场合及参数整定方法。
参考教材第三章和第四章内容,培养学生控制系统设计和优化能力。
3. 化工自动仪表的应用与实践:结合实际化工生产案例,分析自动仪表在化工生产过程中的应用,包括仪表选型、调试、维护和故障排除。
化工仪器自动化技术论文
化工仪器自动化技术论文化工仪器自动化技术论文字也前我们需要提交毕业论文,那么,化工仪器自动化技术论文该如何写呢?下面小编为你整理了化工仪器自动化技术论文,希望能帮到你!摘要:在社会经济科技快速发展带动下,自动化技术也被广泛应用于各个领域,不论在日常办公还是工厂生产中,都可以感受到自动化技术的应用给人们带来的种种便利,尤其是在对安全系数有较高要求的化工生产中的科学、灵活应用,更具有不可替代的作用。
1、在化学反应的正常应用需要进行温度及其压力的控制,这也需要进行原材料的应用,这就需要进行原料量的控制。
在生产过程中,针对原料进行实时的测量监控,进行浮力式测量方式的应用,做好被测物的接触工作,保证仪表的良好英语。
这需要做好测量方式的优化工作,做好物料仪表的分类,列如进行浮力、电容、重锤等的形式应用。
进行高精度的雷达式等的测量方式的应用,从而做好精度的控制。
在数据的整体测量过程中,我们需要进行化工生产方案的优化,这涉及到温度、压力、流量等的分析工作,做好化工参数的测量工作,实现其整体应用环节的优化。
这就需要进行化工生产的流量及其流速的分析,保证流速及其流量的分析,进行积算仪的应用,进行一定时间内的流量计算,针对流量的不同测量条件进行分析,针对其条件的分析进行不同方式的应用,进行大口径的流量的控制。
在流量测量应用中,我们需要进行速度法、直接法、推导法等的协调,做好现代化生产自动化的应用工作,满足生产过程的需要,提升产品的整体质量,做好生产过程中的温度、压力、流量、液位等的控制工作,提升其应用效益。
2、化工仪器仪表化工自动化技术的应用2.1这就需要仪表具备可编程的功能。
通过对计算机软件的应用,进行大量硬件逻辑电路的取代,从而实现硬件的软化,在电路控制过程中,需要针对接口芯片的位控特性进行分析,进行不同功能的控制。
这就需要进行软件的编程,可以进行软件仪器仪表的置入,进行硬件结构的简化,保证常规逻辑电路的取代。
这也需要仪表具备良好的记忆能力,在以往的仪表应用中,我们需要进行组合逻辑电路及其时序电路的`应用,保证该状态信息的分析,进行微机的仪表引入,保证随机存储器的应用工作,进行前一状态信息的记忆工作,保证记忆的保存,进行多种状态信息的记忆,做好重现及其相关的处理工作。
化工仪表及自动化-毕业论文
化工仪表及自动化绪论内容提要⏹化工自动化的意义及目的⏹化工自动化的发展概况⏹化工仪表及自动化系统的分类化工自动化的意义及目的⏹加快生产速度、降低生产成本、提高产品产量和质量。
⏹减轻劳动强度、改善劳动条件。
⏹能够保证生产安全,防止事故发生或扩大,达到延长设备使用寿命,提高设备利用率、保障人身安全的目的。
⏹生产过程自动化的实现,能根本改变劳动方式,提高工人文化技术水平,以适应当代信息技术革命和信息产业革命的需要。
化工自动化的发展情况⏹20世纪40年代以前➢绝大多数化工生产处于手工操作状况,操作工人根据反映主要参数的仪表指示情况,用人工来改变操作条件,生产过程单凭经验进行.低效率,花费庞大。
