九年级数学自测试题

合集下载

山东省青岛市2023--2024学年九年级上学期月考质检数学试题

山东省青岛市2023--2024学年九年级上学期月考质检数学试题

2023—2024 年山东省青岛市九年级月考质检数学试题2023.9(考试时间:120 分钟满分:150 分)说明:1.本试卷分为第I 卷和第II 卷两部分,共26 题. 第I 卷为选择题,共10 小题,40 分;第II 卷为填空题、作图题、解答题,共16 题,90 分。

2.所有题目均在答.题.卡.上作答,在试题上作答无效。

第I 卷(共40 分)一、选择题:(本大题共10 个小题,每小题4 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个几何体中,从上面看是三角形的是A B C D2.下列图形既是轴对称图形又是中心对称图形的是A B C D3.如图的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是 3 和-1,则点C 所对应的实数是A.13 B.2 3.3 1 D.3+14.下列计算正确的是A.5a2 - 4a2 =1 B.a7 ÷a4 =a3 C.(a3 )2 =a5 D.a2 ⋅a3 =a65.华为麒麟990 芯片采用了最新的0.000000007 米的工艺制程,数0.000000007 用科学记数法表示A.7⨯10-9 B.7⨯10-8 C.0.7 ⨯10-9 D.0.7 ⨯10-86.如图,直角三角板的直角顶点放在直线 b 上,且 a / /b , ∠1 = 55︒ ,则 ∠2 的度数为A . 35︒B . 45︒C . 55︒D . 25︒第 6 题 第 7 题7.如图,线段 AB 与线段 CD 关于点 P 对称,若点 A (3, 3) 、 B (5,1) 、 D (-3, -1) ,则点 C 的坐标为 A . (-3, -3) B . (-1, -3) C . (-4, -2) D . (-2, -4) 8.以下为真命题的是A .一组对边相等,另一组对边平行的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .有一条对角线平分一个内角的平行四边形为菱形.9.如图,在 Rt ∆ABC 中, ∠BAC = 90︒ 且 AB = 3 , AC = 4 ,点 D 是斜边 BC 上的一个动点,过点 D 分别作 DM ⊥ AB 于点 M , DN ⊥ AC 于点 N ,连接 MN ,则线段 MN 的最小值为A .125B .52C .3D .4第 9 题 第 10 题10.如图,等边三角形 OAD 的顶点 A (2, 0) ,延长 OD 至点 C ,使 CD = AD ,以 AD , CD 为邻边作 菱形 ABCD ;延长 CB 交 x 轴于点 A 1 ,延长 DC 至点 C 1 ,使 CC 1 = CA 1 ,以 A 1C , CC 1 为邻边作菱形 A 1 B 1C 1C ;以此类推,依次得到菱形 A 2 B 2C 2C 1 ,菱形 A 3 B 3C 3C 2 ⋯ 菱形 A n B n C n C n -1 .则菱形 A n B n C n C n -1 的面积为A . 22 n -1 ⨯B . 22 n ⨯C . 22 n +1D . 22 n + 2 ⨯第II 卷(共110分)二、填空题:(本大题共6 个小题,每小题5 分,共30 分)11.因式分解:(x -y)2 + 2 y(x -y) =.12.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m2 的矩形临时仓库,仓库一边靠墙,另三边用总长为80m 的栅栏围成,若设栅栏BC 的长为x m ,依据题意可列方程.13.对某校九年级随机抽取若干名学生进行体能测试,成绩记为1 分,2 分,3 分,4 分共4 个等级,将调查结果绘制成如下条形统计图(图1) 和扇形统计图(图2) .根据图中信息,这些学生的平均分数是分.14.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1 和l2分别表示两人到小亮家的距离s(km) 和时间t(h) 的关系,则出发h 后两人相遇.15.如图,将 A BCD 沿 EF 对折,使点 A 落在点 C 处,若 ∠A = 60︒ , AD = 4 , AB = 6 ,则 AE 的 长为.16.定义:在平面直角坐标系中,对于点 P ( x 1 , y 1 ) ,当点 Q ( x 2 , y 2 ) 满足 2( x 1 + x 2 ) = y 1 + y 2 时,称 点 Q ( x 2 , y 2 ) 是点 P ( x 1 , y 1 ) 的“倍增点”.已知点 P 1 (1, 0) ,则正确的结论有 .(填 写序号)①点 Q 1 (3, 8) , Q 2 (-2, -2) 都是点 P 1 的“倍增点”;②若直线 y = x + 2 上的点 A 是点 P 1 的“倍增点”,则点 A 的坐标为 (2,4) ;③抛物线 y = x 2 - 2x - 3 上存在两个点是点 P 1 的“倍增点”;④若点 B 是点 P 1 的“倍增点”,则 P 1 B 的最小值是455;三、解答题:(本大题共 10 个小题,共 80 分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分 6 分)已知: ∠ABC , D 为 BA 边上的一点.求作:点 P ,使 DP / / BC ,且点 P 到 BA , BC 的距离相等.(用直尺、圆规作图,不写作法,但要保留作图痕迹)解不等式组:253(2)13212x xxx+≤+⎧⎪⎨+-<⎪⎩,并指出它的所有非负整数解.19.(本小题满分8 分)化简:22211()a aaa a a---÷+,再从-1,0,1,2 中选一个合适的数代入求值.20.(本小题满分10 分)(1)解一元二次方程:x2 - 2x - 8 = 0(2)已知一元二次方程x2 -ax +1= 0 的两实数根相等,求a 的值21.(本小题满分10 分)为了解某校九年级全体男生体能情况,随机抽取了部分男生进行测试,将测试成绩分为A 、B 、C 、D 四个等级,并把成绩绘制成如图所示的两个统计图表,其中“75<x < 90 ”这组的数据如下:76,78,80,82,82,84,85,85,85,86,86,89.测试成绩统计表(1)填空:m = ,n = ;(2)B 等级成绩中的众数是,中位数是;(3)求扇形统计图中C 级的圆心角度数;(4)若该校九年级共有男生360 人,根据抽样结果,估计体育测试成绩达到B 级及以上(包括B 级)的男生人数.如图,在平面直角坐标系中,点O 为坐标原点,AB / /OC ,点B ,C 的坐标分别为(15,8) ,(21,0) ,动点M 从点A 沿A →B 以每秒1 个单位的速度运动;动点N 从点C 沿C →O 以每秒2 个单位的速度运动.M ,N 同时出发,当一个点到达终点后另一个点继续运动,直至到达终点,设运动时间为t 秒.(1)在t =3时,M 点坐标,N 点坐标.(2)当t 为何值时,四边形OAMN 是矩形?23.(本小题满分12 分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2 平方米.建A 类摊位每平方米的费用为20 元,建B 类摊位每平方米的费用为40 元.用150 平方米建A 类摊位的个数恰好是用120 平方米建B 类摊位个数的34.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共100 个,且B 类摊位的数量不少于A 类摊位数量的3 倍.建造多少个A 类摊位,多少个B 类摊位,才能使费用最少?并求出建造这100 个摊位的最少费用.如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 为OC 中点,过点C 作CF / /BD 交BE 的延长线于F ,连接DF .(1)求证:∆FCE ≅∆BOE ;(2)若AD =CD ,当∆ADC 满足什么条件时,四边形OCFD 为正方形?请说明理由.25.(本小题满分12 分)青岛某学校的学生进行综合实践活动时,探究每盆植株培育株数与市场销售价格之间的关系,通过实验和市场调查发现,每盆植株在5 株以内(含5 株),植株的品质较高,单株售价3 元,超过5 株后,每盆每多种1 株,单株售价降低0.3 元,当每盆种植株株数超过12 株后,植株品质较低,市场统一收购价单株0.8 元,每盆最多可种植18 株.(1)设每盆种植x(5<x≤12) 株,①则单株售价元,每盆售价元(用含x 的代数式表示);②当每盆售价为16.2 元时,求x 的值.(2)该学生实验小组共种植了40 盆,每盆培育所需费用y(元) 与每盆种植株数x (株) 之间满足y = 2 + 0.3x ,每盆植株除培育费用外无其他支出.该小组将其中10 盆赠送给学校,其余放至市场出售,全部售出后销售所得扣除培育费用后还剩余100 元,求每盆的种植株数.【模型定义】如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.【探究应用】①已知点M ,N 是线段AB 的勾股分割点,若AM =2 ,MN =3 ,则BN = ;②如图2,在∆ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点;【问题解决】如图3,已知点M ,N 是线段AB 的勾股分割点,MN >AM BN ,四边形AMDC ,四边形MNFE和四边形NBHG 均是正方形,点P 在边EF 上,试探究S∆ACN ,S∆APB,S∆MBH的数量关系.。

