人教版九年级数学下册单元测试题全套

合集下载

九年级下人教版数学单元测试题(全套)

九年级下人教版数学单元测试题(全套)

第二十六章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列函数中,是y 关于x 的反比例函数的是( ) A .x (y +1)=1 B .y =1x -1 C .y =-1x 2 D .y =12x2.若反比例函数y =kx的图象经过点(2,-1),则该反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、三象限D .第二、四象限3.已知点A (2,y 1)、B (4,y 2)都在反比例函数y =k x(k <0)的图象上,则y 1、y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定4.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪的长为y m ,宽为x m ,则y 关于x 的函数解析式为( )A .xy =3500B .x =3500yC .y =3500xD .y =1750x5.已知反比例函数y =1x,下列结论中不正确的是( )A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大6.如果平行四边形的面积为8cm 2,那么它的底边长y cm 与高x cm 之间的函数关系用图象表示大致是( )7.正比例函数y =-2x 与反比例函数y =k x的图象相交于A (m ,2),B 两点,则点B 的坐标是( )A .(-2,1)B .(1,-2)C .(-1,2)D .(2,-1) 8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图所示.当V =10m 3时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 3第8题图第9题图9.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2x的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >210.在同一直角坐标系中,函数y =-a x与y =ax +1(a ≠0)的图象可能是( )11.在平面直角坐标系中,直线y =-x +2与反比例函数y =1x的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A .b >2B .-2<b <2C .b >2或b <-2D .b <-212.如图,A 、B 是双曲线y =k x上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A.43B.83C .3D .4 第12题图二、填空题(本大题共6小题,每小题4分,共24分) 13.双曲线y =m -1x在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .14.点P 在反比例函数y =k x(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .15.如图,点A 是反比例函数y =k x图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为B 、C ,矩形ABOC 的面积为4,则k = .第15题图第16题图16.在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)成反比例函数关系,其图象如图所示.点P (4,3)在图象上,则当力达到10N 时,物体在力的方向上移动的距离是 m.17.函数y =1x 与y =x -2的图象的交点的横坐标分别为a 、b ,则1a +1b的值为 .18.如图,点A 在函数y =4x(x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 .第18题图三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如果函数y =mxm 2-5是一个经过第二、四象限的反比例函数,求m 的值和反比例函数的解析式.20.(10分)反比例函数y =k x的图象经过点A (2,3). (1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个函数图象上,并说明理由.21.(10分)蓄电池的电压为定值,使用此电源时,电流I (A)是电阻R (Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R =10Ω时,电流能是4A 吗?为什么?22.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的解析式;(2)观察函数图象,直接写出关于x 的不等式6x>kx +b 的解集.23.(12分)已知反比例函数y =4x.(1)若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2)如图,反比例函数y =4x(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移到C 2处所扫过的面积.24.(12分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线y =k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少摄氏度?25.(12分)如图,一次函数y =x +b 的图象与反比例函数y =k x的图象相交于A ,B 两点,且点B 的坐标为(-1,-2).(1)求出反比例函数与一次函数的表达式; (2)请写出A 点的坐标;(3)连接OA ,OB ,求△AOB 的面积.26.(14分)如图,反比例函数y =k x的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线y =k x在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点. (1)求k 的值;(2)当b =-2时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得S △ODQ =S △OCD ?若存在,请求出b 的值;若不存在,请说明理由.答案1.D 2.D 3.B 4.C 5.D 6.C 7.B 8.D 9.D 10.B11.C 解析:解方程组⎩⎪⎨⎪⎧y =-x +b ,y =1x,得x 2-bx +1=0,∵直线y =-x +b 与反比例函数y =1x的图象有2个公共点,∴方程x 2-bx +1=0有两个不相等的实数根,∴Δ=b 2-4>0,∴b >2或b <-2.故选C.12.B 解析:过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD =12BE .设A ⎝ ⎛⎭⎪⎫x ,k x ,则B ⎝ ⎛⎭⎪⎫2x ,k 2x ,CD =k 4x ,AD =k x -k 4x .∵△ADO 的面积为1,∴12AD ·OC =1,即12⎝ ⎛⎭⎪⎫k x -k 4x ·x =1,解得k =83.故选B.13.m <1 14.y =-8x15.-4 16.1.2 17.-2 18.4+2 619.解:∵反比例函数y =mxm 2-5的图象经过第二、四象限,∴m 2-5=-1,且m <0,(5分)解得m =-2.(8分)∴反比例函数的解析式为y =-2x.(10分)20.解:(1)∵反比例函数y =k x的图象经过点A (2,3),∴k =2×3=6,∴y =6x;(5分)(2)点B (1,6)在这个函数图象上.(7分)理由如下:在反比例函数y =6x中,当x =1时,y =6,∴点B (1,6)在这个函数图象上.(10分)21.解:(1)依题意设I =U R (U ≠0).(2分)把M (4,9)代入,得U =4×9=36,∴I =36R(R >0);(5分)(2)不能.(7分)理由如下:当R =10Ω时,I =3610=3.6(A),∴当R =10Ω时,电流不可能是4A.(10分)22.解:(1)∵A (m ,3),B (-3,n )两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴点A 的坐标为(2,3),点B 的坐标为(-3,-2).(3分)将点A ,B 的坐标代入y 1=kx+b 中,得⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =1,∴一次函数的解析式是y 1=x +1;(7分)(2)根据图象得0<x <2或x <-3.(10分)23.解:(1)联立方程组⎩⎪⎨⎪⎧y =4x ,y =kx +4,得kx 2+4x -4=0.(2分)∵反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,∴Δ=16+16k =0,∴k =-1;(5分)(2)如图所示,C 1平移至C 2所扫过的面积为2×3=6.(12分)24.解:(1)12-2=10(小时),故恒温系统在这天保持大棚内温度为18℃的时间有10小时;(4分)(2)∵点B (12,18)在双曲线y =k x 上,∴18=k12,∴k =216;(8分)(3)当x =16时,y =21616=13.5.∴当x =16时,大棚内的温度约为13.5℃.(12分)25.解:(1)将B (-1,-2)代入y =x +b 中,得b =-1.故一次函数的表达式为y =x-1.(2分)将B (-1,-2)代入y =k x中,得k =2.故反比例函数的表达式为y =2x;(4分)(2)联立方程组⎩⎪⎨⎪⎧y =x -1,y =2x,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-2,⎩⎪⎨⎪⎧x 2=2,y 2=1.故点A 的坐标为(2,1).(8分)(3)设y =x -1与x 轴的交点为C ,则C (1,0).(10分)故S △AOB =12×1×(1+2)=32.(12分)26.解:(1)∵反比例函数y =k x的图象经过点A (-1,4),∴k =-1×4=-4;(3分) (2)当b =-2时,直线解析式为y =-x -2.当y =0时,-x -2=0,解得x =-2,∴C点的坐标为(-2,0).当x =0时,y =-x -2=-2,∴D 点的坐标为(0,-2).(6分)∴S △OCD =12×2×2=2;(8分) (3)存在.(9分)理由如下:在y =-x +b 中,当y =0时,-x +b =0,解得x =b ,则C 点的坐标为(b ,0).当b >0时,易知S △ODQ =S △ODC +S △OCQ ,即S △ODQ >S △ODC ,不合题意,故b <0.∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等,∵Q 点在第四象限,∴Q 点的横坐标为-b .当x =-b 时,y =-x +b =2b ,则Q 点的坐标为(-b ,2b ).(12分)∵点Q 在反比例函数y =-4x的图象上,∴-b ·2b =-4,解得b =-2或b =2(舍去),∴存在实数b ,使得S △ODQ =S △OCD ,b 的值为- 2.(14分)第二十七章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.观察下列每组图形,相似图形是( )2.如果两个相似三角形对应边中线之比是1∶4,那么它们的对应高之比是( ) A .1∶2 B.1∶4 C.1∶8 D.1∶16 3.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( ) A .1∶2 B.1∶4 C.2∶1 D.4∶14.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F .若ABBC=23,DE =4,则EF 的长是( ) A.83 B.203C .6D .10 第4题图第5题图第6题图5.如图,在直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)6.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABCC.AP AB =AB AC D.AB BP =AC CB7.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4 B.1∶3∶2 C.1∶4∶2 D.3∶6∶5第7题图第8题图8.如图,为测量河的宽度,在河对岸选定一个目标点A ,在近岸取点B 、C 、D ,使得AB ⊥BC ,点E 在BC 上,并且点A 、E 、D 在同一直线上.若测得BE =15m ,EC =9m ,CD =16m ,则河的宽度AB 等于( )A .35m B.653m C.803m D.503m9.