⏹20世纪50年代到60年代➢人们对化工生产各种单元操作进行了大量的开发工作,使得化工生产过程朝着大规模、高效率、连续生产、综合利用方向迅速发展.⏹20世纪70年代以来,化工自动化技术水平得到了很大的提高⏹20世纪70年代,计算机开始用于控制生产过程,出现了计算机控制系统⏹20世纪80年代末至90年代,现场总线和现场总线控制系统得到了迅速的发展化工仪表及自动化系统的分类按功能不同,分四类:检测仪表(包括各种参数的测量和变送)显示仪表(包括模拟量显示和数字量显示)控制仪表(包括气动、电动控制仪表及数字式控制器)执行器(包括气动、电动、液动等执行器)图0-1 各类仪表之间的关系1.自动检测系统利用各种仪表对生产过程中主要工艺参数进行测量、指示或记录的部分. 作用:对过程信息的获取与记录作用。
图0-2 热交换器自动检测系统示意图敏感元件对被测变量作出响应,把它转换为适合测量的物理量. 传感器对检测元件输出的物理量信号作进一步信号转换显示仪表将检测结果以指针位移、数字、图像等形式,准确地指示、记录或储存。
2.自动信号和联锁保护系统对某些关键性参数设有自动信号联锁保护装置,是生产过程中的一种安全装置。
自动信号联锁保护电路按主要构成元件不同分类:有触点式、无触点式两类 3.自动操纵及自动开停车系统自动操纵系统可以根据预先规定的步骤自动地对生产设备进行某种周期性操作。
化工仪表自动化论文(共5则范文)
化工仪表自动化论文(共5则范文)第一篇:化工仪表自动化论文(共)化工仪表自动化方面的研究有利于促进化工行业的发展。
下面是小编推荐给大家的化工仪表自动化论文,希望大家有所收获。
化工仪表自动化论文一摘要:随着现代科学技术的不断进步,传统的化学生产方式已经不能满足现代化的需要。
为了有效的降低化工生产过程中的人身伤亡以及设备损坏,自动化装置提供了有效的途径。
在化工生产过程中由于实现了自动化,不但降低了工人的劳动强度降低了设备损耗,更有效的提高了设备的利用率。
因此,对于从事化学工艺技术的工作人员来讲,要想更好的做好本职工作并有所发展必须学习自动化以及仪表方面的知识。
关键词:化工仪表及自动化科学技术管理生产过程方法化工仪表及其自动化是一门利用自动控制学科、仪表仪器学科的理论和技术而服务于化学工程学科的综合性的技术学科。
而利用自动控制器仪表学科和计算机学科的理论服务于化学工程学科是目前我们研究的目标。
本文以化工生产需要为出发点探讨了化工仪表的分类、性能以及发展。
化工仪表自动化概述化工的生产过程主要是在高温、高压以及真空、深冷等密闭容器或设备的环境下连续进行。
此外,化工企业的产品以及介质还多具有易燃易爆、有毒以及腐蚀性等。
因此,为了确保现代化化工生产的正常进行,必须将化工的各项工艺参数保持在某一最佳范围内并尽量实现生产的自动化和现代化。
在化工设备上配置一些代替操作工人劳动的自动化装置,使生产在不同程度上自动的进行即为化工生产过程的自动化。
化工生产过程的自动化就是利用这些自动化装置来管理化工的生产过程,简称化工自动化。
实现化工生产过程的自动化除了加快生产速度降低生产成本以及提高产品的产量和质量外,最重要的是还可以提高设备的利用率,从而延长设备的使用寿命以实现优质高产低耗。
此外,采用自动化设备不仅能够降低劳动强度,还能有效的保证工作人员以及设备的安全,并且改善劳动条件。
更重要的是实现自动化以后还能够减少意外并防止事故的发生和扩大,从真正意义上达到了延长设备使用寿命、保证人身安全以及提高设备利用率的目的。
化工仪表及自动化论文
电磁流量计【摘要】流量传感器是把流过管道内的导电液体的体积流量转换为线性电信号。
其转换原理就是著名的法拉第电磁感应定律,即导体通过磁场,切割电磁线,产生电动势。
流量传感器的磁场是通过励磁实现的,分直流励磁、交流励磁和低频方波励磁。
电磁流量计简单说是由流量传感器和变送器组成的。
关键词:电磁流量计、原理、特点、流量、参数一、概述电磁流量计(Electromagnetic Flowmeter)是由直接接触管道介质的传感器和上端信号转换器两部分构成。