江苏省徐州市铜山区2020-2021学年九年级上学期期中自测数学试题

江苏省徐州市铜山区2020-2021学年九年级上学期期中自测数学试题

江苏省徐州市铜山区2020-2021学年九年级上学期期中自测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某校足球队20场比赛进球数如下,进1球的有7场,进2球的有6场,进3球的有7场,则该队平均每场进球数是()A.1个B.2个C.3个D.4个2.九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A.1 B.12C.13D.143.在平面直角坐标系中,已知点P的坐标为(6,8),若以点P为圆心,12为半径作圆,则坐标原点O与⊙P的位置关系是()A.点O在⊙P内B.点O在⊙P上C.点O在⊙P外D.无法确定4.抛物线y=2(x﹣3)2+2的顶点坐标是()A.(﹣3,2) B.(3,2) C.(﹣3,﹣2) D.(3,﹣2) 5.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD的度数为()A.70°B.80°C.90°D.100°6.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°7.若x1,x2 (x1< x2)是方程(x−a)(x−b)=1(a<b)的两个根,则实数x1,x2,a,b 的大小关系为()A.x1< x2<a<b B.x1<a< x2<b C.x1<a<b< x2D.a< x1<b< x28.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题9.某射击小组有7人,他们某次射击的数据如下:8,7,9,7,8,9,8.则这组数据的中位数是_______.10.某品牌专卖店对上个月销售的男运动鞋尺码统计如下:这组统计数据中的众数是_____码.11.已知,二次函数y=x2−4x+c的图像经过点(0,2),则函数y的最小值是__________.12.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=30°,则∠ABD=________°.13.一个不透明的布袋里共装有9个球(只有颜色不同),其中3个是红球,6个是白球,从中任意摸出一个球,则摸出的球是红球的概率是________.14.某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:则这两台分装机中,分装的茶叶质量更稳定的是_________.(填“甲”或“乙”)15.已知75°的圆心角所对的弧长为5π,则这条弧所在圆的半径是________.16.如图,已知⊙O的半径长为2,点C为直径AB的延长线上一点,且BC=2.过点C任作一条直线l.若直线l上总存在点P,使得过点P所作的⊙O的两条切线互相垂直,则∠ACP的最大值等于__________°.17.给一个圆锥形零件的侧面涂漆,零件的尺寸要求如图所示,则需要涂漆的面积为________2cm(结果保留π).18.如图一组有规律的正多边形,各正多边形中的阴影部分面积均为a,按此规律,则第n个正多边形的面积为______________.三、解答题19.如图,在半径为10cm的圆中作一个正六边形ABCDEF,试求此正六边形的面积.20.已知,抛物线的顶点坐标为(2,-1),与y轴交于点(0,3).求:(1)这条抛物线的表达式;(2)直接写出当1<x<5时,y的取值范围为.21.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?22.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.23.如图,AB是⊙O的直径,点C,D在⊙O上,CE⊥AB于点E,DF⊥AB于点F,且AE=BF.连接AC,BD.求证:AC=BD.24.如图,ΔOAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)25.已知二次函数y=−x2+2x+3.(1)求函数图象的顶点坐标,并画出这个函数的图象;(2)根据图象,直接写出:①当函数值y>0时,自变量x的取值范围;②当−2<x<2时,函数值y的取值范围.26.如图,AB是⊙O的直径,C为⊙O上一点,过点B作经过点C的直线CD的垂线,垂足为E(即BE⊥CD),BE交⊙O于点F,且BC平分∠ABE.(1)求证:CD为⊙O的切线;(2)若AB=10,CE=4,求线段EF的长.27.如图,在四边形ABCD中,AD//BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径.动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动,P、Q两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t,求:(1)t为何值时,P、Q两点之间的距离是10cm?(2)t为何值时,直线PQ与⊙O相切?28.如图,抛物线y= −12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(−1,0),C(0,2).(1)求抛物线的表达式;(2) 请你在抛物线的对称轴上找点P,使△PCD是以CD为腰的等腰三角形,所有符合条件的点P的坐标分别为;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E 点的坐标.参考答案1.B【解析】【分析】根据加权平均数的计算公式计算即可.【详解】该队平均每场进球数是172637220⨯+⨯+⨯=,故选B.【点睛】本题考查加权平均数的计算,若n个数中,x1出现f1次,x2出现f2次,…,x k出现f k次,那么(x1f1 + x2f2 + ... x k f k)/f1 + f2 + ... + f k叫做x1,x2,…,x k的加权平均数.2.D【分析】甲抽签有4种可能结果.其中第一棒只有1种,根据概率公式计算即可.【详解】解:甲跑第一棒的概率为14.故选D.【点睛】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3.A【分析】先根据点P的坐标求出OP的长,再比较OP与半径的大小即可判断坐标原点O与⊙P的位置关系.【详解】∵点P的坐标为(6,8),∴10OP=,∵10<12,∴点O在⊙P内,故选A.【点睛】本题考查点与圆的位置关系,根据点P的坐标利用勾股定理求出OP的长是解题的关键. 4.B【分析】根据y=a(x﹣h)2+k,顶点坐标是(h,k)可得答案.【详解】解:抛物线y=2(x﹣3)2+2的顶点坐标是(3,2),故选:B【点睛】本题考查二次函数的性质;熟练掌握二次函数由解析式求顶点坐标的方法是解题的关键.5.B【分析】由圆内接四边形的对角互补可得∠A=40°,再根据同弧所对的圆心角是圆周角的2倍,即可求出∠BOD的度数.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠A=180°-∠C=40°,∴∠BOD=2∠A=80°,故选B.【点睛】本题考查圆内接四边形的性质和同弧所对的圆周角与圆心角之间的关系,解题的关键是利用圆内接四边形的性质求出∠A的度数.6.C【分析】根据正多边形中心和正多边形中心角的定义计算即可.【详解】∵点O是正五边形ABCDE的中心,∴点O为正五边形ABCDE的外接圆圆心,∴∠AOB为正五边形ABCDE的中心角∴∠AOB=360°÷5=72°,故选C.【点睛】本题考查正多边形的中心和中心角的定义,正多边形的外接圆的圆心叫做正多边形的中心;正多边形每条边所对的圆心角叫做正多边形的中心角;熟练掌握定义是解题关键. 7.C 【分析】因为x 1和x 2为方程的两根,所以满足方程(x-a )(x-b )=1,再由已知条件x 1<x 2、a <b 结合图象,可得到x 1,x 2,a ,b 的大小关系. 【详解】用作图法比较简单,首先作出(x-a )(x-b )=0图象,随便画一个(开口向上的,与x 轴有两个交点),再向下平移一个单位,就是(x-a )(x-b )=1,这时与x 轴的交点就是x 1,x 2,画在同一坐标系下,很容易发现:x 1<a <b <x 2.故选C . 【点睛】本题考查了一元二次方程根的情况,结合图象得出答案是解决问题的关键. 8.A 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0. 【详解】①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <0,故正确; ②∵对称轴1,2bx a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).9.8【分析】先将这组数按从小到大排列,再根据有奇数个数,则中间的数字即为中位数.【详解】将这组数按从小到大排列7,7,8,8,8,9,9,∵共有7个数据,∴这组数据的中位数为8,故答案为8.【点睛】本题考查确定一组数据的中位数.注意找中位数的时候要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;果是偶数个则找中间两位数的平均数.10.41【解析】【分析】一组数据中出现次数最多的数叫做众数,由此结合表格信息即可得出答案.【详解】由表格可知,码号为41的销售量最大,故众数为41;因此,本题正确答案是41.【点睛】本题主要考查数据的收集和整理,根据众数的定义求解是本题的关键.11.−2【分析】先将点(0,2)代入y=x2−4x+c,求出二次函数的解析式,再用配方法求最小值即可.【详解】∵二次函数y=x2−4x+c的图像经过点(0,2),∴2= c,∴二次函数的解析式为y=x2−4x+2,∴y=x2−4x+2=(x-2)2-2,∵a=1>0,∴当x=2时,取得最小值,最小值为-2.故答案为-2.【点睛】本题考查二次函数的最值,解题的关键是利用配方法将二次函数解析式写成顶点式,然后根据a的正负,再求最值.12.60°【分析】由∠DCB=30°可得∠A=30°,再根据AB是⊙O的直径可得∠ADB=90°,然后计算∠ABD 的度数即可.【详解】∵∠DCB=30°,∴∠A=30°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°-∠A=60°,故答案为60.【点睛】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.13.13【分析】根据概率的计算公式直接计算即可.【详解】∵共有9种等可能情况,其中摸出红球的等可能情况有3种, ∴摸出的球是红球的概率是3193 , 故答案为13. 【点睛】本题考查概率的求法,熟知概率的计算公式是解题的关键.14.乙【解析】【分析】根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.【详解】解:∵2S甲=16.23,2S 乙=5.84, ∴2S 甲>2S 乙,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.12【分析】 根据弧长的计算公式180n r l π=,代入计算即可求出这条弧所在圆的半径. 【详解】 由题意可得755180r ππ=, 解得12r =.故答案为12.【点睛】本题考查弧长的计算公式,熟记弧长的计算公式是解题的关键.16.45【分析】根据切线的性质和已知条件先证得四边形PMON 是正方形,从而求得OP= ,以O 为圆心,以O ,然后过C 点作大⊙O 的切线,切点即为P 点,此时∠ACP 有最大值,作出图形,根据切线的性质得出OP ⊥PC ,根据勾股定理求得PC 的长,从而证得△OPC 是等腰直角三角形,即可证得∠ACP 的最大值为45°.【详解】∵PM 、PN 是过P 所作的⊙O 的两切线且互相垂直,∴∠MON=90°,∴四边形PMON 是正方形,根据勾股定理求得OP =∴P 点在以O 为圆心,以长为半径作大圆⊙O 上,以O 为圆心,以长为半径作大圆⊙O ,然后过C 点作大⊙O 的切线,切点即为P 点,此时∠ACP 有最大值,如图所示, ,∵PC 是大圆⊙O 的切线,∴OP ⊥PC ,∵OC=4,OP= ,∴PC=∴OP=PC ,∴∠ACP=45°,∴∠ACP 的最大值等于45°.故答案为45.【点睛】本题考查了切线的性质,正方形的判定和性质,勾股定理的应用,解题的关键是求得P 点的位置.17.72π【分析】根据圆锥的侧面积等于πrl 计算即可.【详解】12÷2=6cm,π×6×12=72π(cm 2).故答案为72π.【点睛】本题考查了圆锥的侧面积的计算,牢记圆锥的侧面积公式是解答本题的关键.如果圆锥的底面半径为r ,母线长为l ,那么圆锥的侧面积等于πrl .18.n+12a【解析】试题分析:第一个图形的面积为a ,第二个图形的面积为32a ,第三个图形的面积为2a ,第四个图形的面积为52a ,则第n 个图形的面积为n+12a.考点:规律题.19.S 正六边形ABCDEF 2.【解析】【分析】连接OA ,OB ,且过点O 作OH ⊥AB ,易求△OAB 的面积,所以正六边形ABCDEF 的面积是6倍的△OAB 的面积,问题得解.【详解】连接OA ,OB ,且过点O 作OH ⊥AB ,由正六边形ABCDEF 可得△OAB 是等边三角形,∴AB=OA=10,∴OH=OAsin60°∴S △OAB =12×AB×OH=12×10×∴S 正六边形ABCDEF =6×2 . 【点睛】本题考查了正多边形和圆,关键是掌握圆的内接正六边形的边长等于圆的半径. 20.(1)243y x x =-+;(2)-1≤y <8 【分析】(1)设所求抛物线的解析式为:2(2)1y a x =--,代入点(0,3)求得a 的值,即可得抛物线的表达式;(2)根据二次函数的解析式,可得当y 的最小值为-1,当1<x <5时,-1≤y <8.【详解】(1)设所求抛物线的解析式为:2(2)1y a x =--,把x =0,y =3代入上式,得:2(2)13a --=,解得a =1.∴抛物线的解析式为:2(2)1y x =--,即243y x x =-+.(2)当x=-1时,2(1)4(1)38y =--⨯-+=,当x=5时,254538y =-⨯+=,当x=2时,y=-1,∴-1≤y<8.【点睛】本题考查待定系数法求函数解析式和函数的取值范围的判定,求函数的取值范围时,需要注意不能简单代入求解,要根据函数的图像结合x的取值范围再确定y的取值范围. 21.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.(1)P(摸出白球)=23;(2)这个游戏规则对双方不公平.【分析】(1)根据A袋中共有3个球,其中2个是白球,直接利用概率公式求解即可;(2)列表得到所有等可能的结果,然后分别求出小林获胜和小华获胜的概率进行比较即可. 【详解】(1)A袋中共有3个球,其中有2个白球,∴P(摸出白球)=23;(2)根据题意,列表如下:由上表可知,共有9种等可能结果,其中颜色相同的结果有4种,颜色不同的结果有5种,∴P(颜色相同)=49,P(颜色不同)=59,∵49<59,∴这个游戏规则对双方不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.23.见解析【分析】通过证明Rt△CEO≌Rt△DFO可得∠COE=∠DOF,再根据圆周角定理可得AC=BD.【详解】证明:如图,连接CO、DO,∵AO=BO,AE=BF,∴AO-AE=BO-BF,即OE=OF.∵CE⊥AB,DF⊥AB,∴∠CEO=∠DFO=90°.∵CO=DO,∴Rt△CEO≌Rt△DFO,∴∠COE=∠DOF,∴AC=BD.【点睛】本题考查圆周角定理,解题的关键是证明Rt△CEO≌Rt△DFO.24.4√3-4π3【解析】【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC 为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积-扇形AOB面积,求出即可.【详解】连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,OA=2,∠AOC=60°,∴OC=12∴∠AOB=120°,AC=√OA2−OC2=2√3,即AB=2AC=4√3,则S 阴影=S △AOB -S 扇形=12×4√3×2-120π×22360=4√3-4π3. 故图中阴影部分的面积为4√3-4π3.【点睛】此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.25.(1)(1,4),见解析;(2)①−1<x <3;②−5<y ≤4.【分析】(1)将二次函数配方成顶点式后即可确定其顶点坐标;(2)①令y=0,求得抛物线与坐标轴的交点坐标,即可得出当函数值y >0时,自变量x 的取值范围;②结合函数图像可知,当x=-2时函数值最小,当x=1时函数值最大.【详解】(1)∵y =−x 2+2x +3=−(x −1) 2+4,∴函数图象的顶点坐标(1,4);函数的图象如图:(2) ①令y=0,则y =−x 2+2x +3=0,解得11x =-,23x =,∴当函数值y >0时,自变量x 的取值范围为−1<x <3;②当x=-2时,y =−(-2)2+2×(-2)+3=-5,当x=2时,y =−22+2×2+3=3,当x=1时,y=4,∴当−2<x<2时,函数值y 的取值范围为−5<y ≤4.【点睛】本题考查二次函数的图形和性质,解题时需注意,根据自变量的取值范围求函数值的取值范围时,要结合函数图像,函数值的最大值不一定是自变量的最大值.26.(1)证明见解析;(2)EF=2.【分析】(1)连接OC,证CD⊥OC即可,因为BE⊥CD,所以只要证OC∥BE即可,而根据等边对等角,以及角平分线的定义,即可证得∠OCB=∠EBC,则OC∥BE;(2)连接AC,则△ABC∽△CBE,设AC=x,,由勾股定理可得,由图知AC<BC,所以,BC=,BE=8,由切割线定理可求出EF.【详解】解:(1)连接OC.∵OC=OB,∴∠ABC=∠OCB,又∵∠EBC=∠ABC,∴∠OCB=∠EBC,∴OC∥BE,∵BE⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)连接AC,因为AB是直径,所以∠ACB=90°又BC平分∠ABE所以△ABC∽△CBE设AC=x,所以,由勾股定理可得,由图知AC<BC,所以,BC=,BE=8由切割线定理得:,所以,所以EF=2.【点睛】本题考查1.切线的判定;2.勾股定理;3.相似三角形的性质与判定;4.切割线定理.27.(1)当t=5或8时,P、Q两点之间的距离是10cm;(2)t=8或23时,直线PQ与⊙O相切【分析】(1)作PE⊥BC于E,由勾股定理,得(26−4t)2+64=100,解得t=5或8问题得解;(2)设运动t秒时,直线PQ与⊙O相切于点G,如图因为,AB=8,AP=t,BQ=26-3t,所以,PQ=26-2t,因而,过p做PH⊥BC,得HQ=26-4t,于是由勾股定理,可的关于t的一元二次方程,则t可求.问题得解.【详解】(1)如图1,作PE⊥BC于E,AP=t,BQ=26−3t,QE=26−4t.由勾股定理,得(26−4t)2+64=100,解得t=5或8;∴当t=5或8时,P、Q两点之间的距离是10cm.(2)设运动t秒时,直线PQ与⊙O相切于点G,过P作PH⊥BC于点H,则PH=AB=8,BH=AP,可得HQ=26-3t-t=26-4t,由切线长定理得,AP=PG,QG=BQ,则PQ=PG+QG=AP+BQ=t+26-3t=26-2t,由勾股定理得:PQ2=PH2+HQ2,即(26-2t)2=82+(26-4t)2,化简整理得 3t2-26t+16=0,解得t=8或23,所以当t=8或23时,直线PQ与⊙O相切.【点睛】本题主要考查一元二次方程的应用--动态几何问题,解题的关键是结合图形用勾股定理列式求解.28.(1)y =﹣12x 2+32x +2;(2)P 1(32,4),P 2(32,52),P 3(32,﹣52);(3)S 四边形CDBF 的面积最大=132,E (2,1) 【分析】(1)直接把A 点和C 点坐标代入y=﹣12x 2+mx+n 得m 、n 的方程组,然后解方程组求出m 、n 即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣32,则D (32,0),则利用勾股定理计算出CD=52,然后分类讨论:如图1,当CP=CD 时,利用等腰三角形的性质易得P 1(32,4);当DP=DC 时,易得P 2(32,52),P 3(32,﹣52); (3)先根据抛物线与x 轴的交点问题求出B (4,0),再利用待定系数法求出直线BC 的解析式为y=﹣12x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E (x ,﹣12 x+2)(0≤x ≤4),则F (x ,﹣12 x 2+32x+2),则FE=﹣12x 2+2x ,由于△BEF 和△CEF 共底边,高的和为4,则S △BCF =S △BEF +S △CEF =12•4•EF=﹣x 2+4x ,加上S △BCD =52,所以S 四边形CDBF =S △BCF +S △BCD =﹣x 2+4x+52(0≤x ≤4),然后根据二次函数的性质求四边形CDBF 的面积最大,并得到此时E 点坐标.【详解】(1)∵抛物线y =﹣12x 2+mx +n 经过A (﹣1,0),C (0,2). ∴221(1)(1)0210022m n m n ⎧--+⋅-+=⎪⎪⎨⎪-⋅+⋅+=⎪⎩解得:322m n ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式为:y =﹣12x 2+32x +2;(2)抛物线的对称轴为直线332122()2x =-=⨯-,则D (32,0),∴52CD ==,如图1,当CP=CD 时,则P 1(32,4);当DP=DC 时,则P 2(32,52),P 3(32,﹣52),综上所述,满足条件的P 点坐标为P 1(32,4),P 2(32,52),P 3(32,﹣52);(3)当y =0时,0=﹣12x 2+32x +2∴x 1=﹣1,x 2=4,∴B (4,0).设直线BC 的解析式为y =kx +b ,由图象,得240b k b =⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为:y =﹣12x +2.如图2,过点C 作CM ⊥EF 于M ,设E(a,﹣12a+2),F(a,﹣12a2+32a+2),∴EF=﹣12a2+32a+2﹣(﹣12a+2)=﹣12a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=12BD•OC+12EF•CM+12EF•BN,=15222⨯⨯+12a(﹣12a2+2a)+12(4﹣a)(﹣12a2+2a),=﹣a2+4a+52(0≤x≤4).=﹣(a﹣2)2+132∴a=2时,S四边形CDBF的面积最大=132,∴E(2,1).【点睛】本题考查二次函数的图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;解题时需注意利用待定系数法求函数的解析式,灵活应用三角形的面积公式,运用分类讨论的思想解决数学问题.。

