油藏工程第四章油气藏压力与温度N[1]

合集下载

第04章 油气藏压力与温度

第04章 油气藏压力与温度

第一节油气藏压力•油藏能量的重要标志•工程破坏的主要原因原始地层压力p i 动态地层压力p第四章油气藏压力与温度井底流压p wf 井底静压p s 表压p gau绝对压力p abs airgau abs p p p +=力↔压力~ 压强~ 应力某一深度D 处, 由岩石孔隙中流体的重量产生的压力一、流体压力地面gDp p w air w ρ+=•压深关系方程(P-D 方程)ρw : g/cm3D : kmp w : MPaDp G ∂∂=ww DppgD p p w air w ρ+=•压深关系(P-D )曲线•压力梯度单位深度的压力变化值g w ρ=DG p w air +=gG w w ρ=ρw ≈1.0g/cm3G w ≈9.8MPa/kmDG p p w air w +==0.101+9.8×1Dp =9.90MPa二、骨架应力gDp p s air s ρ+=•ρs : 骨架密度某一深度D 处, 由岩石固体骨架的重量产生的压力Skeleton 颗粒压力基质压力固相压力Dp G ∂∂=ss gDp p s air s ρ+=ρs ≈2.65g/cm3G s ≈25.97MPa/kmDG p p s air s +==0.101+25.97×1Dpp air gs ρ==26.07MPa三、上覆压力某一深度D 处, 由上覆岩石的固体骨架和孔隙中流体的总重量所产生的压力。