它是基于法拉第电磁感应定律工作的,用来测量电导率大于5μs/cm的导电液体的流量,是一种测量导电介质流量的仪表。
除了可以测量一般导电液体的流量外,还可以用于测量强酸、强碱等强腐蚀性液体和均匀含有液固两相悬浮的液体,如泥浆、矿浆、纸浆等。
电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。
另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积和安装维护的麻烦。
电磁流量计在满足现场显示的同时,还可以输出4~20mA电流信号供记录、调节和控制用,现已广泛地应用于化工、环保、冶金、医药、造纸、给排水等工业技术和管理部门。
采用电磁感应原理测量介质流体流速的电磁流量计。
它在管道的两侧加一个磁场,被测介质流过管道就切割磁力线,在两个检测电极上产生感应电势,其大小正比于流体的运动速度。
可以用于测量酸、碱、盐溶液、水煤浆、矿浆、砂浆灰泥、纸浆、树脂、橡胶乳、合成纤维浆和感光乳胶等各种悬浮物、气化汽和粘性物质的流量。
电磁流量计密封性能好,还可用于自来水和地下水道系统。
而且测量过程不与流体接触,适于制药、生物化学和食品工业。
这种流量计还可检测血液流量。
它的量程比约为100:1,精度一般为1%,由于这种传感器必须保持管道内电阻和测量电路阻抗之间有一定比例关系,因此在制造上有一定困难。
化工仪表及自动化论文
化工仪表及自动化论文在化工生产领域,化工仪表及自动化技术发挥着至关重要的作用。
它们不仅能够实时监测生产过程中的各种参数,还能实现对生产过程的精确控制,从而提高生产效率、保障产品质量、确保生产安全。
化工仪表是用于测量、显示、控制和记录化工生产过程中各种物理量和化学量的仪器设备。
常见的化工仪表包括温度仪表、压力仪表、流量仪表、液位仪表、成分分析仪表等。
这些仪表通过传感器将被测量的物理量或化学量转换为电信号或其他易于处理和传输的信号,然后经过信号处理和转换,最终以直观的数字、图形或指针形式显示出来。
温度仪表是化工生产中常用的仪表之一。
根据测量原理的不同,温度仪表可以分为热电偶温度计、热电阻温度计和红外线温度计等。
热电偶温度计利用两种不同金属材料组成的热电偶在温度变化时产生的热电势来测量温度,其测量范围广,适用于高温环境。
热电阻温度计则是利用金属材料的电阻值随温度变化的特性来测量温度,具有测量精度高、稳定性好等优点。
红外线温度计则通过测量物体表面发出的红外线能量来确定温度,适用于非接触式测量和快速测温。
压力仪表用于测量化工生产过程中的压力参数。
常见的压力仪表有弹簧管式压力表、压力变送器和差压变送器等。
弹簧管式压力表通过弹簧管的变形来测量压力,结构简单、使用方便,但测量精度相对较低。
压力变送器和差压变送器则将压力信号转换为标准的电信号输出,便于远程传输和自动控制,具有测量精度高、可靠性强等优点。
流量仪表用于测量化工生产过程中流体的流量。
常见的流量仪表有节流式流量计、电磁流量计、涡街流量计和质量流量计等。
节流式流量计基于流体通过节流装置时产生的压差来测量流量,具有结构简单、成本低等优点,但测量范围较窄。
电磁流量计利用电磁感应原理测量导电液体的流量,测量精度高、适用范围广,但对介质的导电性有一定要求。
涡街流量计通过检测流体流经漩涡发生体时产生的漩涡频率来测量流量,适用于气体和液体的测量。
质量流量计则直接测量流体的质量流量,不受流体温度、压力和密度等因素的影响,测量精度高,但价格相对较高。
化工自动化控制及化工仪表的研究
化工自动化控制及化工仪表的研究化工自动化控制及化工仪表的研究在现代化工生产中起着重要的作用,它们可以提高生产效率、降低能源消耗和环境污染,并提高产品质量和安全性。