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题1.下列函数一定是二次函数的是()A.B.C.D.2.方程的二次项系数、一次项系数、常数项分别为()A.4、、B.4、2、C.4、、1D.4、2、13.若二次函数的图象经过点,则该图象必经过点()A.B.C.D.4.关于x的一元二次方程的根的情况是()A.实数根的个数由b的值确定B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根5.下列关于二次函数的图象说法中,错误的是()A.它的对称轴是直线B.它的图象有最低点C.它的顶点坐标是D.在对称轴的左侧,y随着x的增大而增大6.若m、n是关于x的方程的两个根,则的值为()A.4B.C.D.7.一抛物线的形状、开口方向与抛物线相同,顶点为,则此抛物线的解析式为()A.B.C.D.8.《九章算术》中有这样一道题:“今有二人同所立.甲行率六,乙行率四.乙东行,甲南行十步而邪东北与乙会.问:甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲走了多少步()A.24B.30C.32D.369.某校从本学期开始实施劳动教育,在学校靠墙(墙长22米)的一块空地上,开辟出一块矩形菜地,如图所示,矩形菜地的另外三边用一根长49米的绳子围成,并留1米宽的门,若想开辟成面积为300平方米的菜地,则菜地垂直于墙的一边的长为()A.10米B.12米C.15米D.不存在10.函数和()在同一平面直角坐标系中的图象可能是()A.B.C.D.11.二次函数的顶点坐标是______.12.由于制药技术的提高,某种疫苗的成本下降了很多,因此医院对该疫苗进行了两次降价,设平均降价率为x,已知该疫苗的原价为462元,降价后的价格为y元,则y与x之间的函数关系式为______.13.已知关于x的一元二次方程,其中a、b、c分别为三边的长,如果方程有两个相等的实数根,则的形状为______.14.抛物线的图象交y轴于点A,点A关于x轴的对称点为点B.(1)点B坐标为______;(2)点,,且线段CD与抛物线恰有一个公共点,则m的取值范是______.15.解方程:16.直线与抛物线交于点.(1)求a和n的值;(2)对于二次函数,当y随x的增大而增大时,求自变量x的取值范围.17.已知关于x的一元二次方程.(1)判断方程根的情况;(2)设,是方程的两个根,求的值.18.如图,将一些小圆按规律摆放:(1)第个图形有个小圆,第个图形有个小圆(用含的代数式表);(2)能用个小圆摆成这样的图形吗?如果能,请求出摆成的是第几个图形;如果不能,请说明理由.19.如图,在中,,,点M从点A开始沿AC以的速度向点C运动(到点C时停止),过点M作,交BC与点N,并设点M的运动时间为t s.(1)当t为何值时,的面积为?(2)若,求t的值.20.如图,抛物线与y轴交于点A,过点A作与x轴平行的直线,交抛物线相交于点B、C(点B在点C的左面),若,求m的值.21.已知二次函数.(1)求证:不论n取何值时,抛物线的顶点始终在一条直线上.(2)若点,都在二次函数图象上,求证:.22.某商店销售一款成本价为40元的洗发水,如果每瓶按60元销售,每天可卖20瓶.该商店通过调查发现,每瓶洗发水售价每降低1元,日销售量增加2瓶.(1)如果该商店想保持日利润不变,且尽快销售完这批洗发水,每瓶售价应定为多少元?(2)同城另一家商店也销售同款洗发水,标价为每瓶62.5元.为促进销售,提高利润,这家商品决定实行打折促销,且其销售价格不低于(1)中的售价且不高于60元,则洗发水至少需打几折?23.如图,抛物线与x轴相交于B,C两点(点B在点C的左边),与y轴相交于点A,直线AC的函数解析式为.(1)求点A,C的坐标;(2)求抛物线的解析式;(3)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标.。

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。

初三数学考试题及答案

初三数学考试题及答案

初三数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 1/5D. -1/5答案:A3. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3y = 0D. 3x^3 - 2 = 0答案:B4. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是:A. 3B. 5C. 8D. 不能确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A7. 以下哪个是正比例函数?A. y = 3x + 2B. y = 5xC. y = x^2D. y = 1/x答案:B8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是:A. 60B. 48C. 36D. 24答案:A10. 一个角的补角是120°,那么这个角是:A. 60°B. 120°C. 180°D. 0°答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,那么这个数可以是______或______。

答案:5或-512. 一个角的余角是30°,那么这个角是______。

答案:60°13. 一个数的平方等于9,那么这个数是______或______。

答案:3或-314. 一个等腰三角形的底角是45°,那么顶角是______。

答案:90°15. 函数y = 2x - 1与x轴的交点坐标是______。

数学初三试卷含答案

数学初三试卷含答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. 3B. 2.5C. √4D. √22. 若x + y = 5,x - y = 1,则x² - y²的值为()A. 24B. 16C. 9D. 103. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x²C. y = 3/xD. y = 2x³4. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数是()A. 105°B. 75°C. 120°D. 90°5. 已知一元二次方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂的值为()A. 5B. 6C. 2D. -56. 在平面直角坐标系中,点A(2,3)关于y轴的对称点B的坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)7. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 1,3,5,78. 若a、b、c是△ABC的三边,且a + b = c,则△ABC是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形9. 已知正方形的对角线长为10cm,则其边长为()A. 5cmB. 10cmC. 20cmD. 15cm10. 下列命题中,正确的是()A. 所有的平行四边形都是矩形B. 所有的矩形都是正方形C. 所有的等腰三角形都是等边三角形D. 所有的等边三角形都是等腰三角形二、填空题(每题3分,共30分)11. 若x² - 4x + 3 = 0,则x² - 2x的值为______。

12. 函数y = 2x - 1的图像是一条______直线。

13. 在△ABC中,若∠A = 60°,∠B = 75°,则∠C的度数为______。

2024年重庆一中九年级上学期开学考数学试题及答案

2024年重庆一中九年级上学期开学考数学试题及答案

重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.68.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.199.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∴△ABF≌∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x <85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:(1)填空:a=,b=,m=;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(写出一条理由即可)(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷(答案)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.【答案】C2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.【答案】B3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生【答案】C4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间【答案】D5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.6【答案】C8.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.19【答案】C9.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.【答案】.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为48° .【答案】48°.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为12.【答案】12.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.【答案】.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.【答案】.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=45° .【答案】45°.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为7.【答案】7.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是7532;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为3162.【答案】7532;3162.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).【答案】(1)a2+2b2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=AD∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∠BAE=∠DAN∴△ABF≌△ADN∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则两交点到顶点的距离相等.【答案】作图见解析,①AD;②∠BAE=∠DAN;③△ADN;④两交点到顶点的距离相等.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:年级平均数中位数众数优秀率七91a95m八9193b65%(1)填空:a=92.5,b=94,m=60%;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.【答案】(1)92.5,94,60%;(2)八年级学生对“防诈反诈”的了解情况更好;(3)这两个年级竞赛成绩为优秀的学生总人数为988人.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.【答案】(1)y1=;(2)函数图象见解答,函数的最小值为3(答案不唯一);(3)7≤m≤11.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?【答案】(1)甲班的步行速度为4.5km/h,乙班的步行速度为3km/h;(2)乙班到达终点用了小时.24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)【答案】(1)车站B到目的地D的距离为(50+50)千米;(2)救援车能在应急车到达之前赶到D处.25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.【答案】(1)y=x+2;(2)P(,)、P A+PB的最小值为:;(3)存在,点M的坐标为:(,)或(,﹣).26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】。