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EF B.EG GH =AG GD C.AB AE =BC CF D.FH EH =CF AD第9题图第10题图10.如图,若∠1=∠2=∠3,则图中的相似三角形有( ) A .1对 B .2对 C .3对 D .4对11.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC 面积的一半.若AB =2,则此三角形移动的距离AA ′是( )A.2-1B.22 C .1 D.12第11题图第12题图12.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分) 13.在比例尺为1∶4000 000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为 km.14.若实数a 、b 、c 满足b +c a =a +c b =a +bc=k ,则k = . 15.如图,身高为1.7m 的小明AB 站在河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD 在水中的倒影为C ′D ,A 、E 、C ′在一条线上.已知河BD 的宽度为12m ,BE =3m ,则树CD 的高为 .第15题图16.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶3,点E 的坐标为(3,3),则点A 的坐标是 .第16题图第17题图第18题图17.如图,在Rt△ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是 .18.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则1AM +1AN= .三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图,在△ABC 中,DE ∥BC ,DE =2,BC =3.求AE AC的值.20.(10分)如图,已知在四边形ABCD中,∠ADB=∠ACB,延长AD,BC相交于点E.求证:AC·DE=BD·CE.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.22.(10分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.23.(12分)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,∠AEB=∠ADC.(1)求证:△ADE∽△DBC;(2)连接EC,若CD2=AD·BC,求证:∠DCE=∠ADB.24.(12分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯CD的高.25.(12分)如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE 交CD 于点P ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF .(1)判断AB 与⊙O 的位置关系,并说明理由; (2)若PF ∶PC =1∶2,AF =5,求CP 的长.26.(14分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =k x(x >0)的图象经过BC 上的点D ,与AB 交于点E ,连接DE ,若E 是AB 的中点.(1)求点D 的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求点F 的坐标.答案1.D 2.B 3.B 4.C 5.A 6.D 7.B 8.C 9.C 10.D 11.A 12.A 解析:过D 作DM ∥BE 交AC 于点N ,交BC 于点M .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∴∠EAC =∠ACB .∵BE ⊥AC 于点F ,∴∠AFE =∠ABC =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF .∵AE =12AD =12BC ,∴AFCF=12,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF .∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DN 垂直平分CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,EF BF =AE BC =12,∴S △AEF =12S △ABF ,∴S △AEF =13S △ABE =112S 矩形ABCD .又∵S四边形CDEF=S △ACD -S △AEF =12S矩形ABCD-112S 矩形ABCD=512S 矩形ABCD=5S △AEF =52S △ABF ,故④正确.故选A.13.120 14.-1或2 15.5.1m 16.(0,1) 17.25 18.119.解:∵DE ∥BC ,∴△ADE ∽△ABC ,(5分)∴AE AC =DE BC =23.(10分)20.证明:∵∠ADB =∠ACB ,∴∠EDB =∠ECA .(3分)又∵∠E =∠E ,∴△ECA ∽△EDB ,(7分)∴AC BD =CEDE,即AC ·DE =BD ·CE .(10分)21.解:(1)作出△A 1B 1C 1,如图所示;(5分)(2)作出△A 2B 2C 2,如图所示(本题是开放题,答案不唯一,只要作出的△A 2B 2C 2满足条件即可)(10分).22.解:∵在△ACD 和△ABC 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ACD =∠B ,∴△ACD ∽△ABC ,∴AD AC =ACAB .(5分)∵AD=8cm ,BD =4cm ,∴AB =12cm ,∴8AC =AC12,(8分)∴AC =46cm.(10分)23.证明:(1)∵AD ∥BC ,∴∠ADE =∠DBC ,∠ADC +∠BCD =180°.(2分)∵∠AEB =∠ADC ,∠AEB +∠AED =180°,∴∠AED =∠BCD ,(5分)∴△ADE ∽△DBC ;(6分)(2)由(1)可知△ADE ∽△DBC ,∴AD DB =DE BC,∴DB ·DE =AD ·BC .(7分)∵CD 2=AD ·BC ,∴CD 2=DB ·DE ,∴CD DB =DECD.(8分)又∵∠CDE =∠BDC ,∴△CDE ∽△BDC ,∴∠DCE =∠DBC .(10分)又∵∠ADB =∠DBC ,∴∠DCE =∠ADB .(12分)24.解:设CD =x m.∵AE =AM ,AM ⊥EC ,∴∠E =45°,∴EC =CD =x m ,AC =(x -1.75)m.(2分)∵CD ⊥EC ,BN ⊥EC ,BN ∥CD ,∴△ABN ∽△ACD ,(7分)∴BN CD =AB AC ,即1.75x = 1.25x -1.75,解得x =6.125.(11分)答:路灯CD 的高为6.125m.(12分)25.解:(1)AB 是⊙O 的切线.(1分)理由如下:∵∠ACB =90°,∴∠CAE +∠CEA =90°.(3分)又∵∠CEA =∠CDF ,∠CAE =∠ADF ,∴∠ADF +∠CDF =90°,∴∠ADC =90°,∴CD ⊥AD ,∴AB 是⊙O 的切线;(6分)(2)∵∠CPF =∠APC ,连接DE 、CF ,如图.∵CD 是直径,∴∠DEC =90°.∵∠ACB =90°,∴∠DEC +∠ACE =180°,∴DE ∥AC ,∴∠DEA =∠CAE ,又∵∠PCF =∠DEA ,∴∠PCF =∠PAC .∴△PCF ∽△PAC ,∴PC PA =PF PC,∴PC 2=PF ·PA .(9分)设PF =a ,∵PF ∶PC =1∶2,则PC =2a ,PA =a +5,∴4a 2=a (a +5),∴a =53或a =0(舍去),∴PC =2a =103.(12分)26.解:(1)∵四边形OABC 为矩形,∴AB ⊥x 轴.∵E 为AB 的中点,点B 的坐标为(2,3),∴点E 的坐标为⎝ ⎛⎭⎪⎫2,32.∵点E 在反比例函数y =k x 的图象上,∴k =3,∴反比例函数的解析式为y =3x.(4分)∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将y =3代入y=3x可得x =1,∴点D 的坐标为(1,3);(6分)(2)由(1)可得BC =2,CD =1,∴BD =BC -CD =1.∵E 为AB 的中点,∴BE =32.(8分)若△FBC ∽△DEB ,则CB BE =CF BD ,即232=CF 1,∴CF =43,∴OF =CO -CF =3-43=53,∴点F 的坐标为⎝ ⎛⎭⎪⎫0,53;(11分)若△FBC ∽△EDB ,则BC DB =CF BE ,即21=CF 32,∴CF =3,此时点F 和点O 重合.(13分)综上所述,点F 的坐标为⎝ ⎛⎭⎪⎫0,53或(0,0).(14分)第二十八章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.cos60°的值等于( ) A.12 B.22 C.32 D.322.如图,已知Rt△ABC 中,∠C =90°,AC =8,BC =15,则tan A 的值为( ) A.817 B.1517 C.815 D.1583.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC =7,则树高BC 为(用含α的代数式表示)( )A .7sin αB .7cos αC .7tan α D.7tan α第2题图第3题图4.已知在Rt△ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.345.已知α为锐角,且2cos(α-10°)=1,则α等于( ) A .50° B.60° C.70° D.80°6.将如图所示三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB ,则∠α的正弦值为( )A.12B.32C.22D .1 第6题图7.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )A.35B.45C.34D.548.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC 的值为( )A.35B.34C.105D .1 9.已知∠A 是锐角,且sin A =35,那么锐角A 的取值范围是( )A .0°<∠A <30° B.30°<∠A <45° C .45°<∠A <60° D.60°<∠A <90°10.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口P ,4小时后货船在小岛的正东方向,则货船的航行速度是( )A .72海里/时B .73海里/时C .76海里/时D .282海里/时第10题图第11题图第12题图11.如图,已知∠α的一边在x 轴上,另一边经过点A (2,4),顶点为B (-1,0),则sin α的值是( )A.25B.55C.35D.4512.如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,如果AB =5,BC =8,sin B =45,那么tan∠CDE的值为( )A.12B.33C.22D.2-1 二、填空题(本大题共6小题,每小题4分,共24分) 13.tan60°= .14.在△ABC 中,∠C =90°,AB =13,BC =5,则tan B = .15.在△ABC 中,∠A 、∠B 都是锐角,若sin A =32,cos B =12,则∠C = . 16.菱形的两条对角线长分别为16和12,较长的对角线与菱形的一边的夹角为θ,则cos θ= .17.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB ︵上的一点(不与A 、B 重合),则sin C 的值为 .第17题图第18题图18.如图,△ABC 中,∠ACB =90°,∠B =30°,AC =1,过点C 作CD 1⊥AB 于D 1,过点D 1作D 1D 2⊥BC 于D 2,过点D 2作D 2D 3⊥AB 于D 3,则D 2D 3= ,这样继续作下去,线段D n D n +1= .三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)计算:(1)3tan30°+cos 245°-2sin60°;(2)tan 260°-2sin45°+cos60°.20.(10分)如图,在△ABC 中,∠ACB =90°,BC =3,AC =4,CD ⊥AB ,垂足为D ,求sin∠ACD 和tan∠BCD 的值.21.(10分)根据下列条件解直角三角形:(1)在Rt△ABC 中,∠C =90°,c =83,∠A =60°; (2)在Rt△ABC 中,∠C =90°,a =36,b =9 2. 