gDp p r air ob ρ+=•ρr : 岩石密度•ρr =φρw +(1-φ)ρsρw <ρr <ρs地面Dp G ∂∂=obob Dp airgr ρ=ρr ≈2.32g/cm3G ob ≈22.74MPa/km ρw ≈1.0ρs ≈2.65φ≈0.2DG p p ob air ob +==0.101+22.74×1=22.84MPagDp p r air ob ρ+=air w w gDp p ρ=+air s s gDp p ρ=+air ob r p p gDρ=+四、应力关系方程sw r )1(ρφφρρ−+=Dp airgDp p r air ob ρ+=gDgD p p s w air ob )1(ρφφρ−++=airair air )1(p p p φφ−+=))(1()(s air w air ob gD p gD p p ρφρφ+−++=ob w s(1)p p p φφ=+−•截面O ′O•截面积OO ′A •上覆作用力p ob •截面骨架作用力p s •截面流体作用力p w •静力平衡A φA (1-φ)A)1(s w ob φφ−+=A p A p A p•流体压力gDp p w air w ρ+=D•上覆压力gDp p r air ob ρ+=sw r )1(ρφφρρ−+=•骨架压力φA p A p w ob −gDp s air ρ+=•骨架应力)1(φ−A =s p•φ=0•φ=1p ob=p sp ob=p w=p air+ρs gD=p air+ρw gD p w增大p s减小•正常: ps >p ob>p w •压裂: p s<p ob<p w ob w s(1)p p pφφ=+−p ob =20MPa φ= 0.20例:p s =?22.5MPa p s=0p w =10MPa p w =?20MPa sw ob )1(p p p φφ−+=ppDp ob w s(1)p p p φφ=+−s w ob p p p +=wob s p p p −=p ob >p w p ob >p spp •D =0p s =0p s = pair•与孔隙度无关sw ob p p p +=O ′OF1F 2F 1=F 2111A F =σ222A F =σσ1≠σ2wob s p p p −=•应力平衡p pDp sw ob )1(p p pφφ−+=s w ob p p p +=五、压力系数gDppwairwρ+=fp>0, 超压p w: 静水压力<0, 欠压p f: 地层压力cp+=w=c•异常原因砂层不连续p 流体不连通=f pgDp p w air w ρ+=gDp p w air w ρ+=≠f pw fp p =α>1.20.8~1.2<0.8异常高压正常异常低压•压力系数==f p<20MPa 20~40>60低压中等超高压40~60高压•超压系数wp c=β1−=α•β=0.2•地层超压20%•β=-0.2•地层欠压20%Dp•异常高压•高产•井喷低压中压高压超高•地层封闭Dp地面•什么地层出现异常高压?•异常低压p •泥浆漏失•封闭地层地面地面•什么地层出现异常低压?•构造运动→孔隙体积增大六、油藏压力(原始条件)Dp p 0: 余压DG p p p 0i +=1. 判断流体类型gG PL =ρ≈1.0g/cm30.5~1g/cm 3<0.5g/cm3水油气gG L P ρ=DG p p p 0i +==2. 计算原始地层压力p ip ssi p p p −=∆DG p p p 0i +=3. 判断压力系统pD4. 判断出油层位pD5. 确定流体界面pDDG p pw 0w +=DG po +ccpw 0w w D G p p +=cpo 0o o D G p p +=popw w00o c G G p p D −−=gp p D )(o w w00o c ρρ−−=WOC?cdOO+W WWOC1WOC2FWLp c =pct WOC1(第一油水界面)pc =p cd WOC2(第二油水界面)p c =0FWL (自由水面)DOO+W WWOC1WOC2FWLD G p p po 0o o +=DG p p pw 0w w +=wo c p p p −=w o c p p p −=p c =0p c =p cdp c =p ctpo pw 0w 0o FWLG G p p D −−=g p p )(o w 0w 0o ρρ−−=gp p p D )(o w cd 0w 0o WOC2ρρ−−−=gp p p D )(o w ct0w 0o WOC1ρρ−−−=DG G p p )(pw po 0w 0o −+−=cdOO+W WWOC1WOC2FWL•过渡带gp p h )(o w cdct ρρ−−=∆•任意界面gp p p D )(o w c 0w 0o WOCρρ−−−=cdOO+W WWOC1WOC2FWLpcdcdpcdgp p p D )(o w cd 0w 0o WOC2ρρ−−−=θρµtan wo g kV ∆=水流水源出口=0.001m/dθ=0.2°•1km 2露头日流入1000m3•出口露头等量连续流出•浅层存在水流但不存在油藏•深层存在油藏但不存在水流•水流会破坏油藏•水动力圈闭不存在•天池或365mm 年降雨量大庆古水流今水流•若为现今水流,能量充足七、方程确定D1. 多井方法DG p p p 0i +=D•测试误差•非原始压力2. 静压梯度法•静压梯度曲线D•静压梯度测试DG p p p 0i +=DDG p p p 0i +=3. 流体密度法DG p p p 0i +=gDp po 0i ρ+=DG p pw 0w w +=DG po 0o +。

油藏工程教程 第04章 油气藏压力与温度

油藏工程教程  第04章 油气藏压力与温度

p
D
5. 确定流体界面
p
po = p0o + Gpo D
pw = p0w + Gpw D
Dc
D
po = p0o + Gpo Dc
pw = p0w + Gpw Dc
p0o − p0 w Dc = Gpw − Gpo
p0o − p0 w Dc = ( ρ w − ρo ) g
WOC?
•油水界面划分 油水界面划分
pob>pw
pob>ps
pair
p
•D=0
ps=0பைடு நூலகம்
ps = pair
D
ps pw
pob
ps
D
pob = pw + ps
•与孔隙度无关 与孔隙度无关
ps = pob − pw
•应力平衡 应力平衡
pob
O
pw
ps
O′ ′
F1
A1
F1 σ1 = A1
A2
F2
F1=F2
F2 σ2 = A2
σ1≠σ2
pair
pc
O WOC1 WOC2 FWL pct O+W W pcd
swc
•任意界面 任意界面
DWOC
p0o − p0w − pc = ( ρ w − ρo ) g
pcd
pcd
pcd
pcd
DWOC2
p0o − p0w − pcd = ( ρ w − ρo ) g
° θ=0.2° 出口 水源
水流
k
V=
pi = p0 + Gp D
p