第一学期九年级数学第一次月考试题及答案

第一学期九年级数学第一次月考试题及答案

GFEDCBA—第一学期九年级数学月考试题命题人:王保爱 校对:朱锦华测试时间:120分钟 满分:150分 得分一.精心选一选(每题3分,共36分)序号 1 2 3 4 5 6 7 8 9 10 11 12 答案1. 若等腰三角形的一个角为50°,则顶角为 ( )A .50°或80°B .100°C .80°D .65° 2. 下列图形中,既是中心对称图形,又是轴对称图形的是 ( ) A.平行四边形 B.等边三角形 C.矩形 D.等腰梯形 3.如图,将矩形ABCD 沿AE 折叠,若∠BAD′=30°,则∠AED′ 等于( )A .30°B .45°C .60°D .75°第5题4. 如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边 于点E ,则EC 等于 ( )A .1cm B. 2cm C. 3cm D. 4cm5.如图,正方形ABCD 的边长为a ,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=22aB .S=42aC .S=432a D .S 与BE 长度有关6. 顺次连结等腰梯形ABCD 各边中点,所得的四边形一定是( ) A .等腰梯形 B .菱形 C .矩形 D .平行四边形ED ′DCBA 第3题EDCBA第4题学校 班级 姓名 考号21LDCBA第16题图A B C D7. 将正方形纸片次对折,并剪出一个菱形小洞后铺平,得到的图形是( )8. 下列各式中,正确的是( )A .215<3B .315<4C .415 5D . 14159. 9.1x +x 必须满足的条件是( )A 、x ≥1B 、x >-1C 、x ≥-1D 、x >1 10.若一组数据1、2、3、x 的极差是6,则x 的值为( )A.7B.8C.9D.7或-311. 下列运算中,错误..的有 ( ) 2551114412=,②442±=,③2)2(2=-,④2095141251161=+=+ A . 1个 B . 2个 C . 3个 D . 4个12. 当m <02m 的结果是 ( )A 、-1B 、1C 、mD 、-m . 二.细心填一填(本大题共6小题,每空3分,共21分) 13.一组数据库,1,3,2,5,x 的平均数为3,那么x= ,这组数据的标准差是______14. 图中标出了某校篮球队中5名队员的身高(单位:cm),则他们的身高的方差是_______.15.若024=--+-+y x y x ,则xy = 16.如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是17.已知菱形ABCD 的边长为cm 10,∠BAD=120º,则菱形的面积为 ㎝2。

2024-2025学年第一学期期中质量自查-初三年级数学试题(道滘中学初三数学考试)

2024-2025学年第一学期期中质量自查-初三年级数学试题(道滘中学初三数学考试)

2024-2025学年第一学期期中质量自查初三年级数学试题一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个选项是符合要求的)1.下列方程是一元二次方程的是 ( )A. x2+x+3=0B. 3x2−2=0C.x2+−=7D.5.-3=02.下面各组图形中,不是相似图形的是A. B. C. D.3.一元二次方程x2+4x=2配方后化为A. (x+2)2=6B.(x−2)2=6C.(x+2)2=−6D. (x+2)2=−24.一元二次方程x2+x−2=0的根的情况是A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.在我市组织的一次青少年足球比赛预赛中,每两队之间都要进行一场比赛,共要比赛28场,则参赛队个数是( )A.7B.8 a 12 D.146.把抛物线x=x2的图象向右平移2个单位,再向上平移3个单位,所得函数解析式为A. x=(x−2)2+3B. x=(x+2)2+3C. x=(x−3)2−2D. x=(x−3)2+27.下列对抛物线x=−2(x+3)2-1描述本正确的是A.开口向下B.y有最大值C.对称轴是直线x=-3D.顶点坐标为(3,-1)8.已知抛物线x=x2−2x−1与x轴的一个交点为(m,0),则代数式x2−2x+2024的值为()A.2022B. 2023C. 2024D. 20259.如图,在□ABCD中,对角线AC,,BD相交于点O,点E为OC的中点,EFIIAB交BC于点F.若AB=4,则EF为A.12B.1 C.310D.210.根据表格中二次函数y=ax3+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x的范围是A.0<x<0.5B.0.5<x<1C.1<x<1.5D.1.5<x<2 二、填空题(本大题共6小题,每小题3分,共18分)11.一元二次方程2=2024x的解是12.二次函数的图象与y轴的空点坐标为13.设x1,x2是一元二次方程x2−6x+x=0的两个亦数根,若x1=2,则x2的值为14.若点x(3,x1)⋅x(5,x2)在函数x=−x2+4x+1的图象上,则x1−x2(用"<"、">”或者“=”连接).15.如图,为测量学校旗杆高度,小艺同学在脚下水平放置一平面镜,然后向后退,直到她刚好在镜子中看到旗杆的顶端,已知小艺的眼睛离地面高度为1.6米,同时量得小艺与镜子的水平距离为2米,镜子与旗杆的水平距离为10米.则旗杆的高度为米.16如图,抛物线x=xx2+xx+x(x≠0)与x轴交于点(3,0),对称轴为直线x=1.结合图象分析下列结论:①abc<0;②4a+2b+c<0;③2a+c<0;④一元二次方程x2+xx+x=x的两根分别为x1=13,x2=−1.其中正确的结论有(请填序号)第15题图)(第16题图)三、解答题(本大题共9小题,满分72分,解答写出必要的文字说明、证明过程或计算步骤)17.(本题满分4分)解方程:x2+2x−3=018.(本题满分4分)已知二次函数的图象以A(5-4)为顶点,且过点B(-2,5),求该函数的关系式.19.(本小题满分6分)如图,在等腰AABC中,AD是顶角<BAC的角平分线,BE是腰AC 边上的高,垂足为点B.求证:ACDABCE.x 0 0.5 1.5 2 x=+xx+x-1 -0.5 1 3.5 7220.(本小题满分6分)已知二次函数x=x2−4x+3,(1)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象:(2)当x时,y随x的增大而减小;(3)当y>0时,x的取值范围是、(4)根据图象回答:当0≤x<3时,y的取值范围是21.(本小题满分8分)已知关于x的一元二次方程2x2−(x+1)x+x−1=0(x为常数.(1)当a=2时,求出该一元二次方程实数根:(2)若 3 m是这个一元二次方程两根,且x,x2是以5为斜边的直角三角形两直角边,求a的值.22.(本小题满分10分)根据以下素材,探索完成任务.23.(本小题满分10分)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系y=-0..4x+2.8;;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系x=x(x−1)2+3.2.(1)求点P的坐标和a的值:(2)小林分析发现,上面两种击球方式均能使球过网,要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.(参考√2≈1.414)24.(本小题满分12分)如图,抛物线x=x4x2+10x+2与x轴交于点A,与y轴交于点B1C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.(1)求直线AB的表达式:(2)若ΔABE的面积取得最大值,求出这个最大值:(3)当以B,B,D为顶点的三角形与ΔCDA相似时,求点C的坐标.25.(本小题满分12分)已知关于x的一元二次方程x2−(x+1)x+12(x2+1)=0有实数报.(1)求m的值:(2)先作x=x2−(x+1)x+12(x2+1)的图象关子/x轴为对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式:(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n-4π的最大值和最小值.素材1 随着数字技术、新能源、新材料等不断突破,我国制造业发展迎来重大机遇.某工厂一车间借助智能化,对某款车型的零部件进行一体化加工,生产效率提升,该零件4月份生产100个,6月份生产144个.素材2该厂生产的零件成本为30元/个,销售一段时间后发现,当零件售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元,则月销售量将减少10个.问题解决任务1 该车间4月份到6月份生产数量的平均增长率;任务2 为使月销售利润达到10000元,而且尽可能让车金得到实惠,则该零件的实际售价应定为多少元?x ... 0 1 2 3 4 ... y ... m 0 -1 ...。

初中数学单元质量达标九年级全一册自测题

初中数学单元质量达标九年级全一册自测题

初中数学单元质量达标九年级全一册自测题想想看,数学题就像是生活中的那些小插曲,有的让你捧腹大笑,有的却让你哭笑不得。

你明明已经掌握了某个知识点,结果遇到类似的题目,还是会觉得无从下手。

就好比你明明知道“猴子捞月”的故事,结果在考试时却把月亮捞成了猴子。

这时候,心里那种无奈的感觉,真是让人想摔掉铅笔,干脆来个“开溜”。

说到自测题,大家一定要记得,不能被它们的表面吓到。

其实它们不过是让你练手的小“沙包”。

拿到卷子,先别急着发愁,先把题目看一遍,有些题目其实是“一拍即合”,灵光一闪就能解决。

像有些几何题,看似复杂,其实只要找对了切入点,就能“水到渠成”。

就像你在超市里挑水果,看到个又大又红的苹果,心里暗想,买了它,肯定是“赚”到。

别忘了,做题的时候可以多“揣摩”题目的意思。

题目上那些“条件”就像是一张藏宝图,藏着解题的关键。

抓住了“关键”,恨不得能一口气把所有题目都解完,简直是“百事可乐”的感觉!偶尔也要给自己放个假,别让那些题目把自己逼得像个“陀螺”一样,转得快,但什么都抓不住。

那些数学公式就像是生活中的调味品。

有了它们,解题的时候就不会觉得单调乏味。

比如,正方形的面积公式,边长乘边长,就好比是把两片面包夹在一起,越夹越厚,越夹越好吃。

这样一想,心情也轻松了很多。

公式运用得当,就像做菜时加了点盐,恰到好处,味道立马提升。

再说说图形的理解。

几何题里那些线条和角度,有时看得眼花缭乱,心里想着,难不成我是在看现代艺术?只要多画几遍图,就能把那些复杂的关系理顺。

就像在街头巷尾的迷宫里,找到了出路,心里那个“舒坦”,简直就是开了个外挂。

大家要明白,考试不仅仅是对知识的考验,更是对心态的挑战。

遇到难题,别着急,深呼吸,调整好心情。

你要相信,努力付出总会有回报。

就算这一回不行,下一次也一定能大展拳脚。

别忘了,“只要功夫深,铁杵磨成针”,一定能在数学的世界里游刃有余,最终收获“满分”的喜悦。

初三数学试卷完整版

初三数学试卷完整版

一、选择题(每题5分,共50分)1. 下列数中,不是有理数的是()A. 0.5B. -3C. πD. 1/22. 若a、b是方程x² - 3x + 2 = 0的两个根,则a+b的值为()A. 2B. 3C. 4D. 53. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形5. 若a²=4,则a的值为()A. ±2B. ±4C. 2D. 46. 下列函数中,是奇函数的是()A. y = x²B. y = 2x + 1C. y = x³D. y = 1/x7. 在梯形ABCD中,AD平行于BC,且AD=10cm,BC=8cm,AB=CD=6cm,那么梯形的高h为()A. 4cmB. 5cmC. 6cmD. 7cm8. 若sinα = 1/2,则cos(α + π/3)的值为()A. 1/2B. √3/2C. -1/2D. -√3/29. 在△ABC中,若∠A = 30°,∠B = 45°,则sinC的值为()A. 1/2B. √2/2C. √3/2D. 110. 若log2(x+1) = 3,则x的值为()A. 2B. 4C. 8D. 16二、填空题(每题5分,共50分)1. 若x² - 5x + 6 = 0,则x的值为______。