22.(10分)测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD =20米,求建筑物BC 的高度;(2)若已知旗杆的高度AB =5米,求建筑物BC 的高度.23.(12分)已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪⎪⎪sin B -32=0. (1)试判断△ABC 的形状;(2)求(1+sin A)2-2cos B-(3+tan C)0的值.24.(12分)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A,B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,3≈1.7).25.(12分)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC.若CD=3,BD=26,sin∠DBC=33,求对角线AC的长.26.(14分)如图,在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到故障船C 的求救信号.已知A 、B 两船相距100(3+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出船A 与船C 、观测点D 之间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 航行去营救船C ,在去营救的途中有无触暗礁危险(参考数据:2≈1.41,3≈1.73)?答案1.A 2.D 3.C 4.A 5.C 6.B 7.B 8.A 9.B 10.A 11.D 12.A13. 3 14.125 15.60° 16.45 17.3518.338 ⎝ ⎛⎭⎪⎫32n +1 解析:在△ABC 中,∠ACB =90°,∠B =30°,则CD 1=32;进而在△CD 1D 2中,有D 1D 2=32CD 1=⎝ ⎛⎭⎪⎫322,同理可得D 2D 3=⎝ ⎛⎭⎪⎫323=338,…,则线段D n D n +1=⎝ ⎛⎭⎪⎫32n +1. 19.解:(1)原式=3×33+⎝ ⎛⎭⎪⎫222-2×32=3+12-3=12;(5分)(2)原式=(3)2-2×22+12=3-2+12=72- 2.(10分) 20.解:∵∠ACB =90°,BC =3,AC =4,∴AB =5.(2分)∵CD ⊥AB ,∴∠ADC =∠BDC=90°,∴∠B +∠BCD =90°,∠A +∠ACD =90°.又∵∠BCD +∠ACD =90°,∴∠ACD =∠B ,∠BCD =∠A ,(6分)∴sin∠ACD =sin B =AC AB =45,tan∠BCD =tan A =BC AC =34.(10分)21.解:(1)∠B =30°,a =12,b =43;(5分)(2)∠A =30°,∠B =60°,c =6 6.(10分)22.解:(1)在Rt△BCD 中,∵∠BDC =45°,∴BC =CD =20米.(3分)答:建筑物BC 的高度为20米;(4分)(2)设CD =BC =x 米,∴AC =(x +5)米.(5分)在Rt△ACD 中,tan∠ADC =AC CD=5+xx≈1.2,解得x ≈25,经检验x ≈25符合题意.(9分) 答:建筑物BC 的高度约为25米.(10分)23.解:(1)∵(1-tan A )2+⎪⎪⎪⎪⎪⎪sin B -32=0,∴tan A =1,sin B =32,(2分)∴∠A =45°,∠B =60°,∴∠C =180°-45°-60°=75°,(5分)∴△ABC 是锐角三角形;(6分)(2)∵∠A =45°,∠B =60°,∠C =75°,∴原式=⎝⎛⎭⎪⎫1+222-212-1=12.(12分)24.解:如图,过点C 作CD ⊥AB 交AB 的延长线于点D .设CD =x 米.(2分)在Rt△ADC 中,∠DAC =25°,tan∠DAC =CD AD ,所以AD =CD tan25°≈x0.5=2x (米).(5分)在Rt△BDC 中,∠DBC =60°,tan∠DBC =CD BD ,即tan60°=x 2x -4=3,解得x =4323-1≈3.(11分)答:该生命迹象所在位置C 的深度约为3米.(12分)25.解:如图,过点D 作DE ⊥BC 交BC 的延长线于点E ,则∠E =90°.(1分)∵sin∠DBC=33,BD=26,∴DE=BD·sin∠DBC=22,∴BE=BD2-DE2=4.∵CD=3,∴CE=CD2-DE2=1,∴BC=BE-CE=3,∴BC=CD,∴∠CBD=∠CDB.(6分)∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD.同理AD∥BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(9分)连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO =6,(10分)∴OC=BC2-BO2=3,∴AC=2 3.(12分)26.解:(1)如图,过点C作CE⊥AB与点E,设AE=x海里.(1分)在Rt△AEC中,∠CAE=60°,∴CE=AE·tan60°=3x海里,AC=AEcos60°=2x海里.(2分)在Rt△BCE中,∠CBE=45°,∴BE=CE=3x海里.∵AB=AE+BE=100(3+1)海里,∴x+3x=100(3+1),解得x=100.∴AC=200海里.(5分)在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F.设AF=y海里,则AD=AFcos60°=2y海里,CF=DF=AF·tan60°=3y海里.(7分)∵AC=AF+CF=200海里,∴y+3y=200,解得y=100(3-1),∴AD=2y=200(3-1)海里.(9分)答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(3-1)海里;(10分)(2)由(1)可知DF=3AF=3×100(3-1)≈126(海里).(12分)∵126海里>100海里,∴巡逻船A沿直线AC航行去营救船C,在去营救的途中没有触暗礁危险.(14分)第二十九章检测卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.在操场上练习双杠的过程中发现双杠的两横杠在地上的影子()A.相交 B.互相垂直 C.互相平行 D.无法确定2.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()3.下面几何体中,其主视图与俯视图相同的是()4.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()5.如图所示的几何体,它的左视图与俯视图都正确的是()6.王丽同学在某天下午的不同时刻拍了三张同一景物的风景照A,B,C,冲洗后不知道拍照的顺序,已知投影l A>l C>l B,则A,B,C的先后顺序是()A.A,B,C B.A,C,BC.B,C,A D.B,A,C7.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体个数是()A.3个 B.4个 C.5个 D.6个第7题图第8题图8.如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同 B.仅有甲和丙相同C.仅有乙和丙相同 D.甲、乙、丙都相同9.如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4,A′B′=23,则AB与A′B′的夹角为()A.45° B.30° C.60° D.以上都不对第9题图第10题图10.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6mC.1.86m D.2.16m11.如图是几何体的俯视图,小正方形中的数字为该位置小正方体的个数,则该几何体的主视图是()第11题图第12题图12.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数可能是()A.5或6 B.5或7C.4或5或6 D.5或6或7二、填空题(本大题共6小题,每小题4分,共24分)13.工人师傅制造某工件,想知道工件的高,则他需要看到三视图中的或.14.上小学五年级的小丽看见上初中的哥哥小勇用测树的影长和自己的影长的方法来测树高,她也学着哥哥的样子在同一时刻测得树的影长为5米,自己的影长为1米.要求得树高,还应测得.15.如图是测得的两根木杆在同一时间的影子,那么它们是由形成的投影(填“太阳光”或“灯光”).第15题图第16题图第17题图16.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD为2米,若树底部到墙的距离BC为8米,则树高AB为米.17.如图是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是 cm3.18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB 的长为 cm.三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图所示画出的两个图形都是一个圆柱体的正投影,试判断正误,并说明原因.20.(10分)下列几何体的三视图有没有错误?如果有,请改正.21.(10分)画出如图所示几何体的三视图.22.(10分)如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB的影长时,同时测量出EF=6m,计算DE的长.23.(12分)根据下列视图(单位:mm),求该物体的体积.24.(12分)一圆柱形器皿在点光源P下的投影如图所示,已知AD为该器皿底面圆的直径,且AD=3,CD为该器皿的高,CD=4,CP′=1,点D在点P下的投影刚好位于器皿底与器皿壁的交界处,即点B处,点A在点P下的投影为A′,求点A′到CD的距离.25.(12分)如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图;(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值;(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.26.(14分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所给数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.答案1.C 2.D 3.C 4.C 5.D 6.C7.C 8.B 9.B 10.A 11.B12.D 解析:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.13.主视图左视图14.她自己的身高15.太阳光16.10 17.75 18.619.解:图①是错误的,图②是正确的.(4分)因为圆柱体的正投影是平行光线的投影,投影线与投影面是垂直的,所以投影后不可能是圆柱,而是一个平面图形——矩形或正方形.(10分)20.解:左视图、俯视图错误.(4分)改正后的图形如图所示.(10分)21.解:如图所示.(10分)22.解:(1)如图所示,EF 即为所求;(4分)(2)由题意可得AB BC =DE EF ,即53=DE6,解得DE =10m.(9分)答:DE 的长为10m.(10分)23.解:这是上下两个圆柱的组合图形.(4分)V =16×π×⎝ ⎛⎭⎪⎫1622+4×π×⎝ ⎛⎭⎪⎫822=1088π(mm 3).(11分)答:该物体的体积是1088mm 3.(12分)24.解:由中心投影的性质得△PDE ∽△PBP ′,(2分)∴PD PB =DE BP ′=13+1=14.(5分)又∵△PAD ∽△PA ′B ,∴AD A ′B =PD PB =14,∴3A ′B =14,(8分)∴A ′B =12,∴A ′C =12+3=15.(11分)答:点A ′到CD 的距离为15.(12分)25.解:(1)如图所示;(4分)(2)这个几何体的小正方体的个数最少为8个,最多为11个.即n 最小为8,最大为11;(8分)(3)如图所示.(12分) 26.解:(1)圆锥;(4分)(2)S 表=S 侧+S 底=π×6×2+π×⎝ ⎛⎭⎪⎫422=12π+4π=16π(cm 2);(8分)(3)如图将圆锥侧面展开,得到扇形ABB ′,连接BC ,BD ,则线段BD 为所求的最短路程.(9分)设∠BAB ′=n °.∵n π·6180=4π,∴n =120,即∠BAB ′=120°.∵C 为弧BB ′的中点,∴∠BAD =60°.∵AB =AC ,∴△ABC 为等边三角形,∴BD ⊥AC ,∴∠ADB =90°,(12分)∴BD =AB ·sin∠BAD =6×32=33(cm).即最短路程为33cm.(14分)。