油 水
D
3. 流体密度法

油藏工程基本原理

油藏工程基本原理
《油藏工程原理》讲义
34
(2)油藏储量级别(续) 控制地质储量
指在某一圈闭内预探井发现工业油(气)流后,以建立 探明储量为目的,在评价钻探过程中钻了少数评价井后所 计算的储量。 控制储量可作为进一步评价钻探、编制中期和长期开
发规划的依据。
《油藏工程原理》讲义
35
(2)油藏储量级别(续)
探明地质储量
《油藏工程原理》讲义
7
绪论
孔隙度: 描述岩层储存油气的能力 水平方向渗透率: 描述油藏中流体的水平方向的 流动能力 垂直方向渗透率: 评价重力作用的影响和层间流 动能力 岩性分析: 提供岩石来源、纹理、结构的描述 残余相饱和度: 估计采收率 水的矿化度(Water Salinity): 矫正电测井,确定 钻井液侵入程度 岩芯伽玛测试: 矫正井下伽玛射线测井 岩石颗粒密度: 矫正密度测井 岩芯拍照: 提供岩心的永久存档
其中:
A h h A
j j
j
Aj h j
Aj h j
《油藏工程原理》讲义
30
中石油石油地质储量容积法
容积容积法计算石油地质储量公式: N=100·A·h·(1—Swi)ρ o/Boi 式中:N—石油地质储量,104t; A—含油面积,km2 h—平均有效厚度,m; φ —平均有效孔隙度,f; Swi—平均油层原始含水饱和度,f; ρ o—平均地面原油密度,g/cm3 ; Boi— 平均原始原油体积系数 Rm3/Sm3。
ho h WOC
含油面积Ao:
充满程度β :
Ao
Vc Ao h (1 swc )
油藏容积
《油藏工程原理》讲义
19
Vc Ao 0 1 Vct At
若 = 1,表明圈闭已经充满,同时也表明更多的油 > 0,表明圈闭中聚集了油气,同时也表明油气从

4.油气藏压力与温度-0

4.油气藏压力与温度-0

第四章油气藏压力与温度4油气藏压力与温度第四章油气藏压力与温度第一节油气藏压力第二节油气藏温度4油气藏压力与温度第一节油气藏压力)油气藏压力的种类、应力关系方程)压力系数)油气藏压力的压深关系方程及应用)压深关系方程的确定方法4油气藏压力与温度¾地层压力:又称孔隙压力,是指地层孔隙内流体所承受的压力。

如果该流体为油,就称油藏压力;如果为气,就称气藏压力。

¾原始地层压力:油气藏投入开采以前测量的地层压力。

¾油气藏动态压力:油气生产过程中测量的地层压力。

¾井底流压pwf:油气流动即生产过程中测量的井底压力。

¾井底静压ps :油气静止即关井过程中测量的井底压力。

几个压力概念4油气藏压力与温度4油气藏压力与温度绝对压力:流体本身具有的实际压力。

表压: 压力表直接测量到的压力数值。

abs air gaup p p =+注:注意与力的概念区分。

绝对压力表压大气压4油气藏压力与温度定义:地层某一深度,由岩石孔隙中流体的重量产生的压力,称作流体压力或孔隙压力。

1. 流体流体压力p w D 地面gDp p w air w ρ+=SI:p —MPa; ρ—g/cm 3;g —m/s 2;D —km因孔隙中通常饱和了地层水,故用p w 表示:静水压力4油气藏压力与温度ww p G D ∂=∂Dp p air p w gDp p w air w ρ+=g w ρ=流体压力梯度:w air w p p G D =+压深关系(p -D )曲线压深关系方程(p -D 方程)4油气藏压力与温度2. 骨架应力gD p p s air s ρ+=ρs : 骨架密度定义:地层某一深度,由岩石固体骨架重量产生的压力,称作骨架应力。