2. 在等差数列{an}中,a₁ = 2,d = 3,则第10项a₁₀ = ______。

3. 圆的半径为r,则圆的周长C = ______。

4. 若a > b,则a² - b² = ______。

5. 若sinα = 1/√2,则cosα = ______。

6. 在直角坐标系中,点P(-2,3)到原点O的距离为______。

2024年重庆市八中九年级上学期开学考数学试题及答案

2024年重庆市八中九年级上学期开学考数学试题及答案

重庆市第八中学2024-2025学年九年级上学期数学开学考试自测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣32.(4分)随着人们健康生活理念的提高,环保意识也不断增强,以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.3.(4分)下列调查中,最适合抽样调查的是()AB.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高4.(4分)估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.(4分)如图,△ABC与△DEF位似,点O为位似中心,已知AO:OD=2:1,△ABC周长为8,则△DEF的周长是()A.1 B.2 C.4 D.66.(4分)若点A(1,y1),B(﹣2,y2),C(﹣3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y27.(4分)流行性感冒传染迅速,若有一人感染,经过两轮传染后共有100人患病,设每轮传染中平均一人传染了x人,可列出的方程是()A.(x+1)2=100 B.1+(x+1)2=100C.x+x(1+x)=100 D.1+x+x2=1008.(4分)用一样长的小木棒按如图的方式搭建图形,图①需要6根小木棒,图②需要11根小木棒,图③需要16根小木棒,…,按照这个规律,图8需要小木棒的根数是()A.36 B.41 C.42 D.469.(4分)如图,在正方形ABCD中,点E为AD边的中点,F为AD上一点,连接BE,BF,DF+CD=BF,若∠ABE=α,则∠ABF的大小为()A.2α﹣15° B.α+10° C.3α﹣45° D.90°﹣2α10.(4分)a﹣b,a+b,a﹣b,a+b,...是由a﹣b,a+b交替排列的n个多项式,其中a≠b,将这n个多项式中的任意m个多项式中的每一项都改变符号,其余不变,称为第1次操作(1≤m≤n,且m,n均为整数);在第1次操作的基础之上再将任意m个多项式中的每一项都改变符号,其余不变,称为第2次操作;按此方式操作下去….例如:当n=3,m=2时,第1次操作后可能得到;﹣a+b,﹣a﹣b,a﹣b或﹣a+b,a+b,﹣a+b或a﹣b,﹣a﹣b,﹣a+b.下列说法:①当n为奇数时,无论进行多少次操作,都不可能使得到的n个多项式的和为0;②当n=6,m=5时,至少需要进行3次操作,才能使得到的6个多项式的和中不含a;③当n=6,m=3时,3次操作后得到的6个多项式求和,共有8种可能出现的结果.其中正确的个数是()A.0 B.1 C.2 D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:=.12.(4分)已知关于x的一元二次方程mx2﹣4x+2=0有两个不相等的实数根,则m的取值范围是.13.(4分)不透明的盒子中有四个形状、大小、质地完全相同的小球,上面分别标着数字1,2,3,4,将四个小球放入盒中摇匀,从盒中随机取出一个小球,记下数字后放回,摇匀后再从盒中随机取出一个,则两次抽取的小球上的数字之积为奇数的概率为.14.(4分)如图,在平面直角坐标系中,点A是反比例函数y=图象在第一象限的一点,连结OA并延长使AB =OA,过点B作BC⊥x轴,交反比例函数图象于点D,连结AD,且S△ABD=3,则k的值为.15.(4分)如图,已知正方形ABCD的边长为4,以CD为直径作半圆,点E是半圆的中点,则图中阴影部分面积为.16.(4分)若关于x的一元一次不等式组的解集为x≤a,且关于y的分式方程有非负数解,则满足条件的所有整数a的和为.17.(4分)如图,在等腰直角△ABC中,AC=2,M为边BC上任意一点,连接AM,将△ACM沿AM翻折得到△AC′M,连接BC′并延长交AC于点N,若点N为AC的中点,则CM的长为.18.(4分)若一个四位自然数M的千位数字与个位数字之和恰好是M的百位数字与十位数字之和的2倍,则称这个四位数M为“好数”.一个“好数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=a+b+c+d,G(M)=.若为整数,G(M)是4的倍数,则b+c=;所有满足条件的M的最大值和最小值的差为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)4a(a+b)﹣(a+2b)2;(2).20.(10分)在学习了角平分线的性质后,小红进行了拓展性探究.她发现在直角梯形中,如果两内角(非直角内角)的角平分线相交于腰上同一点,那么两底边的长度之和等于这两内角夹边的长度.她的解决思路是:将问题转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决,请根据她的思路完成以下作图与填空:用直尺和圆规,过点E作AD的垂线,垂足为点F(只保留作图痕迹).已知:在四边形ABCD中,AB∥CD,∠B=90°,AE平分∠BAD,DE平分∠ADC.求证:AB+CD=AD.证明:∵AE平分∠BAD,∴.∵EF⊥AD,∴∠AFE=90°.∴∠B=90°,∴.∠B=∠AFE.在△ABE和△AFE中,,∴△ABE≌△AFE(AAS).∴.同理可得:CD=DF∴AB+CD=AF+DF=AD.小红再进一步研究发现,只要梯形满足夹同一条腰的两个内角的角平分线相交于另一条腰上同一点,均有此结论.请你依照题意完成下面命题:如果一个梯形满足夹同一条腰的两个内角的角平分线相交于另一条腰上同一点,那么.21.(10分)学校在七、八年级开展了主题为“以艺润心,向暖而行”的艺术节文艺汇演,为了解两个年级学生对文艺汇演的喜欢程度,学生处发放问卷并让学生评分,现从该校七、八年级中各随机抽取了20名学生的评分进行整理和分析(评分均为整数,满分为12分,9分以上为非常喜欢),相关数据统计、整理如下:抽取的七年级学生的评分:5,5,6,7,7,8,8,8,9,9,9,9,9,10,10,10,11,11,12,12.抽取的七、八年级学生的评分统计表年级七年级八年级平均数8.75 8.75中位数9 a众数9 b满分率c% 15%根据以上信息,解答下列问题:(1)直接写出上述表中a、b、c的值.(2)根据以上数据,你认为哪个年级的学生更喜欢此次文艺汇演?请说明理由.(3)该校七年级有1500名学生参加评分,八年级有1800名学生参加评分,请估计两个年级本次评分为非常喜欢的学生共有多少人?22.(10分)如图1,在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D为AB中点,动点P以每秒1个单位长度的速度沿折线A→C→B方向运动,当点P运动到点B时停止运动.设运动时间为x秒,△APD的面积为y1.(1)请直接写出y1关于x的函数表达式并注明自变量x的取值范围;(2)在给出的平面直角坐标系中画出y1的图象,并写出y1的一条性质;(3)如图2,的图象如图所示,结合函数图象,直接写出y1≥y2时,x的取值范围.(结果保留一位小数,误差不超过0.2)23.(10分)“卖花担上,买得一枝春欲放”,用鲜花装点生活,既能在装饰家居时收获审美体验,也能在观赏养护中熨帖心灵,是一种避入日常又跳出日常的美好.某花店抓住市场需求,计划第一次购进玫瑰和郁金香共300支,每支玫瑰的进价为2元,售价定为5元,每支郁金香的进价为4元,售价定为10元.(1)若花店在无损耗的情况下将玫瑰和郁金香全部售完,要求总获利不低于1500元,求花店最多购进玫瑰多少支?(2)花店在第二次购进玫瑰和郁金香时,两种花的进价不变.由于销量火爆,花店决定购进玫瑰和郁金香共360支,其中玫瑰的进货量在(1)的最多进货量的基础上增加10m支,售价比第一次提高m元,郁金香售价不变,但郁金香在运输过程中有10%已经损坏,无法进行销售,最终第二批花全部售完后销售利润为1800元,求m 的值.24.(10分)金秋十一月,阳光大草坪ABCD正处于草坪养护阶段,如图为草坪的平面示意图.经勘测,入口B在入口A的正西方向,入口C在入口B的正北方向,入口D在入口C的北偏东60°方向400m处,入口D在入口A 的北偏西45°方向1000m处.(参考数据≈1.41,)(1)求AB的长度;(结果精确到1米)(2)小明从入口D处进入前往M处赏花,点M在AB上,距离入口B的500m处.小明可以选择鹅卵石步道①D ﹣C﹣B﹣M,步行速度为50m/min,也可以选择人工步道②D﹣A﹣M,步行速度为60m/min,请计算说明他选择哪一条步道时间更快?(结果精确到0.1min)25.(10分)如图1,在平面直角坐标系中,直线AB经过点,与x轴交于点,点C为AB中点,反比例函数y=刚好经过点C.将直线AB绕点A沿顺时针方向旋转60°得直线AD,直线AD与x轴交于点D.(1)求反比例函数解析式;(2)如图2,点Q为射线BA上一动点,当DQ+BQ取最小值时,求△DCQ的面积;(3)将△DCA沿射线AB方向进行平移,得到△D′C′A′且C′刚好落在y轴上,已知点M为反比例函数y=上一点,点N为y轴上一点,若以M,N,B,D′为顶点的四边形为平行四边形,直接写出所有满足条件的点N 的坐标,并写出求解点N的坐标的其中一种情况的过程.26.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,过点B作BD∥AC.(1)如图1,若点D在点B的左侧,连接CD,过点A作AE⊥CD交BC于点E.若点E是BC的中点,求证:AC=2BD;(2)如图2,若点D在点B的右侧,连接AD,点F是AD的中点,连接BF并延长交AC于点G,连接CF.过点F 作FM⊥BG交AB于点M,CN平分∠ACB交BG于点N,求证:AM=CN+BD;(3)若点D在点B的右侧,连接AD,点F是AD的中点,且AF=AC.点P是直线AC上一动点,连接FP,将FP 绕点F逆时针旋转60°得到FQ,连接BQ,点R是直线AD上一动点,连接BR,QR.在点P的运动过程中,当BQ 取得最小值时,在平面内将△BQR沿直线QR翻折得到△TQR,连接FT.在点R的运动过程中,直接写出的最大值.重庆市第八中学2024-2025学年九年级上学期数学开学考试自测模拟试卷答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣3【答案】D2.(4分)随着人们健康生活理念的提高,环保意识也不断增强,以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【答案】B3.(4分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高【答案】C4.(4分)估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C5.(4分)如图,△ABC与△DEF位似,点O为位似中心,已知AO:OD=2:1,△ABC周长为8,则△DEF的周长是()A.1 B.2 C.4 D.6【答案】C6.(4分)若点A(1,y1),B(﹣2,y2),C(﹣3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y2【答案】B7.(4分)流行性感冒传染迅速,若有一人感染,经过两轮传染后共有100人患病,设每轮传染中平均一人传染了x人,可列出的方程是()A.(x+1)2=100 B.1+(x+1)2=100C.x+x(1+x)=100 D.1+x+x2=100【答案】A8.(46根小木棒,图②需要11根小木棒,图③需要16根小木棒,…,按照这个规律,图8需要小木棒的根数是()A.36 B.41 C.42 D.46【答案】B9.(4分)如图,在正方形ABCD中,点E为AD边的中点,F为AD上一点,连接BE,BF,DF+CD=BF,若∠ABE=α,则∠ABF的大小为()A.2α﹣15° B.α+10° C.3α﹣45° D.90°﹣2α【答案】D10.(4分)a﹣b,a+b,a﹣b,a+b,...是由a﹣b,a+b交替排列的n个多项式,其中a≠b,将这n个多项式中的任意m个多项式中的每一项都改变符号,其余不变,称为第1次操作(1≤m≤n,且m,n均为整数);在第1次操作的基础之上再将任意m个多项式中的每一项都改变符号,其余不变,称为第2次操作;按此方式操作下去….例如:当n=3,m=2时,第1次操作后可能得到;﹣a+b,﹣a﹣b,a﹣b或﹣a+b,a+b,﹣a+b或a﹣b,﹣a﹣b,﹣a+b.下列说法:①当n为奇数时,无论进行多少次操作,都不可能使得到的n个多项式的和为0;②当n=6,m=5时,至少需要进行3次操作,才能使得到的6个多项式的和中不含a;③当n=6,m=3时,3次操作后得到的6个多项式求和,共有8种可能出现的结果.其中正确的个数是()A.0 B.1 C.2 D.3【答案】D二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:= 3 .【答案】3.12.(4分)已知关于x mx2﹣4x+2=0有两个不相等的实数根,则m的取值范围是m<2且m≠0 .【答案】m<2且m≠0.13.(4分)不透明的盒子中有四个形状、大小、质地完全相同的小球,上面分别标着数字1,2,3,4,将四个小球放入盒中摇匀,从盒中随机取出一个小球,记下数字后放回,摇匀后再从盒中随机取出一个,则两次抽取的小球上的数字之积为奇数的概率为.【答案】.14.(4分)如图,在平面直角坐标系中,点A是反比例函数y=图象在第一象限的一点,连结OA并延长使AB =OA,过点B作BC⊥x轴,交反比例函数图象于点D,连结AD,且S△ABD=3,则k的值为 4 .【答案】4.15.(4分)如图,已知正方形ABCD的边长为4,以CD为直径作半圆,点E是半圆的中点,则图中阴影部分面积为2+π.【答案】2+π.16.(4分)若关于x的一元一次不等式组的解集为x≤a,且关于y的分式方程a的和为8 .【答案】8.17.(4分)如图,在等腰直角△ABC中,AC=2,M为边BC上任意一点,连接AM,将△ACM沿AM翻折得到△AC′M,连接BC′并延长交AC于点N,若点N为AC的中点,则CM的长为.【答案】.18.(4分)若一个四位自然数M的千位数字与个位数字之和恰好是M的百位数字与十位数字之和的2倍,则称这个四位数M为“好数”.一个“好数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=a+b+c+d,G(M)=.若为整数,G(M)是4的倍数,则b+c= 5 ;所有满足条件的M 的最大值和最小值的差为8082 .【答案】5,8082.三.解答题(共8小题,满分78分)19.(8分)计算:(1)4a(a+b)﹣(a+2b)2;(2).【答案】(1)3a2﹣4b2;(2)﹣.20.(10分)在学习了角平分线的性质后,小红进行了拓展性探究.她发现在直角梯形中,如果两内角(非直角内角)的角平分线相交于腰上同一点,那么两底边的长度之和等于这两内角夹边的长度.她的解决思路是:将问题转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决,请根据她的思路完成以下作图与填空:用直尺和圆规,过点E作AD的垂线,垂足为点F(只保留作图痕迹).已知:在四边形ABCD中,AB∥CD,∠B=90°,AE平分∠BAD,DE平分∠ADC.求证:AB+CD=AD.证明:∵AE平分∠BAD,∴∠BAE=∠FAE.∵EF⊥AD,∴∠AFE=90°.∴∠B=90°,∴.∠B=∠AFE.在△ABE和△AFE中,,∴△ABE≌△AFE(AAS).∴AB=AF.同理可得:CD=DF小红再进一步研究发现,只要梯形满足夹同一条腰的两个内角的角平分线相交于另一条腰上同一点,均有此结论.请你依照题意完成下面命题:如果一个梯形满足夹同一条腰的两个内角的角平分线相交于另一条腰上同一点,那么两底边的长度之和等于这两内角夹边的长度..【答案】见试题解答内容21.(10分)学校在七、八年级开展了主题为“以艺润心,向暖而行”的艺术节文艺汇演,为了解两个年级学生对文艺汇演的喜欢程度,学生处发放问卷并让学生评分,现从该校七、八年级中各随机抽取了20名学生的评分进行整理和分析(评分均为整数,满分为12分,9分以上为非常喜欢),相关数据统计、整理如下:抽取的七年级学生的评分:5,5,6,7,7,8,8,8,9,9,9,9,9,10,10,10,11,11,12,12.抽取的七、八年级学生的评分统计表根据以上信息,解答下列问题:(1)直接写出上述表中a、b、c的值.(2)根据以上数据,你认为哪个年级的学生更喜欢此次文艺汇演?请说明理由.(3)该校七年级有1500名学生参加评分,八年级有1800名学生参加评分,请估计两个年级本次评分为非常喜欢的学生共有多少人?【答案】(1)a=9.5,b=10,c=10;(2)八年级的学生更喜欢此次文艺汇演,理由见解答;(3)1425人.22.(10分)如图1,在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D为AB中点,动点P以每秒1个单位长度的速度沿折线A→C→B方向运动,当点P运动到点B时停止运动.设运动时间为x秒,△APD的面积为y1.(1)请直接写出y1关于x的函数表达式并注明自变量x的取值范围;(2)在给出的平面直角坐标系中画出y1的图象,并写出y1的一条性质;(3)如图2,的图象如图所示,结合函数图象,直接写出y1≥y2时,x的取值范围.(结果保留一位小数,误差不超过0.2)【答案】(1)y1=;(2)见解析,性质:当0<x<4时,y随x的增大而增大;当4<x<12时,y随x的增大而减小;(3)1.7≤x≤11.5.23.(10分)“卖花担上,买得一枝春欲放”,用鲜花装点生活,既能在装饰家居时收获审美体验,也能在观赏养护中熨帖心灵,是一种避入日常又跳出日常的美好.某花店抓住市场需求,计划第一次购进玫瑰和郁金香共300支,每支玫瑰的进价为2元,售价定为5元,每支郁金香的进价为4元,售价定为10元.(1)若花店在无损耗的情况下将玫瑰和郁金香全部售完,要求总获利不低于1500元,求花店最多购进玫瑰多少支?(2)花店在第二次购进玫瑰和郁金香时,两种花的进价不变.由于销量火爆,花店决定购进玫瑰和郁金香共360支,其中玫瑰的进货量在(1)的最多进货量的基础上增加10m支,售价比第一次提高m元,郁金香售价不变,但郁金香在运输过程中有10%已经损坏,无法进行销售,最终第二批花全部售完后销售利润为1800元,求m 的值.【答案】(1)100支;(2)2.24.(10分)金秋十一月,阳光大草坪ABCD正处于草坪养护阶段,如图为草坪的平面示意图.经勘测,入口B在入口A的正西方向,入口C在入口B的正北方向,入口D在入口C的北偏东60°方向400m处,入口D在入口A 的北偏西45°方向1000m处.(参考数据≈1.41,)(1)求AB的长度;(结果精确到1米)(2)小明从入口D处进入前往M处赏花,点M在AB上,距离入口B的500m处.小明可以选择鹅卵石步道①D ﹣C﹣B﹣M,步行速度为50m/min,也可以选择人工步道②D﹣A﹣M,步行速度为60m/min,请计算说明他选择哪一条步道时间更快?(结果精确到0.1min)【答案】见试题解答内容25.(10分)如图1,在平面直角坐标系中,直线AB经过点,与x轴交于点,点C为AB中点,反比例函数y=刚好经过点C.将直线AB绕点A沿顺时针方向旋转60°得直线AD,直线AD与x轴交于点D.(1)求反比例函数解析式;(2)如图2,点Q为射线BA上一动点,当DQ+BQ取最小值时,求△DCQ的面积;(3)将△DCA沿射线AB方向进行平移,得到△D′C′A′且C′刚好落在y轴上,已知点M为反比例函数y=上一点,点N为y轴上一点,若以M,N,B,D′为顶点的四边形为平行四边形,直接写出所有满足条件的点N程.【答案】(1)y =;(2)S△DCQ=8;(3)点N的坐标为(0,﹣5)或(0,6)或(0,﹣6).26.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,过点B作BD∥AC.(1)如图1,若点D在点B的左侧,连接CD,过点A作AE⊥CD交BC于点E.若点E是BC的中点,求证:AC=2BD;(2)如图2,若点D在点B的右侧,连接AD,点F是AD的中点,连接BF并延长交AC于点G,连接CF.过点F 作FM⊥BG交AB于点M,CN平分∠ACB交BG于点N,求证:AM=CN +BD;(3)若点D在点B的右侧,连接AD,点F是AD的中点,且AF=AC.点P是直线AC上一动点,连接FP,将FP 绕点F逆时针旋转60°得到FQ,连接BQ,点R是直线AD上一动点,连接BR,QR.在点P的运动过程中,当BQ 取得最小值时,在平面内将△BQR沿直线QR翻折得到△TQR,连接FT.在点R 的运动过程中,直接写出的最大值.【答案】(1)见解析;(2)见解析;(3)的最大值为.第21页(共21页)。