九年级数学下册 各单元综合测试题附答案4套

九年级数学下册 各单元综合测试题附答案4套

人教版九年级数学下册第二十六章综合测试卷03一、选择题(每小题4分,共32分)1.下列函数是反比例函数的是()A .12y x =B .12y x =C .21y x =D .12y x =+2.当0x >时,函数5y x=-的图x 象在()A .第四象限B .第三象限C .第二象限D .第一象限3.反比例函数12ky x-=的图象x 经过点(2,3)-,则k 的值为()A .6B .6-C .72D .72-4.已知反比例函数1y x=,下列结论不正确的是()A .图象经过点1,1()B .图象在第一、第三象限C .当1x >时,01y <<D .当0x <时,y 随x 的增大而增大5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度ρ(单位:3kg/m )是体积V (单位:3m )的反比例函数,它的图象如图26-8所示,当310 m V =时,二氧化碳的密度是()A .35 kg/mB .32 kg/mC .3100 kg/mD .31 kg/m 6.如图26-9,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交2x 于1,2A (),2,1B --()两点,若12y y <,则x 的取值范围是()A .1x <B .2x -<C .20x -<<或1x >D .2x -<或01x <<7.若函数1y k x =-()和函数ky x=的图象在同一坐标系中,则其图象可为图中的()A .①③B .①④C .②③D .②④8.如果函数1ky x-=的图象与直线y x =没有交x 点,那么k 的取值范围是()A .1k >B .1k <C .1k ->D .1k -<二、填空题(每小题5分,共20分)9.试写出图象位于第二、第四象限的一个反比例函数的解析式________.10.点P 在反比例函数(0)ky k x=≠的图象上,点2,4Q ()与点P 关于y 轴对称,则反比例函数的解析式为________.11.若点,2P a ()在一次函数24y x =+的图象上,它关于y 轴的对称点在反比例函数ky x=的图象上,则该反比例函数的解析式为________.12.如图26-11,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在上的图象AB 上,点B ,E 在反比例函数ky x=上,1OA =,6OC =,则正方形ADEF 的边长为________.三、解答题(共48分)13.(8分)已知变量y 与1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数解析式。

人教版九年级下册数学各单元测试卷及答案(全套)

人教版九年级下册数学各单元测试卷及答案(全套)

第二十六章综合测试一、选择题(30分) 1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是( ) A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是( )ABCD3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是( ) A .0m n +<B .0m n +>C .m n <D .m n >4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是( )A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则( ) A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是( ) A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是( ) A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2cy x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是( ) A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为( ) A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为( ) A .4 B .3 C .2 D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________. 13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______. 17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C . (1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。