又称:颗粒压力、基质压力、固相压力。

p sD地面4油气藏压力与温度D p G ∂∂=ss gD p p s air s ρ+=s air s p p G D=+gs ρ=压深关系(p-D )曲线p sDp p air4油气藏压力与温度3. 上覆压力定义:地层某一深度,由上覆岩石固体骨架和孔隙中流体总重量产生的压力,称作上覆(地层)压力。

《油藏工程》课后习题答案

《油藏工程》课后习题答案
思考题与习题要点 第一章 1. 油田正式投入开发前的准备工作有哪些? 答:整体上油藏的开发分为三个部分,即区域勘探、工业勘探和投入开发。但是投入开发过程中首先要进 行基础井网的钻井,以便于更加详细的了解油藏情况。主要论述前两部分的内容和工作。 2. 试从处理好认识油田和开发油田的关系,说明整装油田和断块油田的开发程序的差别。 答:从认识油田的角度出发,应该在初期取得更多的资料,尤其是第一手的探井详探井资料,从开发油田 的角度看,前期的资料井比较多会影响到后期开发井网的完善性。对于整装油藏和断块油藏来说,其含油 的范围和特征不同,整装油田需要较少的井数即可大致了解油藏特征,但是对于断块油田来说,由于油藏 范围比较小,井数少很难了解全面其油藏的分布特征。 3. 在裂缝或断层较发育的地区,井排方向如何布置? 答:主要从裂缝和断层的性质出发考虑,天然裂缝或人工压裂的裂缝导流能力比较高,注入水很容易在其 中窜流,因此含油裂缝的油田最好裂缝的方向与水驱油的方向垂直;断层可以分为开启性、半开启性、以 及密封性断层,对于开启性质的断层来说,其对油水流动阻挡能力没有影响,但是封闭性断层可以阻挡流 体的流动,因此如果在水驱油的方向上存在封闭断层,则断层一侧的生产井很难受效。 (注意水驱油的方 向与井排方向的关系) 4. 弹性、塑性、弹塑性储层特性对产能的影响有何差别? 答:主要从岩石的性质变化(渗透率变化)考虑,压力的变化导致渗透率改变的程度,压力回升可否恢复 角度考虑。 5. 五点法与反九点法面积井网各自有何特点? 答:从井网的构成,油水井数比,井网密度,适用的油藏等方面入手分析。 6. 已知某油田的储量计算参数为:A=20km ;h=25m;φ=0.25;Soi=0.80;Boi=1.25,ρ地面=0.95。试求该油 田的原始地质储量、储量丰度和单储系数的大小。 答:采用储量的计算公式计算,主要注意各个参数的单位,含油面积采用的是平方公里,计算完成的单位 为×10 t,丰度和单储系数也是要注意的单位的形式为 10 t/Km 和 10 t/(Km ·m),此时单储系数的单位不 要合并处理。 7. 已知某气田的h=9.14m;φ=0.015;Sgi=0.70;pi=20.684MPa;T=358.6K;Tsc=293K; psc=0.10MPa;γg=0.60;原始气体偏离系数Zi=0.90。试求该气田的丰度和单储系数。 答:同样是主要单位的问题,同时还要注意对比温度和对比压力的求法。 8. 已知某凝析气藏的φ=0.25;Sgi=0.70。探井早期测试取得的数据为:pi=18.892MPa;T=374.67 K,经分离器 和油罐的二级分离,测得凝析油的产量qo=38.47m3/d; 天然气产量qg=9117.39 m /d; 凝析油的相对密度γ o=0.7883;天然气的相对密度γg=0.6705; 原始气体偏离系数Zi为 0.82。试用容积法确定凝析气藏的单储 系数,以及凝析气藏中天然气和凝析油的单储系数。 答:注意单位和凝析油藏的特征。 9. 设有一油田,既有边水,又有气顶,其中 A,B,C 分别为三口生产井,试分别画出 A,B,C 三井的开采特征 曲线(包括压力、产量、生产气油比随时间变化的曲线),并说明原因。 答:关键是分清楚 A,B,C 三口井的驱动形式,从图中可以看出,A 井经过开发以后处于原始油气界面以下,