本文将就化工自动化控制及化工仪表的研究进行探讨。
化工自动化控制是利用计算机、仪表和控制系统等技术手段对化工过程进行监测、控制和优化的方法。
化工过程具有复杂性、危险性、非线性和耦合性等特点,传统的手动控制方式无法满足工业生产的要求,因此需要引入自动化控制技术。
化工自动化控制的核心是控制系统,它由传感器、执行器、控制器和计算机等组成。
传感器负责采集化工过程中的各种变量,如温度、压力、流量等,执行器负责根据控制信号进行控制动作,控制器负责生成控制信号,计算机负责数据处理和控制策略的优化。
化工自动化控制可以实现对化工过程的实时监测、精确控制和智能化决策,提高生产效率和产品质量,减少人力投入和能源消耗。
化工仪表是化工过程中用于测量、控制和调节的设备和仪器。
它包括温度计、压力计、流量计、浓度计等各种传感器和仪器,以及阀门、泵和调节器等执行器。
化工仪表的研究主要集中在如何提高测量精度、降低测量误差、增强抗干扰能力等方面。
化工过程中的测量和控制都需要靠化工仪表来完成,因此化工仪表的性能和可靠性对于化工自动化控制具有重要意义。
近年来,随着微电子技术和通信技术的发展,化工仪表的研究也越来越注重无线通信、自适应控制、多传感器融合等方面的技术应用。
化工自动化控制及化工仪表的研究目前面临着一些挑战和困难。
化工过程是非线性、耦合和时变的,需要开展深入的建模和仿真研究。
化工过程中存在着大量的不确定性和干扰,需要开展鲁棒控制和非线性控制的研究。
化工过程中的监测和控制信号往往比较弱和噪声干扰较大,需要开展信号处理和滤波等研究。
化工过程中存在着高温、高压、腐蚀和爆炸等危险环境,需要研究安全可靠的化工仪表和控制系统。
化工自动化控制及化工仪表的研究对于提高化工生产效率、降低能源消耗和保护环境具有重要作用。
现代化工仪表及化工自动化的过程控制探讨
现代化工仪表及化工自动化的过程控制探讨摘要:相对于常规化工仪表控制来说,以现代化工仪表和自动化技术有机融合为依托可以进一步提高化工仪表控制效率。
国内化工企业使用现代化工仪表,实现了化工自动化,有效提高了化工企业生产质量和效益,进而提升了我国化工整体水平。
基于此,本文将针对现代化工仪表及化工自动化的过程控制展开探讨,旨在促进化工产业的可持续发展。
关键词:现代;化工仪表;自动化引言:化工自动运行模式可监测各类机械装置及零件的工作情况,且能对输出仪表工作状态进行分析,全面提升化工企业生产效率。
另外,化工自动化可对比标准化仪表运行数据,对仪表运行进行仿真与预测,有效控制潜在隐患,从而降低了仪表运行所带来的不良影响。
同时,通过监测化工仪表操作过程,并利用相应的控制方法对其进行技术考量,有助于提高监测的效果。
一、化工自动化控制现状及发展伴随着中国经济和社会的飞速发展,仪表技术正朝着智能化的方向发展,并取得了长足的进步。
在现代化工自动化发展过程中,实现了信号的通讯传输,即将现场总线技术应用于化工自动化中,可以解决传统控制系统存在的问题,提高企业的综合实力与竞争力,促进化工企业健康发展。
仪器仪表技术、计算机技术以及其他很多现代技术,进一步实现了化工生产的检测、控制与管理等目标,有利于化工增产降耗。
化工自动化控制是化工生产过程中必不可少的一部分,能提高化工产品质量、降低生产成本、缩短产品上市时间。
现如今化工自动化控制已经是制造业中最为主要的一项技术,其综合性很强,涉及很多专业的内容。
当前我国化工自动化控制发展多数是引进国外先进仪表,经过一段时间的使用后,再针对企业特点进行开发和利用。
二、现代化工仪表及其控制化工仪表指工业生产过程中所涉及的所有检测装置的总称,化工产品的生产制造是通过这类装置运行实现的。