2022-2023学年全国初中九年级下数学人教版单元测试(含答案解析)062345

2022-2023学年全国初中九年级下数学人教版单元测试(含答案解析)062345

2022-2023学年全国初中九年级下数学人教版单元测试考试总分:150 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 29 小题,每题 5 分,共计145分)1. 如图所示的几何体是由若干个大小相同的小正方体组成的,则从左面看该几何体的形状图是( )A.B.C.D.2. 如图是一个全封闭的物体,则它的俯视图是( )A.B.C.D.53. 如图,该几何体是由个相同的小正方体搭成的,则这个几何体的主视图是( )A.B.C.D.4. 数学无处不在,如图是一个螺栓的示意图,它的俯视图是( )A.B.C.D.5. 如图是由几个相同的小正方体堆砌成的几何体,它的左视图是( )A.B.C.D.6.5如图是由个相同的小正方体组成的立体图形,这个立体图形的左视图是( )ArrayA.B.C.D.7. 如图所示的是一个由个棱长为的小正方体搭成的几何体,现将最上方的正方体移走,则关于新几何体的三视图描述正确的是( )A.左视图的面积是B.主视图的面积是C.俯视图的面积是D.左视图的面积最小8.如图是由个相同的小正方体搭成的几何体,它的左视图是( ) A. B.C.513455D.9. 两个长方体按图示方式摆放,其主视图是( )A.B.C.D.10. 如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是( )A.B.C.D.11. 如图,一个几何体由个大小相同、棱长为的小正方体搭成,那么三视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大12. 如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是( ) A. B. C.D.13. 如图是由个大小相同的小正方体搭成的几何体,其俯视图是( )514A. B. C. D.14. 如图是由个相同的小正方体组成的立体图形,它的主视图是( ) A. B. C.D.15. 如图所示的几何体是由个小正方体组合而成的立体图形,则它的俯视图是( )57A.B.C.D.16. 如图,该几何体的俯视图是( )A.B.C.D.17. 如图,是由几个完全相同的小正方体搭建的几何体,以下选项主视图、左视图和俯视图中,其中两个视图相同,则相同的视图是( )A.B.C.D.18. 右图所示的几何图形的俯视图是( )A.B.C.D.19. 如图所示的几何体的俯视图是( )A.B.C.D.5A B20. 如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的( )A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变21. 如图,将一个正六棱柱按如图所示的方式截去一个角,则所形成的几何体的俯视图为( )A.B.C.D.1022. 如图是由个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视( )图描述正确的是A.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变1223. 如图放置的一个机器零件,若其主(正)视图如图,则其俯视图是( )ArrayA.B.C.D.24. 如图所示,“中”字的俯视图是()A.B.C.D.25. 如图所示几何体的左视图是( )A. B. C. D.26. 分别从正面、上面、左面观察下列物体,得到的平面图形完全相同的是( )A.B.C.D.27. 图中几何体的主视图是()①②③④B. C. D.28. 如图所示的几何体的左视图是 A. B. C.D.29. 由个相同的小正方体搭成的几何体如图所示,则它的主视图是( )A.()6B.C.D.二、填空题(本题共计 1 小题,共计5分)30. (5分)如图是由若干棱长为的立方块堆砌而成的几何体,那么其三种视图中面积最小值的是1_________.参考答案与试题解析2022-2023学年全国初中九年级下数学人教版单元测试一、 选择题 (本题共计 29 小题 ,每题 5 分 ,共计145分 )1.【答案】B【考点】简单组合体的三视图【解析】根据左视图就是从物体的左边进行观察,得出左视图有列,每列小正方形数目为,.【解答】解:从左边看,从左往右小正方形的个数依次为:,.故选.2.【答案】D【考点】简单组合体的三视图【解析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】从上面观察可得到:.3.【答案】22121B【考点】简单组合体的三视图【解析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解答】解:从正面看,底层是三个小正方形,上层左边是一个小正方形.故选.4.【答案】D【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:俯视图为:故选.5.【答案】A【考点】简单组合体的三视图【解析】从左边看有列,左数第列有两个正方形,第列有个正方形,据此可得.A D 2121它的左视图是6.【答案】A【考点】简单组合体的三视图【解析】根据从左边看得到的图形是左视图,可得答案.【解答】从左边看第一层是两个小正方形,第二层左边一个小正方形,7.【答案】D【考点】简单组合体的三视图【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:项,题中几何体左视图由个正方形组成,面积为,故项错误;项,主视图由个正方形组成,面积为,故项错误;项,俯视图由个正方形组成,面积为,故项错误;项,左视图的面积最小,故项正确.故选.8.【答案】AA 22AB 33BC 44CD D D简单组合体的三视图【解析】此题暂无解析【解答】此题暂无解答9.【答案】C【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看有两层,底层是一个矩形,上层是一个长度较小的矩形.故选.10.【答案】A【考点】简单组合体的三视图【解析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个矩形,如图:故选.C A【答案】C【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.【解答】解:由几何体可知:主视图的面积为,俯视图的面积为,左视图的面积为.故选.12.【答案】C【考点】简单组合体的三视图【解析】找到从上面看所得到的图形即可,所有的看到的棱都应表现在俯视图中.【解答】解:从上面看可得,俯视图如下.故选.13.【答案】A【考点】简单组合体的三视图443C C找到从上面看所得到的图形即可.【解答】解:从上面看可得到一行正方形的个数为,即故选.14.【答案】B【考点】简单组合体的三视图【解析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解答】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.如图:故选.15.【答案】D【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:从上向下看俯视图有两行,上面一行有个小正方形,下面一行有个小正方形.故选.3A B 31D16.【答案】C【考点】简单组合体的三视图【解析】根据俯视图是从上往下看,以及看不到的部分用虚线,即可解答.【解答】解:俯视图为:.故选.17.【答案】C【考点】简单组合体的三视图【解析】根据主视图、左视图、俯视图的画法即可判断.【解答】解:主视图和俯视图相同,左边一列是三个小正方形,右边一列是一个小正方形;左视图有三列,左边一列是两个小正方形,中间一列是三个小正方形,右边一列是一个小正方形.故选.18.【答案】D【考点】简单组合体的三视图【解析】C C根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个有直径的圆环,而且桶底圆环比桶顶圆环小.故选.19.【答案】B【考点】简单组合体的三视图【解析】利用几何体的结构特征即可判断【解答】解:该几何体从上往下看到的是圆且中间有一顶点,如图所示.故选.20.【答案】A【考点】简单组合体的三视图【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:如果将小正方体放到小正方体的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选21.【答案】D B A B A【答案】B【考点】简单组合体的三视图截一个几何体【解析】此题暂无解析【解答】此题暂无解答22.【答案】B【考点】简单组合体的三视图【解析】利用结合体的形状,结合三视图可得出俯视图和左视图没有发生变化;【解答】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变.B故选.23.【答案】D【考点】简单组合体的三视图【解析】找到从上面看所到的图形即可.【解答】从上面看可得到左右相邻的个矩形.24.【答案】C【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:俯视图是指从上面看,从上面看是由五个矩形组成,其中有两条为虚线,因此正确选项是故选.25.【答案】C【考点】简单组合体的三视图【解析】根据从左边看得到的图形是左视图,可得答案.【解答】从左边看是上下两个矩形,两矩形的公共边是虚线,26.【答案】A【考点】简单组合体的三视图【解析】图、图、图、图可以近似的看作正方体,圆锥体,长方体、圆柱体,根据它们三视图的形状进行判断即可.3 C.C ①②③④【解答】解:图、图、图、图可以分别近似地看作正方体,圆锥体,长方体、圆柱体,正方体的三视图都是正方形的,圆锥体的主视图和左视图是三角形,而俯视图是圆形,长方体的三视图虽然都是长方形,但它们的大小不相同,圆柱的主视图和左视图是长方形,但俯视图是圆形,因此从正面、上面、左面看所得到的平面图形完全相同的是正方体.故选.27.【答案】A【考点】简单组合体的三视图【解析】此题暂无解析【解答】略28.【答案】A【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:左视图是指从物体的左侧观察物体所得到的图形,可知图中物体的左视图为故选 .29.【答案】①②③④A AD【考点】简单组合体的三视图【解析】几何体的主视图为两层,三列,第一层有三个小正方形,第二层有一个小正方形,第一列有两个小正方形,其它列有一个小正方形.据此得出答案.【解答】解:几何体的主视图为两层,三列,最底层有三个小正方形,第二层有一个小正方形,第一列有两个小正方形,其它列有一个小正方形.如图:故选.二、 填空题 (本题共计 1 小题 ,共计5分 )30.【答案】【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,从左边看得到的图形左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形,面积是;左视图第一层是两个小正方形,第二层左边一个小正方形,面积是;俯视图左边是两个小正方形,中间是两个小正方形,右边是一个小正方形,面积是.故答案为:.D 35cm 23cm 25cm 23。

人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(有答案)

人教版九年级下册数学 第28章 锐角三角函数  单元测试卷(有答案)