油气藏的压力、温度系统

油气藏的压力、温度系统

4474.4-4600.0 2000.4.12-5.4 4446.96 -1819.49 54.80
57.76
窿103井
K1g13~K1g12
4538.0-4646.0
2000.12.2812.29
4515.47 -1985.32 50.95
58.83
窿104井
K1g14
4202.0-4220.8
2001.10.1010.15
Dowc
=
D + 100( pi - pws )
rw - ro
12
2-1 油气藏的压力、温度系统
o 一、油气藏的压力系统
2.压力系数 确定不同层位的油水界面位置: (3)当一口探井打在含油部分,另一口探井打在
含水部分,两者均未实际钻遇油水界面时,可由下式测 算油水界面的位置:
Dowc
=
(r w Dw
对青西油田15口井29个测试的静温数据进行统计分 析,静温数据数学表达式为:
T = 77.51-0.0269*H 青西油田的地温梯度为2.69℃/100m,属于低温的 范畴。地温梯度偏低,与我国西部地区总体地温梯度一 致。
21
油藏温度、压力系统
­ 2300 ­ 2 32 5
25 ­ 270 0 ­ 2 6 75 ­ 2 65 0
油气藏压力和温度的初始值与油藏埋深有关。
5
2-1 油气藏的压力、温度系统
o 一、油气藏的压力系统
1.压力梯度图(曲线) 油气藏中不同部
位探井的原始地层压 力与埋深的关系曲 线,表示为:
Pi = a + GD × D
6
2-1 油气藏的压力、温度系统
o 一、油气藏的压力系统

油气藏的压力、温度系统

油气藏的压力、温度系统
油气藏压力和温度的初始值与油藏埋深有关。
5
2-1 油气藏的压力、温度系统
o 一、油气藏的压力系统
1.压力梯度图(曲线) 油气藏中不同部
位探井的原始地层压 力与埋深的关系曲 线,表示为:
Pi = a + GD × D
6
2-1 油气藏的压力、温度系统
o 一、油气藏的压力系统
1.压力梯度图(曲线) Pi = a + GD × D
4474.4-4600.0 2000.4.12-5.4 4446.96 -1819.49 54.80
57.76
窿103井
K1g13~K1g12
4538.0-4646.0
2000.12.2812.29
4515.47 -1985.32 50.95
58.83
窿104井
K1g14
4202.0-4220.8
2001.10.1010.15
­ 25 50
­ 250 0
­ 2500
­ 2 450 ­ 2 47 5
­ 2 425
­ 2 40 0
P=­0.00748*H+43.481
层位:k g 4 10
海 拔: -1 85 0. 38~-1 87 5. 9 8
油: 9. 7( t/ q)
抽1 80 0
-3000
青西油田下沟组窿8~柳103~柳4井油藏剖面图
0 1 2 3 4 5km
青2 -9
青2-12
青2 - 10
青2-3
柳1 0 3
柳4
3-2 2-2
1-4 1-2
层 位: K 1g 04~K 1g 03 海 拔: -1 98 2. 04~-2 18 3. 04 油:2 20 ( m3/ q) 油 嘴:6 mm

油藏工程基础4资料文档

油藏工程基础4资料文档

子样平均数:x

1 n
n

i1
xi
子样方差:S2

1 n
n i1
(xi

x)2

1 n
n i1
xi2

2
x
子样标准差:S
41
4-4 油层纵向非均质性
一、基本概念
●置信区间:参数点估计是由子样求出未知参数的一个估
计值,其估计范围称为置信区间。
置信度:即置信概率,表示未知数落在置信区间中的可
高渗透条带
30
30.00 35.00
40.00
4-3 面积波及系数
一、油水界面的移动规律

(a) (b) (c)