化工企业对仪表进行正确使用和维护非常重要,不仅可以提高化工仪表的精度,还能延长其使用寿命,确保化工企业正常运行。
化工仪表在工业生产过程控制中应用于产品参数检测、产品的性能及关键参数的控制,在化学工业中具有重要地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制阀在水处理中的发展方向系别、班级:盐湖系班级:化学工程与工艺(3)班指导老师:姓名:马晓红(0922305026)日期:2011年10月12日控制阀在水处理中的发展方向(青海大学化工学院盐湖系 09化工(3)班马晓红邮编810016)摘要:控制阀又称调节阀,是工业过程控制中的主要执行单元仪表,通过接受调节控制单元阀是自控系统中的执行器,它的应用质量直接反应在系统的调节品质上。
作为过程控制中的终端元件,人们对它的重要性较过去有了更新的认识。
调节阀应用的好坏,除产品自身质量、用户是否正确安装、使用、维护外,正确地计算、选型十分重要。
关键字:控制阀,水处理,流量,发展。
1、控制阀在水处理中的发展方向的目的和意义控制阀广泛应用于制造业领域,实现优化生产和降低成本的目的。
长远来看,控制阀市场会保持适度的增长。
水处理中一般采用流量控制阀,流量控制阀是一种采用高精度先导方式控制流量的多功能阀门。
适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。
在现代化工厂的自动控制中,控制阀起着十分重要的作用,这些工厂的生产取决于流动着的液体和气体的正确分配和控制。
这些控制无论是能量的交换、压力的降低或者是简单的容器加料,都需要某些最终控制元件去完成。
最终控制元件可以认为是自动控制的“体力”。
在调节器的低能量级和执行流动流体控制所需的高能级功能之间,最终控制元件完成了必要的功率放大作用,控制阀是最终控制元件的最广泛使用的型式。
2、控制阀在水处理中的发展方向在国内外的现状从控制阀应用看,发展方向如下:(1)小型执行机构:可降低成本,提高流通能力.(2)套筒导向:采用套筒导向,有利于对中,有利于降低摩擦,有利于降噪,有利于流量特性的互换(3)平衡式阀芯:为降低执行机构推力或推力矩,采用平衡式阀芯是重要的,它对系统的动态性能也有改善(4)一体化阀芯和阀座:为克服双座阀密封性差的缺点,采用相同材质的一体化阀芯和阀座组成阀内件,将泄漏量和不平衡力同时减到最小.(5)简单流路:流路简单,流阻减小,不仅可使阀两端压损下降,而且可降低成本。
(6)密封和摩擦:密封性能和摩擦性能是矛盾的两方面,控制阀设计中不仅要解决密封问题,对摩擦和寿命等性能指标也必须重视因此,近年来,填料函和填料结构的研究得到重视,旋转型控制阀得到较广泛应用(7)降低噪声:采用多种方式降低控制阀噪声,例如,采用降噪套筒和阀芯,采用多级阀芯,采用降噪限流板,采用扩展器等(8)采用与管道同直径的控制阀和限制流通能力的阀内件:利于降低阀入口压力和出口流体流速,不需安装异径管等附加管件,有利于降低成本,通过更换流通能力大的阀内件,可扩展流通能力,通过选用限制流通能力阀内件可纠正计算口径过大的错误(9)在数字化信息化时代,将较多采用智能阀门定位器或通过数字控制器等实现非线性规律,补偿被控对象非线性,将较少选用控制阀流量特性来补偿被控对象非线性(10)阀内件的材料随温度变化,因此,应考虑不同温度下热膨胀造成的影响,也要考虑在高温下耐压等级的变化等,应考虑材料的耐腐蚀性、抗疲劳性等性能。
2.1当前中国控制阀市场的概况从厂商来看,国内外厂商竞争格局基本保持稳定,仍然稳居市场首位,本土厂商与国外优势品牌相比,仍然较弱,排名和业绩规模上未实现重大突破。