2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在Rt△ABC中,∠C=90°,各边都扩大5倍,则锐角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定2.用计算器求sin28°,cos27°,tan26°的值,它们的大小关系是()A.tan26°<cos27°<sin28°B.tan26°<sin28°<cos27°C.sin28°<tan26°<cos27°D.cos27°<sin28°<tan26°3.已知锐角α满足cosα=,则tanα是()A.B.C.2D.24.在直角三角形中不能求解的是()A.已知一直角边和一锐角B.已知斜边和一锐角C.已知两边D.已知两角5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米处的C点(AC⊥BA)测得∠C=50°,则A、B间的距离应为()A.15sin50°米B.15cos50°米C.15tan50°米D.米6.如图,在高为2m,坡比为1:的楼梯上铺地毯,地毯的长度应为()A.4m B.6m C.m D.m 7.在Rt△ABC中,∠C=90°,cos A=,则sin B的值为()A.B.C.D.28.△ABC中,tan A=1,cos B=,则△ABC为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.在△ABC中,∠C=90°,a=5,c=13,用计算器求∠A约等于()A.14°38′B.65°22′C.67°23′D.22°37′10.如图,在某海岛的观察所A测得船只B的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m,当时的水位是+3m,则观察所A和船只B的水平距离BC是()A.50m B.50m C.5m D.53m二.填空题11.比较大小:sin87°tan47°.12.在Rt△ABC中,∠C=90°,AB=,BC=1,则tan B=.13.在△ABC中,∠B=74°37′,∠A=60°23′,则∠C=,sin A+cos B+tan C ≈.14.计算:tan45°+sin260°=.15.已知:∠α是锐角,且sinα•cosα=,则sinα+cosα=.16.一船向西航行,上午9时30分在小岛A的南偏东30°,距小岛A60海里的B处,上午11时,船到达小岛A的正南方向,则该船的航行速度为.17.如图,小明想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进20m至B处,测得仰角为60°,那么塔高约为m.(小明身高忽略不计,≈1.732)18.如图,已知l1∥l2,l1与l2之间的距离为,∠α=60°,则AB=.19.在Rt△ABC中,∠C=90°,若cos B=,则tan A=,若此时△ABC的周长为48,那么△ABC的面积.20.如图,△ABC中,∠C=90°,BC=4,AB的垂直平分线MN交AC于D,且CD:DA =3:5,则sin A=.三.解答题21.在Rt△ABC中,∠C=90°,AC=5cm,BC=2cm.求∠A,∠B的正弦、余弦和正切的值.22.如图,梯子AB的长为2.8m.当α=60°时,求梯子顶端离地面的高度AD和两梯脚之间的距离BC.当α=45°时呢?23.已知∠A为锐角,且cos A=,求sin A、tan A.24.观察下列等式:①sin30°=,cos60°=;②sin45°=,cos45°=;③sin60°=,cos30°=.(1)根据上述规律,计算sin2α+sin2(90°﹣α)=.(2)计算:sin21°+sin22°+sin23°+…+sin289°.25.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m,在点B,C分别测得气球A的仰角∠ABD为45°,∠ACD为56°,求气球A离地面的高度AD(精确到0.1m).26.在直角坐标系中,点P(x,6)在第一象限,且OP与x轴正半轴的夹角α的正切值是.求x的值,及角α的正弦和余弦值.27.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.参考答案与试题解析一.选择题1.解:因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A.2.解:∵tan26°≈0.488,cos27°≈0.891,sin28°≈0.469.故sin28°<tan26°<cos27°.故选:C.3.解:∵cosα==,∴可设b=x,则c=3x,∵a2+b2=c2,∴a=2x,∴tanα===2.故选:D.4.解:A、已知一直角边和一锐角能够求解;B、已知斜边和一锐角能够求解;C、已知两边能求解;D、已知两角不能求解.故选:D.5.解:因为AC=15米,∠C=50°,在直角△ABC中tan50°=,所以AB=15•tan50°米.故选:C.6.解:如图,根据题意得:AC=2m,i=AC:BC=1:,∴BC=AC=2m,∴地毯的长度应为:AC+BC=2+2(m).故选:D.7.解:在△ABC中,∠C=90°,∠A+∠B=90°,则sin B=cos A=.故选:A.8.解:由tan A=1,cos B=,得A=45°,B=30°,由三角形内角和定理,得C=180°﹣A﹣B=105°,故选:B.9.解:sin A==≈0.385,A=sin﹣10.385=22.64°=22°37′,故选:D.10.解:由题意得,AC=50米,∠ABC=30°,在Rt△ABC中,BC=AC cot∠ABC=50(米).故选:B.二.填空题11.解:∵sin87°<1,tan47°>tan45°=1,∴sin87°<tan47°,故答案为:<.12.解:∵∠C=90°,AB=,BC=1,∴AC==2,∴tan B==2,故答案为:2.13.解;∠C=180°﹣(∠A+∠B)=180°﹣135°=45°.sin A+cos B+tan C≈0.86935+0.26527+1≈2.1346.故答案为:45°;2.1346.14.解:tan45°+sin260°=1+()2=1.故答案为:1.15.解:∵(sinα+cosα)2=sin2α+2sinα•cosα+cos2α=1+2sinα•cosα,∴当sinα•cosα=时,原式=1+=,则sinα+cosα=±=±,∵∠α是锐角,sinα,cosα都为正数,∴sinα+cosα=.故答案为:.16.解:如图在Rt△ABC中,∠BAC=90°﹣60°=30°,AB=60海里,故BC=30海里,11时﹣9时30分=1.5小时,船航行的速度为30÷1.5=20海里/时.故答案为:20海里/时.17.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=20m.∴DC=BD•sin60°=20×≈17.32(m).故答案为:17.32.18.解:如图,过点B作BC⊥l2于点C,则BC=,在Rt△ABC中,∠BAC=α=60°,BC=,所以AB===2.故答案是:2.19.解:设c=5k,a=3k.由勾股定理得:b===4k.∴tan A==.∵△ABC的周长为48,∴5k+3k+4k=48.解得:k=4.∴3k=3×4=12,4k=4×4=16.∴△ABC的面积==96.故答案为:;96.20.解:如图,连BD,设CD=3x,则DA=5x,又∵MN垂直平分AB,∴DB=DA=5x,在Rt△BCD中,BC=4,∵BD2=CD2+BC2,∴(5x)2=(3x)2+42,∴x=1,∴AC=AD+DC=5x+3x=8x=8,在Rt△ABC中,AB===4.sin A=.故答案为:三.解答题21.解:由勾股定理得:AB===7(cm).∴sin A==,cos A==,tan A==,sin B==,cos B==,tan B===.22.解:∵AB=AC,AD⊥BC,∴BC=2BD,∠ABD=∠ACD.当α=60°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=60°,∴BD=AB•cos∠ABD=1.4m,AD=AB•sin∠ABD=m,∴BC=2BD=2.8m;当α=45°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=45°,∴BD=AB•cos∠ABD=m,AD=AB•sin∠ABD=m,∴BC=2BD=m.23.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sin A=或﹣(舍去),∴sin A=,∵tan A=,∴tan A==.24.解:(1)∵根据已知的式子可以得到sin(90°﹣α)=cosα,∴sin2α+sin2(90°﹣α)=1;(2)sin21°+sin22°+sin23°+…+sin289°=(sin21°+sin289)+(sin22°+sin288°)+…+sin245°=1+1+…1+=44+=.25.解:根据题意,得∠ADB=90°,∠ABD=45°,∴∠DAB=45°,∴AD=BD,∴CD=BD﹣BC=AD﹣20,在Rt△ADC中,∠ACD=56°,∴tan56°=,即1.48≈,解得AD≈61.7(m).答:气球A离地面的高度AD约为61.7m.26.解:如图所示,过点P作PQ⊥x轴于点Q,由P(x,6)且P在第一象限知OQ=x,PQ=6,∵tan∠POQ=tanα=,∴=,即=,解得x=9,则OP===3,∴sinα===,cosα===.27.解:∵75°>60°>30°>15°,∴cos75°<cos60°<cos30°<cos15°.。

人教版九年级下册数学全册测试卷(含答案)

人教版九年级下册数学全册测试卷(含答案)

二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 . 4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 . 5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________. 8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到. 9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 . 二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )A.x=3B.x=-3C.12x =- D. 12x =12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.若抛物线y=0.5x 2+3x+m 与x 轴没有交点,则m 的取值范围是( )A.m≤4.5B.m≥4.5C.m>4.5D.以上都不对 14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )A.a<0,b>0B.b 2-4ac<0 C.a -b+c<0 D.a -b+c>0 15.函数是二次函数m x m y m+-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点 16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) A.53m B.3m C.10m D.12m 17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5B.4或-4C.4D.-4 (第14题)18.二次函数y=ax2+bx+c的图象如图所示,则此函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y= -x2-2x-319.函数y=ax2+bx+c和y=ax+b在同一坐标系中大致图象是()(第18题)20.若把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2,则()A.b=-2,c=3B.b=2,c=-3C.b=-4,c=1D.b=4,c=7三、计算题(共38分)21.已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。