行 列 注
七 点 系
五 点 系
网 的 油
水 系 统
统 ;
统 ;
水 接 触

31
4-3 面积波及系数
二、面积波及系数
●面积波及系数:水淹面积与井网控制面积之比称为面积 波及系数。
●面积波及系数的影响因素 1.井网类型的影响 根据面积注水系统流体移动前缘微分方程的解,可确定 不同井网的面积波及系数。
●曲线拟合法。将分析样品所得数据点描绘到与理论分布 坐标相同的透明图上,然后与理论分布曲线相映照,看 它与哪一条理论分布曲线符合的好,就认为渗透率服从 该曲线所代表的理论分布。
第四章 水驱油理论基础
饱和度分布 平面一维流动的产量公式 面积波及系数 油层纵向非均质性 体积波及系数 各种井网的注水量
1
第四章 水驱油理论基础
●注水开发油田的动态预测方法 ●解析解方法 ●数值模拟方法
●水驱油的机理分析 ●面积波及系数 ●油层纵向非均质性 ●体积波及系数

油藏工程第四章

油藏工程第四章

第四章1.如何确定已开发油藏的水侵规律?2.推导溶解气驱油藏的物质平衡方程式,并写出运用此方程进行动态预测的步骤、公式及开采特征。

3已知某油藏参数:Pi=120 atm, Pb=80 atm, Boi=1.35, Bob=1.39, uo=5mPa.s, T=70oC,Ф=0.2, Swc=0.3, k=0.5um2, Cf=5*10(-5)atm(-1), Cw=4.5*10(-5)atm(-1). 试求:(1) Co,Ct(2)性采收率。

4封闭弹性油藏,Pi=33.546MPa, Pb=29.455MPa, Boi=1.4802, Bob=1.492,Co=19.56*10(-4)MPa(-1), Ф=0.2,Swi=0.25, Cf=4.94*10(-4) MPa(-1), Cw=4.26*10(-4) MPa(-1). 油藏实际产量及体积系数如表8所示。

(1)判断油藏封闭性;(2)求弹性产率及地质储量。

5.某未饱和油藏Ro=2804.8m, Ro/Rw=0.2, Pi=10Mpa, h=30.49m, k=0.2um2, uw=0.55mPa.s,Ф=0.25, Bw=1.0, Cw=4.41*10(-4) MPa(-1),Cp=5.88*10(-4) MPa(-1), 油藏的水侵圆周角θ=140°;生产数据如表9所示。

求5年末和10年末的水侵量。

6.某油藏目前的总压降ΔPo=17atm,采油速度q1=27*10e(4)m3/a, 注采比IPR=0.9, 弹性采率K1=9000m3/atm, 遍水水侵系数为400m3/(mon.atm), 边水充足,天然水可不断补给。

求压力恢复速度。

7.已知大庆油田南二、三区葡一组开发数据如表10所示。

又已知地质储量N=7 386X10e4 t,试确定:(1)油田综合含水95%和98%时的可采储量及采收率;(2)绘制油田采出程度与含水率关系曲线.8.某油田开发试验区,在累积产出原油Np1=118.4X10e4 t后,开始进入递减阶段,实际开发数据如表11所示。

(完整版)油藏工程常用计算方法

(完整版)油藏工程常用计算方法

油藏工程常用计算方法目录1、地层压降对气井绝对无阻流量的影响及预测 (3)2、利用指数式和二项式确定气井无阻流量差异性研究 (3)3、预测塔河油田油井产能的方法 (3)4、确定气井高速湍流系数相关经验公式 (4)5、表皮系数分解 (4)6、动态预测油藏地质储量方法简介 (5)6。

1物质平衡法计算地质储量 (5)6.2水驱曲线法计算地质储量 (7)6.3产量递减法计算地质储量 (8)6。

4Weng旋回模型预测可采储量 (10)6.5试井法计算地质储量 (10)7、油井二项式的推导及新型IPR方程的建立 (16)8、预测凝析气藏可采储量的方法 (17)9、水驱曲线 (17)9。