虽然市场整体增长,但是厂商2010年业绩表现不均衡,少数厂商积极的抢占市场份额,多数厂商业绩受市场或产能的困扰保持2009年的水平。
从战略发展来看,国外厂商通常专注于这几个方面:实现本地化,完善营销服务体系,整合营销渠道,将中国公司打造成亚太区生产和技术服务的中心。
国内厂商偏重于提高产能,走国产化道路,寻求产品和技术上的突破,力争企业快速发展。
虽然当前控制阀行业整体增长放缓,但是出于对未来市场的看好,厂商实际上都在暗自积蓄力量,以便在未来行业快速发展时能够抢夺更多的市场份额2.2当前发展的不利因素国际经济形势错综复杂,标普下调美国主权债务评级,包括中国在内的各资本市场近期大幅下挫,国内通胀和宏观调控压力进一步加大,实体经济有减速的迹象,控制阀应用于工业领域,市场状况受国家宏观经济状况影响较大,随着实体经济增速减缓,控制阀行业的市场需求和投资都承受一定的压力。
3、控制阀在水处理中的发展方向采用的路线和原理3.1原理:控制阀用于调节介质的流量、压力和液位。
根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。
调节阀分电动调节阀、气动调节阀和液动调节阀等。
3.2控制阀的发展方向主要为智能化、标准化、精小化、旋转化和安全化。
(1)智能化和标准化:控制阀的智能化和标准化已经提到议事日程。
智能化主要采用智能阀门定位器。
智能化化表现在下列方面。
①控制阀的自诊断,运行状态的远程通信等智能功能,使控制阀的管理方便,故障诊断变得容易,也降低了对维护人员的技能要求。
②减少产品类型,简化生产流程。
采用智能阀门定位器不仅可方便地改变控制阀的流量特性,也可提高控制系统的控制品质。
因此,对控制阀流量特性的要求可简化及标准化(例如,仅生产线性特性控制阀)o用智能化功能模块实现与被控对象特性的匹配,使控制阀产品的类型和品种大大减少,使控制阀的制造过程得到简化,并在生产和市场中经受考验和认可。
③数字通信。
数字通信将在控制阀中获得广泛应用,以HART通信协议为基础,一些控制阀的阀门定位器将输入信号和阀位信号在同一传输线实现;以现场总线技术为基础,控制阀与阀门定位器、PID控制功能模块结合,使控制功能在现场级实现,使危险分散,使控制更及时、更迅速。
④智能阀门定位器。
智能阀门定位器具有阀门定位器的所有功能,同时能够改善控制阀的动态和静态特性,提高控制阀的控制精度,因此,智能阀门定位器将在今后一段时间内成为重要的控制阀辅助设备被广泛应用。
(2)精小化为降低控制阀的重量,便于运输、安装和维护,控制阀的精小化采用了下列措施。
①采用精小型执行机构。
采用轻质材料,采用多组弹簧替代一组弹簧,降低执行机构高度,通常,精小型气动薄膜执行机构组成的控制阀比同类型气动薄膜执行机构组成的控制阀高度要降低约30%,重量降低约30%,而流通能力可提高约30%。
②改变流路结构。
例如,将阀芯的移动改变为阀座的移动,将直线位移改变为角位移等,使控制阀体积缩小,重量减轻。
③采用电动执行机构。
不仅可减少采用气动执行机构所需的气源装置和辅助设备,也可减少执行机构的重量。
例如,Fisher公司的9000系列电动执行机构,其20型的高度小于330mm,使整个控制阀(带数字控制器和执行机构)质量降低到20~32kg。
(3)旋转化:由于旋转类控制阀,例如球阀等,有相对体积较小、流路阻力较小、可调比较大、密封性较好、防堵性能较好、流通能力较大等优点,因此,在控制阀新品种中,旋转阀的比重增大。
特别是大口径管道中,普遍采用球阀、蝶阀等类型控制阀,从国外近年的产品看,旋转阀应用的比例正逐年增长。