九年级数学人教版单元测试

九年级数学人教版单元测试

九年级数学下册 第一单元检测题 人教新课标版温馨提示:抛物线2(0)y ax bx c a =++≠的顶点坐标公式为(ab 2-,abac 442-)一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在答题卷中对应的位置.1.在0,-2,1,-3这四个数中,绝对值最小的数是 ( )A .-3B .1C .-2 D.0 2.计算2232x x -的结果是( )A .1B .xC .2x D .2x -3.下列图案中,既是轴对称图形又是中心对称图形的是( )4.如图,直线AB 、CD 交于点O ,OE ⊥AB ,//B E C D ,若∠COE =550, 则∠OBE 的度数是( )A .300B .350C .400D .450 5.下列调查中,适宜采用普查方式的是( )A .审查一本书稿有哪些科学性错误所做的调查B .为了了解我市小学生的身体肥胖问题的调查C .广电总局对各电视台电视节目收视率的调查D .为了了解某一地区市民对房地产价格认可度的调查6.如图所示,⊙O 是A B C ∆的外接圆.若︒=∠35ACB ,则O B A ∠ 的度数等于( )A .350B .550C .700D .1100 7.函数2-=x x y 的自变量x 的取值范围是( )A .x ≠2B .x ≠0 C.x ≠0 且x ≠2 D .x>28.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依此规律,第10个图形有小圆的个数是( )A .51个 B. 121个 C. 114个 D. 60个9.解放军某部队乘车..前往灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行..前往.若部队离开驻地的时间为t (小时),离开驻地行驶的路程为S (千米),则能反映S 与t 之间函数关系的大致图象是( )10.如图,二次函数2y ax bx c =++的图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴交于点C ,下面五个结论:①0abc <;②20a b +=; ③0a b c ++<;④3c a =-;⑤只有12a =时,ABD ∆是等腰直角三角形,其中正确的结论有( ) A.2个B.3个C.4个D.5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案的代号填入答题卷中对应的位置.11.《重庆市国民经济和社会发展第十二个五年规划纲要>提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将数据15000亿用科学记数法表示为_________ 亿.12.业务员小王今年1月至6月的手机话费(单位:元)是:60,68,78,70,66,80,则这组数据的中位数是__________. 13.若△ABC∽△DEF,△ABC 与△DEF 的面积比为9∶25,则△ABC 与△DEF 的周长比为__________. 14.在半径为6的圆中,1200的圆心角所对的弧长等于_________.(结果保留π)15.从1,2,3,……,1 4,1 5这1 5个整数中任取一个数记作a ,那么关于x 的方程1524ax x =-的解为整数的概率为___________. 16.甲、乙、丙三人拿出同样多的钱,合伙订购同静规格的若干件商品,商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙_________元.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 17.计算:2201101(1)(53π-⎛⎫--+-⨯- ⎪⎝⎭-.18.解一元一次不等式: 2213x x +-≥,并把解集在数轴上表示出来.19.如图,在A B C ∆与ABD ∆中,,.BC BD ABC ABD =∠=∠点E 为BC 中点,点F 为BD 中点,连接AE ,AF .求证:AE=AF.4题图6题图22题图20.如图,在ABC ∆中,AD 是B C 边上的高,∠C=300 ,AC=6,AB=4,求BD 的长. (结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:1)1212(2-÷+--+a a a aa ,其中a 是方程121=--xx x 的解.22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 、y 轴交于点A 、B ,与反比例函数在第一象限内的图象交于点C ,CD ⊥x 轴于点D ,OD=3,点A 为OD 的中点,3tan 2O B D ∠=.(1)求直线AB 和该反比例函数的解析式; (2)求四边形O B D C 的面积.23.交警对“餐饮一条街”旁的一个路口在某一时段内来往车辆的车速情况进行了统计,并制成了如下两幅不完整的统计图:(1)这些车辆行驶速度的平均速度是 千米/时; (2)并将该条形统计图补充完整;(3)该路口限速60千米/时.经交警逐一排查,在超速的车辆中,车速为80千米/时的车辆中有2位驾驶员饮酒,车速为70千米/时的车辆中有1位驾驶员饮酒,若交警不是逐一排查,而是分别在车速为80千米/时和70千米/时的车辆中各随机拦下一位驾驶员询问,请你用列表法或画树状图的方法求出所选两辆车的驾驶员均饮酒的概率.24.已知:如图,四边形ABCD 中AC 、BD 相于点D ,AB=AC ,AB AC ⊥,BD 平分A B C ∠且B D C D ⊥OE BC⊥ 于E ,OA=1. (1)求OC 的长;(2)求证:BO=2CD .五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.我市某服装厂生产的服装供不应求,A 车间接到生产一批西服的紧急任务,要求必须在12天内完成。