初三数学试卷试题及答案

初三数学试卷试题及答案

初三数学试卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 2D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 计算下列哪个表达式的结果为0?A. 3+2B. 4-4C. 5×0D. 8÷8答案:C4. 以下哪个图形不是轴对称图形?A. 圆形B. 等边三角形C. 正方形D. 平行四边形答案:D5. 一个等腰三角形的两个底角相等,如果一个底角为40°,那么顶角的度数为:A. 100°B. 80°C. 60°D. 40°答案:B6. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 0答案:C7. 以下哪个选项是不等式2x-3>0的解?A. x=1B. x=2C. x=0D. x=-1答案:B8. 一个长方体的长、宽、高分别为3cm、2cm、1cm,那么它的体积是:A. 6cm³B. 5cm³C. 12cm³D. 4cm³答案:A9. 一个圆的半径为5cm,那么它的周长是:A. 10π cmB. 5π cmC. 25π cmD. 15π cm答案:C10. 计算下列哪个表达式的结果为1?A. (-2)²B. (-1)³C. 2²D. 3²答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是_________。

答案:±512. 一个数的立方等于-8,这个数是_________。

答案:-213. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是_________。

答案:5cm14. 一个等腰三角形的顶角为120°,那么它的底角是_________。

答案:30°15. 一个数的倒数是2,这个数是_________。

初三学生数学试题及答案

初三学生数学试题及答案

初三学生数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 2答案:B2. 一次函数y=kx+b的图象经过点(1,2),则k+b的值是:A. 1B. 2C. 3D. 4答案:C3. 已知a=2,b=-3,则a+b的值是:A. -1B. 1C. -5D. 5答案:A4. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1答案:A5. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 0答案:C6. 一个角的补角是它的余角的3倍,这个角的度数是:A. 45°B. 30°C. 60°D. 90°答案:B7. 一个等腰三角形的两边长分别为3和6,那么这个三角形的周长是:A. 9B. 12C. 15D. 不能构成三角形答案:D8. 已知一个等腰三角形的底角为45°,那么这个三角形的顶角是:A. 45°B. 60°C. 90°D. 135°答案:C9. 一个数的立方根是-2,这个数是:A. 8B. -8C. 4D. -4答案:B10. 一个数的平方根是2,这个数是:A. 4B. -4C. 2D. -2答案:A二、填空题(每题3分,共30分)11. 一个数的平方是25,这个数是______。

答案:±512. 一个数的倒数是2,这个数是______。

答案:1/213. 一个数的绝对值是3,这个数是______。

答案:±314. 一个角的补角是120°,这个角的度数是______。

答案:60°15. 一个角的余角是30°,这个角的度数是______。

答案:60°16. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。

答案:1617. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是______。

初三上册数学测试卷完整版

初三上册数学测试卷完整版

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √-162. 已知a,b是实数,且a + b = 0,则a与b互为()A. 相等B. 相反数C. 同号D. 异号3. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 4xD. y = -5x + 24. 在等腰三角形ABC中,AB = AC,若∠BAC = 50°,则∠B = ()A. 40°B. 50°C. 60°D. 70°5. 已知一元二次方程x^2 - 5x + 6 = 0,则它的两个根是()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = -2,x2 = -3D. x1 = -3,x2 = -26. 下列各式中,绝对值最小的是()A. |-3|B. |2|C. |0|D. |1|7. 已知正方形的对角线长为10cm,则该正方形的边长为()A. 5cmB. 10cmC. 15cmD. 20cm8. 在平面直角坐标系中,点P的坐标为(2,-3),点Q的坐标为(-1,2),则线段PQ的长度为()A. 5B. 6C. 7D. 89. 若a、b、c是等差数列的前三项,且a + b + c = 18,则b的值为()A. 6B. 9C. 12D. 1510. 下列关于三角形的三边关系,正确的是()A. 任意两边之和大于第三边B. 任意两边之差小于第三边C. 任意两边之积大于第三边D. 任意两边之商大于第三边二、填空题(每题5分,共50分)11. 若一个数的平方等于4,则这个数是______。