(4)安全化:仪表控制系统的安全性已经得到各方面的重视,安全仪表系统(SIS)对控制阀的要求也越来越高,表现在以下几方面。
①对控制阀故障信息诊断和处理要求提高,不仅要对控制阀进行故障发生后的被动性维护,而且要进行故障发生前的预防性维护和预见性维护。
因此,对组成控制阀的有关组件进行统计和分析,及时提出维护建议等变得更重要。
②对用于紧急停车系统或安全联锁系统的控制阀,提出及时、可靠、安全动作的要求。
确保这些控制阀能够反应灵敏、准确。
③对用于危险场所的控制阀,应简化认证程序。
例如,对本安应用的现场总线仪表,可简化为采用FISCO现场总线本质安全概念,使对本安产品的认证过程简化。
④与其他现场仪表的安全性类似,对控制阀的安全性,可采用隔爆技术\防火技术、增安技术、本安技术、无火花技术等;对现场总线仪表,还可采用实体概念、本安概念、FISCO 概念和非易燃(FINCO)概念等。
(5)节能:降低能源消耗,提高能源利用率是控制阀的一个发展方向。
主要有下列几个发展方向。
①采用低压降比的控制阀。
使控制阀在整个系统压降中占的比例减少,从而降低能耗,因此,设计低压降比的控制阀是发展方向之一;另一个发展方向是采用低阻抗控制阀,例如采用蝶阀、偏心旋转阀等。
②采用自力式控制阀。
例如,直接采用阀后介质的压力组成自力式控制系统,用被控介质的能量实现阀后压力控制。
③采用电动执行机构的控制阀。
气动执行机构在整个控制阀运行过程中都需要有一定的气压,虽然可采用消耗量小的放大器等,但日积月累,耗气量仍是巨大的。
采用电动执行机构,在改变控制阀开度时,需要供电,在达到所需开度时就可不再供电,因此,从节能看,电动执行机构比气动执行机构有明显节能优点。
④采用压电控制阀。
在智能电气阀门定位器中采用压电控制阀,只有当输出信号增加时才耗用气源。
⑤采用带平衡结构的阀芯,降低执行机构推力或推力矩,缩小膜头气室,降低能源需要。
⑥采用变频调速技术代替控制阀。
对高压降比的应用场合,如果能量消耗很大,可采用变频调速技术,采用变频器改变有关运转设备的转速,降低能源消耗。
(6)保护环境:环境污染已经成为公害,控制阀对环境的污染主要有控制阀噪声和控制阀的泄漏。
其中,控制阀噪声对环境的污染更是十分严重。
①降低控制阀噪声。
研制各种降低控制阀噪声的方法,包括从控制阀流路设计到控制阀阀内件的设计,从噪声源的分析到降低噪声的措施等。
主要有设计降噪控制阀和降噪控制阀阀内件;合理分配压降,使用外部降噪措施,例如,增加隔离、采用消声器等。
②降低控制阀的大气污染。
控制阀的大气污染指控制阀的“跑”、“冒”、“滴”、“漏”,这些泄漏物不仅造成物料或产品的浪费,而且对大气环境造成污染,有时,还会造成人员的伤亡或设备爆炸等事故。
因此,研制控制阀填料结构和填料类型、研制控制阀的密封等将是控制阀今后一个重要的研究课题。
计算机科学、控制理论和自动化仪表等高新科学技术的发展推动了控制阀的发展,例如,现场总线控制阀和智能阀门定位器的研制、数字通信在控制阀的实现等。
控制阀的发展也推动了其他科学技术的发展,例如,对防腐蚀材料的研究、对削弱和降低噪声方法的研究、对流体动力学的研究等。
随着现场总线技术的发展,控制阀也将开放、智能和更可靠,它将与度更高,控制的效果更明显,并为我国现代化建设发挥更重要的作用其他工业自动化仪表和计算机控制装置一起,使工业生产过程控制的功能更完善,控制的精。
4、控制阀在水处理中的发展方向的重点和难点4.1重点:控制阀在水处理中的主要重点在于流量的控制,如:一改常规节流阀使用孔板或纯机械的减小流域面积的原理,利用相关导阀,最大限度地减小能量在节流过程中的损失;控制灵敏度高,安全可靠,调试简便,延长使用寿命。