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学下册单元测试题全套以下部分显示,全下载后图片能全部显示!人教版九年级数学下册单元测试题全套(含答案)(含期中期末试题,共6套)第二十六检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下面的函数是反比例函数的是( )A.y=3x-1B.y=2(x).y=3x(1)D.y=3(2x-1) 2.若反比例函数y=x(k)的图象经过点(-2,3),则此函数的图象也经过点( )A.(2,-3)B.(-3,-3).(2,3)D.(-4,6)3.若点A(a,b)在反比例函数y=x(2)的图象上,则代数式ab-4的值为( )A.0B.-2.2D.-64.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度&rh;(单位:kg/3)与体积V(单位:3)满足函数关系式&rh;=V(k)(k为常数,k&ne;0),其图象如图,则当气体的密度为3kg/3时,容器的体积为( )A.93B.63.33D.1.53(第4题)5.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=x(k2)的图象无交点,则有( )A.k1+k2>0B.k1+k2<0.k1k2>0D.k1k2<06.已知点A(-1,y1),B(2,y2)都在双曲线y=x(3+)上,且y1&gt;y2,则的取值范围是( )A.&lt;0B.&gt;0.&gt;-3D.&lt;-37.如图,在直角坐标系中,直线y=6-x与函数y=x(4)(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为y1,宽为x1的矩形的面积和周长分别为( ) A.4,12B.8,12.4,6D.8,6(第7题)8.函数y=x(k)与y=kx+k(k为常数且k&ne;0)在同一平面直角坐标系中的图象可能是( )9.如图,在矩形ABD中,AB=4,B=3,点F在D边上运动,连接AF,过点B作BE&perp;AF于E.设BE=y,AF =x,则能反映y与x之间函数关系的大致图象是( ) (第9题)10.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若B2-BE2=8,则k的值是()(第10题)A.3B.4.5D.4二、填空题(每题3分,共24分)11.一个反比例函数的图象过点A(-2,-3),则这个反比例函数的表达式是________.12.南宁市五象新区有长24000的新道路要铺上沥青,则铺路所需时间t(天)与铺路速度v(/天)的函数关系式是________.13.点(2,y1),(3,y2)在函数y=-x(2)的图象上,则y1________y2(填&gt;&lt;或=).14.若反比例函数y=x(k)的图象与一次函数y=x的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为_____.15.如图,点A是反比例函数图象上一点,过点A作AB&perp;y轴于点B,点P在x轴上,且△ABP的面积为6,则这个反比例函数的表达式为________.(第15题)(第16题)(第17题)(第18题)16.如图,矩形ABD在第一象限,AB在x轴的正半轴上(点A与点重合),AB=3,B=1,连接A,BD,交点为.将矩形ABD沿x轴向右平移,当平移距离为________时,点在反比例函数y=x(1)的图象上.17.如图,过原点的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为B的中点,若函数y1=x(1),则y2与x的函数表达式是____________.18.如图,在直角坐标系中,正方形AB的顶点与原点重合,顶点A,分别在x轴,y轴上,反比例函数的图象与正方形的两边AB,B分别交于点,N,ND&perp;x轴,垂足为D,连接,N,N.下列结论:①△N≌△A;②N=N;③四边形DAN与△N的面积相等;④若&ang;N=45&deg;,N=2,则点的坐标为(0,+1).其中正确结论的序号是____________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在平面直角坐标系中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=x(k-1)的图象的一个交点为(a,2),求k 的值.20.已知反比例函数y=x(k),当x=-3(1)时,y=-6.(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)当2(1)<x<4时,求y的取值范围.21.已知点A(-2,0)和B(2,0),点P在函数y=-x(1)的图象上,如果△PAB的面积是6,求点P的坐标.22.如图,一次函数y=kx+5(k为常数,且k&ne;0)的图象与反比例函数y=-x(8)的图象交于A(-2,b),B两点.(第22题)(1)求一次函数的表达式;(2)若将直线AB向下平移(>0)个单位长度后,与反比例函数的图象有且只有一个公共点,求的值.23.如图,在直角坐标系中,矩形AB的顶点与坐标原点重合,A,分别在y轴,x轴上,点B的坐标为(4,2),直线y=-2(1)x+3交AB,B分别于点,N,反比例函数y=x(k)的图象经过点,N.(1)求反比例函数的表达式;(2)若点P在y轴上,且△P的面积与四边形BN的面积相等,求点P的坐标.(第23题)24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(in)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电后,水温y(℃)和通电时间x(in)之间的关系如图,回答下列问题:(1)分别求出当0&le;x&le;8和8<x&le;a时,y和x之间的函数关系式.(2)求出图中a的值.(3)李老师这天早上7:30将饮水机电打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?(第24题)25.如图,正比例函数y=2x的图象与反比例函数y=x(k)的图象交于A,B两点,过点A作A&perp;x轴于点,连接B,若△AB的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.(第25题)参考答案一、1. 2.A3.B 解析:∵点A(a,b)在反比例函数y=x(2)的图象上,&there4;ab=2.&there4;ab-4=2-4=-2.4.5.D 解析:若k1,k2同正或同负其图象均有交点.6.D 解析:由题意知,反比例函数的图象在第二、四象限,所以3+&lt;0,即&lt;-3.7.A 解析:由反比例函数y=x(k)(k&ne;0)中的比例系数k的几何意义知矩形的面积为|k|,即为4;因为A(x1,y1)在第一象限,即x1>0,y1>0,由直线y=6-x得x1+y1=6,所以矩形的周长为2(x1+y1)=12.8.A9.解析:连接BF,则可知S△AFB=2(1)xy=2(1)&ties;4&ties;3,故y=x(12),其自变量的取值范围是3&le;x&le;5,对应的函数值的范围为5(12)&le;y&le;4,故选.10.B解析:设E点的坐标为(x,y),则A+DE=x,AB-BD=y.∵△AB和△BED都是等腰直角三角形,&there4;EB=BD,B=AB,BD=DE,A=AB.∵B2-EB2=8,&there4;2AB2-2BD2=8,即AB2-BD2=4,&there4;(AB+BD)(AB-BD)=4,&there4;(A+DE)(AB-BD)=4,&there4;xy=4,&there4;k=4.故选B.二、11.y=x(6)12.t=v(24000)(v&gt;0)13.&lt;14.(-1,-2) 解析:因为反比例函数y=x(k)的图象关于原点成中心对称,一次函数y=x的图象经过原点,且关于原点成中心对称,所以它们的交点也关于原点成中心对称.又点(1,2)关于原点成中心对称的点为(-1,-2),所以它们另一个交点的坐标为(-1,-2).15.y=x(12) 解析:连接A,则△ABP与△AB的面积都等于6,所以反比例函数的表达式是y=x(12).16.2(1) 解析:将矩形ABD沿x轴向右平移后,过点作E&perp;AB于点E,则AE=2(1)AB=2(3),E=2(1)B=2(1).设A=,则E=A+AE=+2(3),&there4;2(1).∵点在反比例函数y=x(1)的图象上,&there4;2(1)=2(3),解得=2(1). 17.y2=x(4)18.①③④三、19.解:∵直线y=x向上平移1个单位长度得到直线l,&there4;直线l对应的函数表达式是y=x+1.∵直线l与反比例函数y=x(k-1)的图象的一个交点为(a,2),&there4;2=a+1.&there4;a=1.&there4;这个交点的坐标是(1,2).把点(1,2)的坐标代入y=x(k-1),得2=1(k-1),&there4;k=3.20.解:(1)把x=-3(1),y=-6代入y=x(k),得-6=3(1),则k=2,即反比例函数的表达式为y=x(2).因为k>0,所以这个函数的图象位于第一、第三象限,在每个象限内,y随x的增大而减小.(2)将x=2(1)代入表达式中得y=4,将x=4代入表达式中得y=2(1),所以y的取值范围为2(1)<y<4.21.解:∵点A(-2,0)和B(2,0),&there4;AB=4.设点P的坐标为(a,b),则点P到x轴的距离是|b|.又△PAB的面积是6,&there4;2(1)&ties;4|b|=6. &there4;|b|=3.&there4;b=&plusn;3.当b=3时,a=-3(1);当b=-3时,a=3(1).&there4;点P的坐标为,3(1)或,-3(1).22.解:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得.(-8)解得.(1)所以一次函数的表达式为y=2(1)x+5.(2)将直线AB向下平移(>0)个单位长度后,直线AB对应的函数表达式为y=2(1)x+5-.由x+5-(1)得,2(1)x2+(5-)x+8=0.&Delta;=(5-)2-4&ties;2(1)&ties;8=0,解得=1或9.23.解:(1)由题意易得点的纵坐标为2.将y=2代入y=-2(1)x+3,得x=2.&there4;(2,2).把点的坐标代入y=x(k),得k=4, &there4;反比例函数的表达式是y=x(4).(2)由题意得S△P=2(1)P&iddt;A.∵S四边形BN=S矩形AB-S△A-S△N=4&ties;2-2-2=4,S△P=S四边形BN,&there4;2(1)P&iddt;A=4.又易知A=2,&there4;P=4.&there4;点P的坐标是(0,4)或(0,-4).24.解:(1)当0&le;x&le;8时,设y=k1x+b.将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20.&there4;当0&le;x&le;8时,y=10x+20.当8<x&le;a时,设y=x(k2).将(8,100)的坐标代入y=x(k2),得k2=800.&there4;当8&lt;x&le;a时,y=x(800).综上,当0&le;x&le;8时,y=10x+20;当8<x&le;a时,y=x(800).(2)将y=20代入y=x(800),解得x=40,即a=40.(3)当y=40时,x=40(800)=20.&there4;要想喝到不低于40℃的开水,x需满足8&le;x&le;20,即李老师要在7:38到7:50之间接水. 25.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,&there4;S△A=S△B=2(1)S△AB=1.又∵A垂直于x轴,&there4;k=2.(2)假设存在这样的点D,设点D的坐标为(,0).由x(2)解得y1=2,(x1=1,)y2=-2.(x2=-1,) &there4;A(1,2),B(-1,-2).&there4;AD=,BD=,AB==2.当D为直角顶点时,∵AB=2,&there4;D=2(1)AB=.&there4;D的坐标为(,0)或(-,0).当A为直角顶点时,由AB2+AD2=BD2,得(2)2+(1-)2+22=(+1)2+22,解得=5,即D(5,0).当B为直角顶点时,由BD2+AB2=AD2,得(+1)2+22+(2)2=(1-)2+22,解得=-5,即D(-5,0).&there4;存在这样的点D,使△ABD为直角三角形,点D 的坐标为(,0)或(-,0)或(5,0)或(-5,0).第二十七检测卷一、选择题(共10小题,每小题3分,共30分)1.已知2x=(y&ne;0),则下列比例式成立的是() A.B..D.2.若,则等于()A.8B.9.10D.113.下列各组条件,一定能推得△AB与△DEF相似的是()A.&ang;A=&ang;E且&ang;D=&ang;FB.&ang;A=&ang;B 且&ang;D=&ang;F.&ang;A=&ang;E且D.&ang;A=&ang;E且4.如图,正方形ABD的边长为2,BE=E,N=1,线段N 的两端点在D,AD上滑动,当D为()时,△ABE与以D,,N为顶点的三角形相似.A.B..或D.或5.如图,在△AB中,若DE∥B,EF∥AB,则下列比例式正确的是()A.B..D.6.如图,在△AB中,DE∥B,,DE=4,则B的长是() A.8B.10.11D.127.如图,四边形ABD∽四边形A1B11D1,AB=12,D=15,A1B1=9,则边1D1的长是()。

相关文档
最新文档