12. 已知函数y = 3x - 2,当x = 2时,y的值为______。

13. 在等腰三角形ABC中,若AB = AC = 8cm,则底边BC的长度为______cm。

14. 若一元二次方程x^2 - 6x + 9 = 0,则它的两个根是______。

福建省莆田市九年级上册第一次月考数学试题与答案

福建省莆田市九年级上册第一次月考数学试题与答案

福建省莆田市九年级上册第一次月考数学试题一、选择题(共10题,每小题4分) 1、下列关系式中,属于二次函数的是( )A.281x y = B.12+=x y C.21xy = D.x x y -=32、若关于x 的方程2320ax x --=是一元二次方程,则( )A .1a >B .0a ≠C .1a =D .0a =3、对于函数2(2)9y x =+-,下列结论错误的是( ) A .图象顶点是(2,9)--B .图象开口向上C .图象关于直线2x =-对称D .函数最大值为9-4、一元二次方程x 2+2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5、 用配方法解一元二次方程2680x x -+=时,则方程变形正确的是( ) A .2(3)17x -=B .2(3)17x +=C .2(3)1x -=D .2(3)1x +=6、将抛物线y =x 2﹣1向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ) A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-1D .y =(x +2)2﹣17、若A ()、,15y -B ()、,23y -C ()35y ,为二次函数()922+--=x y 的图象上的三点,则321y y y 、、的大小关系是( )A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y <<8、若方程()200ax bx c a ++=≠中,,,a b c 满足0a b c ++=和0a b c -+=,则方程的根是() A .1,0B .1-,0C .1,1-D .无法确定9、抛物线2y ax bx c =++的部分图像如图,则下列说法:①0abc >; ②20b a +=;③24b ac >;④3a b c ++<-,正确的是( ) A .①② B .①②③ C .①②④ D .①②③④10、定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a ﹣b +c =0,那么我们称这个方程为“蝴蝶”方程.已知关于x 的方程ax 2+bx +c =0(a ≠0)是“蝴蝶”(第9题方程,且有两个相等的实数根,则下列结论中正确的是( ) A .b =cB .a =bC .a =cD .a =b =c二、填空题(共6题,每小题4分)11、抛物线1322-+=x x y 的对称轴是 。

九年级上册数学测试题及答案

九年级上册数学测试题及答案

一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点PA. 在⊙O外B. 在⊙O上C. 在⊙OD. 不能确定2. 已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A.0.6 B.0.75 C.0.8 D.343.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是A .B .C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=10cm,则⊙O1和⊙O2的位置关系是A.外离B.外切 C.切 D.相交6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<07.下列命题中,正确的是A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A.y=-(x+3)2-2 B.y=-(x+1)2-1C.y=-x2+x-5 D.前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .ACNMByxO10.在反比例函数y =x1k 中,当x >0时,y 随 x 的增大而增大,则k 的取值围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________. 12.已知⊙O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为30°,交点M 恰好为AB 的一个三等分点,则CD 的长为 _________ cm .三、解答题(本题共30分, 每小题5分)13. 计算:cos 245°-2tan45°+tan30°-3sin60°.14. 已知正方形MNPQ 接于△ABC(如图所示),若△ABC 的面积为9cm 2,BC =6cm ,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC 中,∠A 是锐角,b 、c 分别是∠B、∠C 的对边. 求证:△ABC 的面积S △ABC =21bcsinA .A MQBNPC17. 如图,△ABC 接于⊙O,弦AC 交直径BD 于点E ,AG⊥BD 于点G ,延长AG 交BC 于点F . 求证:AB 2=BF·B C .18. 已知二次函数 y =ax 2-x +25的图象经过点(-3, 1). (1)求 a 的值;(2)判断此函数的图象与x 轴是否相交?如果相交,请求出交点坐标;四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上. (1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.ABC· D E F G OA BD C OM · ·· · · ·(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y 1=-31x 2和反比例函数y 2的图象有一个交点是 A (a ,-1).(1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么围取值时,对于x 的同一个值,都有y 1<y 2 ?22. 工厂有一批长3dm 、宽2dm 的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O 1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O 2. (1)求⊙O 1、⊙O 2的半径r 1、r 2的长;(2)能否在剩余的铁片上再裁出一个与⊙O 2 同样大小的圆铁片?为什么?ABCD五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A. (1)判断直线BP 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为1,tan∠CBP=0.5,求BC 和BP 的长.24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处.(1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少?ABPCNM O· EC M NAD·25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).(1)求这个二次函数的解析式;(2)求△ABC的外接圆半径r;(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.一、ACCB DABB二、 9. 2:1 10. k< -1 11. 21, 4112. 35 三、13. 原式= 2)22(-2+33-3×23 =21-2 +33-23 ……………………………………4分= -3+33……………………………………………………5分 14. 作AE ⊥BC 于E ,交MQ 于F.由题意,21BC ×AE=9cm 2, BC=6cm. ∴1分 设MQ= xcm ,∵MQ ∥BC ,∴△AMQ ∽△2分∴AEAF BC MQ =……………………3分 又∵EF=MN=MQ ,∴AF=3-x. ∴3x-36x =. ……………………………………4分 解得 x=2.答:正方形的边长是2cm. …………………………5分 15. 由题意,在Rt △ABC 中,AC=21AB=6(米), …………………1分又∵在Rt △ACD 中,∠D=25°,CDAC =tan ∠D, ……………………………3分∴CD=︒tan256≈47.06≈12.8(米).答:调整后的楼梯所占地面CD 长约为12.8米. ……………………5分 16. 证明:作CD ⊥AB 于D ,则S △ABC =21AB ×2分 ∵ 不论点D 落在射线AB 的什么位置, 在Rt △ACD 中,都有4分 又∵AC=b ,AB=c , ∴ S △ABC =21AB ×ACsinA=21bcsinA. (5)AB N E P CAD BC HE G OF分17. 证明:延长AF ,交⊙O 于H.∵直径BD ⊥AH ,∴AB⌒ = BH ⌒ . ……………………2分 ∴∠C=∠BAF. ………………………3分在△ABF 和△CBA 中,∵∠BAF =∠C ,∠ABF=∠CBA ,∴△ABF ∽△CBA. …………………………………………4分 ∴ABBF CB AB,即AB 2=BF ×BC. …………………………………………5分 证明2:连结AD , ∵BD 是直径,∴∠BAG+∠DAG=90°. ……………………1分 ∵AG⊥BD,∴∠DAG+∠D=90°. ∴∠BAF =∠BAG =∠D. ……………………2分 又∵∠C =∠D , ∴∠BAF=∠C. ………………………3分 …… 18. ⑴把点(-3,1)代入,得 9a+3+25=1, ∴a= -21. ⑵ 相交 ……………………………………………2分 由 -21x 2-x+25=0, ……………………………3分 得 x= - 1±6.∴ 交点坐标是(- 1±6,0). ……………………………4分 ⑶ 酌情给分 ……………………………………………5分19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.20. ⑴ 0.4 ……………………………………………2分 ⑵ 0.6 ……………………………………………4分 列表(或画树状图)正确 ……………………………………5分 21. ⑴把点A (a ,- 1)代入y 1= -2x 31,得 –1= -a 31,∴ a=3. ……………………………………………1分 设y 2=x k,把点A (3,- 1)代入,得 k=–3, AD BC E G O F∴ y 2=–x3. ……………………………………2分⑵画图; ……………………………………3分⑶由图象知:当x<0, 或x>3时,y 1<y 2. ……………………………………5分22. ⑴如图,矩形ABCD 中,AB= 2r 1=2dm ,即r 1=1dm. ………………………………1分BC=3dm ,⊙O 2应与⊙O 1及BC 、CD 都相切.连结O 1 O 2,过O 1作直线O 1E ∥AB ,过O 2作直线O 2E ∥BC ,则O 1E ⊥O 2E. 在Rt △O 1 O 2E 中,O 1 O 2=r 1+ r 2,O 1E= r 1– r 2,O 2E=BC –(r 1+ r 2).由 O 1 O 22= O 1E 2+ O 2E 2, 即(1+ r 2)2 = (1– r 2)2+(2– r 2)2. 解得,r 2= 4±23. 又∵r 2<2, ∴r 1=1dm , r 2=(4–23)dm. ………………3分⑵不能. …………………………………………4分∵r 2=(4–23)> 4–2×1.75=21(dm), 即r 2>21dm.,又∵CD=2dm , ∴CD<4 r 2,故不能再裁出所要求的圆铁片. …………………………………5分23. ⑴相切. …………………………………………1分证明:连结AN ,∵AB 是直径,∴∠ANB=90°.∵AB=AC ,∴∠BAN=21∠A=∠CBP. 又∵∠BAN+∠ABN=180°-∠ANB= 90°, ∴∠CBP+∠ABN=90°,即AB⊥BP.∵AB 是⊙O 的直径,∴直线BP 与⊙O 相切. …………………………………………3分⑵∵在Rt △ABN 中,AB=2,tan ∠BAN= tan ∠CBP=0.5,A DB CO 1E O 2可求得,BN=52,∴BC=54. …………………………………………4分作CD ⊥BP 于D ,则CD ∥AB ,ABCDAP CP =. 在Rt △BCD 中,易求得CD=54,BD=58. …………………………………5分 代入上式,得 2CP CP +=52.∴CP=34. …………………………………………6分 ∴DP=1516CD CP 22=-.∴BP=BD+DP=58+1516=38. …………………………………………7分24. ⑴依题意,点B 和E 关于MN 对称,则ME=MB=4-AM.再由AM 2+AE 2=ME 2=(4-AM)2,得AM=2-2x 81. ……………………1分 作MF ⊥DN 于F ,则MF=AB ,且∠BMF=90°. ∵MN ⊥BE ,∴∠ABE= 90°-∠BMN.又∵∠FMN =∠BMF -∠BMN=90°-∠BMN , ∴∠FMN=∠ABE. ∴Rt △FMN ≌Rt △ABE. ∴FN=AE=x ,DN=DF+FN=AM+x=2-2x 81+x. ………………………2分 ∴S=21(AM+DN)×AD=(2-2x 81+2x )×4= -2x 21……………………………3分其中,0≤x <………………………………4分⑵∵S= -2x 21+2x+8= -21(x-2)2+10,∴当x=2时,S 最大=10; …………………………………………5分 此时,AM=2-81×22=1.5 ………………………………………6分 答:当AM=1.5时,四边形AMND 的面积最大,为10.⑶不能,0<AM ≤2. …………………………………………7分25. ⑴∵△AOB ∽△BOC (相似比不为1),..∴OAOBOBOC=. 又∵OA=4, OB=3,∴OC=32×41=49. ∴点C(49, 0). …………………1分设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,则c= -3,且⎪⎩⎪⎨⎧=++=+-0.cb49a1681,0c4b16a2分即⎩⎨⎧=+=-16.12b27a,34b16a解得,a=31, b=127.∴这个函数的解析式是y =31x2+1273分⑵∵△AOB∽△BOC(相似比不为1),∴∠BAO=∠CBO.又∵∠ABO+ ∠BAO =90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分∴AC是△ABC外接圆的直径.∴ r =21AC=21×[49-(-4)]=825. ………………5分⑶∵点N在以BM为直径的圆上,∴∠MNB=90°. ……………………6分①.当AN=ON时,点N在OA的中垂线上,∴点N1是AB的中点,M1是AC的中点.∴AM1= r =825,点M1(-87, 0),即m1= -87. ………………7分②.当AN=OA时,Rt△AM2N2≌Rt△ABO,∴AM2=AB=5,点M2(1, 0),即m2=1.③. 当ON=OA时,点N显然不能在线段AB上.综上,符合题意的点M(m,0)存在,有两解:m= -87,或1. ……………………8分。

初三数学试卷题及答案

初三数学试卷题及答案

初三数学试卷题及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列各数中,最小的数是()A.-3B.0C.2D.5答案:A2.已知a>b,则下列不等式中成立的是()A.a3>b3B.a+3<b+3C.a3<b3D.a+3>b+3答案:A3.下列各式中,不是同类二次根式的是()A.√2B.√3C.2√2D.√8答案:B4.若a=2b,则下列等式中成立的是()A.a^2=4b^2B.a^2=2b^2C.a^2=b^2D.a^2=0答案:A5.下列函数中,是一次函数的是()A.y=2x+1B.y=x^2+1C.y=2/xD.y=|x|答案:A6.已知一组数据的平均数为5,则这组数据中至少有一个数()A.大于5B.小于5C.等于5D.无法确定答案:A7.下列各式中,不是分式的是()A.1/xB.x/2C.2/xD.x^2/2答案:B二、判断题(每题1分,共20分)1.两个负数相乘,积为正数。

()答案:正确2.若a>b,则ac>bc。

()答案:正确3.任何数的平方都是非负数。

()答案:正确4.两个同类二次根式相乘,结果仍为同类二次根式。

()答案:正确5.任何数的立方都是非负数。

()答案:错误6.两个负数相除,商为正数。

()答案:正确7.任何数的平方根都是非负数。

()答案:错误8.两个同类二次根式相除,结果仍为同类二次根式。

()答案:正确9.任何数的立方根都是非负数。

()答案:错误10.两个负数相加,和为负数。

()答案:正确三、填空题(每空1分,共10分)1.2x3=7,解得x=___.答案:52.若a=3,b=-2,则a+b=___.答案:13.若a=2,b=3,则a^2+b^2=___.答案:134.若a=4,b=-2,则ab=___.答案:65.若a=5,b=2,则a/b=___.答案:2.5四、简答题(每题10分,共10分)1.解释一次函数的定义及图像特点。

九年级数学测试题及答案

九年级数学测试题及答案

九年级数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...D. √22. 一个二次方程的系数为a、b、c,且a≠0,以下哪个选项是正确的?A. 判别式Δ = b² - 4acB. 判别式Δ = b² + 4acC. 判别式Δ = 4ac - b²D. 判别式Δ = b² - 2ac3. 函数y = 3x + 2的斜率是:A. 2B. 3C. 1D. 44. 一个圆的半径为5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π5. 一个等腰三角形的底边长为6,两腰相等,且周长为18,那么它的腰长是:A. 3B. 6C. 9D. 无法确定6. 以下哪个表达式是正确的因式分解?A. x² - 4 = x + 2B. x² - 4 = (x - 2)(x + 2)C. x² - 4 = (x - 2)(x - 2)D. x² - 4 = x² - 2x + 47. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-18. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a + b + cC. a * b * cD. a / b / c9. 以下哪个是正比例函数?A. y = 3x²B. y = 3xC. y = 3/xD. y = 3x + 210. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共20分)11. 一个数的立方根是它本身,这个数可以是 ______ 。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数可以是______ 。

初三数学原创试卷及答案

初三数学原创试卷及答案

一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是()A. -2.5B. 0C. 1.2D. -32. 如果a > b,那么下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 > b - 3C. a + 3 < b + 3D. a - 3 < b - 33. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(1,-4),则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 已知等边三角形的边长为6,则其内切圆半径为()A. 1C. 3D. 4二、填空题(每题5分,共25分)6. 若a^2 - 5a + 6 = 0,则a的值为______。

7. 已知等差数列{an}的前n项和为Sn,且S10 = 100,S20 = 300,则第10项a10的值为______。

8. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数为______。

9. 若a、b、c是等差数列,且a + b + c = 18,a^2 + b^2 + c^2 = 108,则公差d的值为______。

10. 在平面直角坐标系中,点P(-3,2)关于y轴的对称点坐标为______。

三、解答题(每题10分,共40分)11. (10分)已知函数y = 2x - 3,求自变量x的取值范围,使得函数值y在0到10之间。

12. (10分)已知等差数列{an}的前n项和为Sn,且S10 = 60,S20 = 180,求该数列的首项a1和公差d。

13. (10分)在直角坐标系中,已知点A(-2,1),B(2,-3),求线段AB的中点坐标。

14. (10分)已知等腰三角形ABC中,AB = AC,底边BC = 6,腰AB的长度为x,求x的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 九年级数学自测试题2. 某件商品按原价出售可获利x%,现因进价降低10%,按原定价出售则可获利(x+15)%,则x=___________。

3. 我国股市交易中,每买卖一次需复交交易款的千分之七点五作为交易费用,某投资者以每股10元的价格习入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为____________元。

3.某商场根据市场销售变化,将A 商品连续两次提价20%,同时将B 商品连续两次降价20%,结果都以每件23.04元出售,此时商场若同时售出A 、B 两商品各一件的盈亏情况为( ) A 不亏不盈 B 盈6.12元 C 亏6.02 D 亏5.924.某品牌彩电为了打开市场,促进销售,准备对其特定型号彩电降价,有四种方案供选择:①先降价12%,再降价8%②先降价8%,再降价12%③先降价10%,再降价10%④一次性降价20%。

在这四种方案中,降价幅度最小的是____________。

5.商业毛利是指售出价减去买入价的差,某种商品降价前每件毛利是售出价的15%,每天售出100件,降价(买入价不变)后每天比原来多销售150件且降价后每天毛利总额是降价前每天毛利总额的35,则售价降低了( ) A 5% B 8% C 10% D 12%6.某公司向银行贷款40万元,用来开发某种新产品,已知该贷款年利率15%(不计复利),每个新产品成本为2.3万元,售价4元,应纳税款为销售额的10%,如果每年生产该产品20万个,并把所得利润用来归还贷款,则还清贷款所需年数为( ) A 1.5年 B 2年 C 2.5年 D 3年7.xx 年11月1日起,全国储蓄存款征收利息税,税率为20%,即利息所得的20%,由储蓄点代扣代征,某人在xx 年11月存入人民币1.6万元,年利率为2.25%,一年后可得本息和(扣税后)_______元。

8. 工业废气年排放量为450万立方米,为了改善某市的大气环境质量,决定分两期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同。

(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期每减少1万立方米需投入4.5万元,问完成两期治理后共需投入多少万元? 9. 某工程由甲、乙两队合做6天完成,厂家需付甲乙两队共8700元,乙丙两队合做10天完成,厂家需付乙丙两队共9500元,甲丙两队合做5天完成全部工程的32,厂家需付甲丙两队共5500元。

(1)求甲乙丙各队单独完成全部工程各需多少天?(2)该工程要求不超过15天完成全部工程。

问可由哪能队单独完成此项工程? 10. 工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件,已知生产1 件A 种产品需甲种原料9千克,乙种原料3千克,可获利润700元,生产1件B 种产品需用甲种原料4千克,乙种原料10千克,可获利润1200元。

a) 按要求安排A 、B 两种产品的生产件数,有哪几种方案,请你设计出来。

b) 设生产A 、B 两种产品获总利润为Y 元,其中一种产品的生产件数为x 件,试写出用含x 的代数式表示Y 的式子,并说明哪能一种方案利润最大?最大利润是多少元? 11. 场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价的措施,经调查发现,如果每件衬衫降价一元,商场平均每天可多售出2件。

a) 若商场平均每天要盈利1200元,每件衬衫应降价多少元?b) 设商场平均每天盈利为Y ,则每件衬衫降价多少元时,商场获利最大?最大值是多少? 12.某车间有20名工人,每天可加工甲种零件5个或乙种零件4个。

在这20名工人中,派x 人加工甲种零件,其余的加工乙种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元。

c) 出此车间每天所获利润Y (元)与x (人)之间的关系(用含x 的代数式表示Y ) d) 若要使车间获利不低于1800元,问至少要派多少人加工乙种零件? 13.某农场开挖一条长700米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,原计划每天挖多少米?14.甲乙两人分别从相距27千米的A 、B 两地同时出发,相向而行,3小时后两人相遇,相遇后各以原来的速度继续前进,甲到达B 地比乙到达A 地早1小时21分。

求甲、乙两人的速度。

15.某拖拉机厂,今年元月份生产出一批甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐月递增,又知二月份甲、乙两种的产量之比是3:2,三月份甲、乙两种产量之和为65台,求乙型拖拉机每月的增长率。

16.甲乙两人均以每小时60千米的速度先后驾车从A 地到B 地去办事,8点20分时,甲离A地的距离是乙离A 地距离的2倍,行至8点26分时,甲离A 地与乙离A 地的距离比为2:3,求甲出发的时间。

17.先阅读下面一段文字,然后解答问题。

某运输部门规定:办理托运,当一件物品的重量不超过a 千克(a<18)时,需付基础费30元和保险费b 元,为限制过重物品的托运,当一件物品的重量超过千克时,除了付以上基础费和保险费外,超过部分每千克还需付c 元超重费。

设某件物品的重量为x 千克,支付费用为y 元。

(1) 当a x ≤<0时,y=___________(用含b 的代数式表示)当a x >时,y=_______________(用含x 和a ,b,c 的代数式表示)(2)甲,乙,丙三人各托运了一件物品。

物品重量与支付费用如右表所示;①试根据以上提供的信息确定a,b,c的值,并写出支付费用y(元)与每件物品重量x(千克)的关系式(用x的代数式表示y)②试问在物品可拆分的情况下,用不超过120元的费用能否托运50千克物品?若能,请设计出其中一种方案,并求出托运费用;若不能,请说明理由。

18.为了加快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上则超过10台的部分按报价的70%计算,乙公司的报价也是每台5800元,其优惠条件是为了支持教育每台按报价的85%计算,假如你是学校的负责人,在电脑的品牌、质量和售后服务等完全相同的前提下,你将如何选择?请说明理由。

19.经测算,某林场现有生长着木材存量为a立方米,已知木材生长的年增长率为25%,为满足生产、生活需要,该林场每年采伐加工x立方米木材。

(1)用含a与x的代数式表示一年后该林场的木材存量为_____________。

(2)用含a与x的代数式表示二年后该林场的木材存量为_____________。

(3)若条件中的a=122万,要保证三年后该林场木材存量达到1.5a立方米,问该林场每年采伐加工的木材最多是多少立方米20.某校学生到离校12千米的工厂参观,一部分学生骑着自行车先走,骑了一半路程时,其余学生才乘汽车从学校出发,当骑车的学生闻目的地还有4.5千米时,汽车刚好行了一半路程,结果汽车比自行车早20分钟到达工厂,求自行车和汽车的速度。

21.某旅社有100张床位,每床每晚收费10元时客床可全部租出,若每床每晚收费提高2,元,则减少10张床位租出,若每晚收费再提高2元,则再减少10张床位租出,以每次提高2元的这种方法变化下去,为了投资少而利润大,每床每晚应提高()A 4元或6元B 4元C 6元D 8元22.如图示,甲乙两人分别从正方形广场ABCD的顶点B、C两点出发,甲由C点向D点运动,速度为2千米/秒,乙由B点向C点运动,速度为1千米/秒。

若正方形广场的周长为40千米,问几分钟后,甲乙两人所在的位置与点C构成一个含30的直角三角形?23.为了参加北京市申办xx年奥运会的活动。

](1)某班学生争取到制作249面矩形彩旗的任务,有10名学生因故未能参加制作,因此这班的其余学生人均要比原计划多做4面旗才能完成任务。

问这个班有多少名学生?(2)如果有长为1,a(a>1)的一块绸布,要将其裁出三面矩形彩旗(面料没有剩余)且使每面彩旗长和宽之比与原绸布的长与宽之比相同。

画出两种不同的裁剪方法示意图,并写出相应a的值。

(不写计算过程)24.商场出售的A型冰箱每台2190元,日耗电量为1度,而B型冰箱每台售价比A型冰箱高出10%,日耗电量为0.55度。

现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为xx年,每年365天,每度电按0.40元计算)25.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20米/时的速度沿北偏东30°方向往C移动,过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2(3)该城市受到台风影响的最大风力为几级?26.甲,乙两人分别从相距27公里的A、B两地同时出发相向而行,3小时相遇,相遇后两人各以原来的速度继续前进,甲到达B地比乙到达A地早1小时21分,求两人的速度各是多少?27.某车间加工360个零件,加工2天后,改进操作方法,每天多加工20个零件,结果提前4天完成,问改进操作方法前,每天加多少个零件?28.一商店将进货价每个10元的商品按每个18元出售时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每降价1元,则日销售量就增加10个,当获得每日最大利润时,此商品售价应定为多少元?。

相关文档
最新文档