1甲型水驱特征曲线 (18)9.2乙型水驱特征曲线 (18)10、岩石压缩系数计算方法 (19)11、地层压力及流压的确定 (20)11。

1利用流压计算地层压力 (20)11。

2利用井口油压计算井底流压 (21)11.3利用井口套压计算井底流压 (22)11.4利用复压计算平均地层压力的方法(压恢) (23)11。

5地层压力计算方法的筛选 (24)12、A RPS递减分析 (24)13、模型预测方法的原理 (26)14、采收率计算的公式和方法 (27)15、天然水侵量的计算方法 (27)15。

1稳定流法 (29)15。

2非稳定流法 (30)16、注水替油井动态预测方法研究 (38)17、确定缝洞单元油水界面方法的探讨 (42)1、地层压降对气井绝对无阻流量的影响及预测如果知道了气藏的原始地层压力i p 和其相应的绝对无阻流量*AOF q ,就可以用下式计算不同压力R p 下的气井绝对无阻流量:()2*i R AOF AOF p p q q =。

2、利用指数式和二项式确定气井无阻流量差异性研究指数式确定的无阻流量大于二项式确定的无阻流量,且随着无阻流量的增大两者差别越明显。

当无阻流量小于50万时,两者相差不大。

3、预测塔河油田油井产能的方法 油井的绝对无阻流量:⎪⎭⎫ ⎝⎛-=25.2b R o AOF FEp p J q (流压为0)。

油藏工程第四章油气藏压力与温度N

油藏工程第四章油气藏压力与温度N
Pair P
D
Pw
油藏工程第四章油气藏压力与温度N
一、流体压力
压力梯度Gw:单位深度的压力变化值
Pair P
D
Pw
因此,流体压力也可以写成:
油藏工程第四章油气藏压力与温度N
二、骨架应力
在某一地层深度处,由岩石固体骨架物质的 重量所产生的压力,称为骨架应力Ps,也称颗粒 压力,或固相压力,或基质压力,计算公式为:
油藏工程第四章油气藏压力与温度N
五、压力系数
<20
低压地层
地层压力状态分类
=20~40 中等压力地层
(MPa)
=40~60 高压地层
>60
超高压地层
压力系数α定义为实测地层压力与相同深度处的静 水压力的比值,它衡量地层压力偏离静水压力的程 度,计算公式为:
油藏工程第四章油气藏压力与温度N
五、压力系数
H
深层地层产生异常高压的原因,
D
大多数都与油气聚集有关。
油藏工程第四章油气藏压力与温度N
五、压力系数
D
深层正常压力地层 深层异常高压力地层
封闭地层异常高压 封闭地层异常低压
油藏工程第四章油气藏压力与温度N
六、油气藏压力
反映油井自喷能力的大小
余压 P0
油藏压力测点分布
油藏压深关系曲线
油藏工程第四章油气藏压力与温度N
油藏压力方程的作用
•1 判断流体类型
•2 计算原始地层压力
油藏工程第四章油气藏压力与温度N
油藏压力方程的作用
•3 判断压力系统
P
D
油藏工程第四章油气藏压力与温度N
油藏压力方程的作用
•4 判断出油层位
油藏工程第四章油气藏压力与温度N

中国石油大学(北京)《油藏工程》期末复习资料三

中国石油大学(北京)《油藏工程》期末复习资料三
油藏工程复习资料
石工 07-5 班
第一章 1、油藏:油(气)在单一圈闭中具有同一压力系统的基本聚集。 油气田:受同一局部构造面积内控制的油气藏的总和。 油藏工程:依据详探成果和必要的生产性开发试验,在综合研究的基础上对具有商业价值的油田,从油田的实际情况和生产规 律出发,制定出合理的开发方案并对油田进行建设和投产,使油田按预定的生产能力和经济效果长期生产,直至开发结束。油藏工 程是一门以油层物理和渗流力学为基础,进行油田开发设计和工程分析方法的综合性石油科学技术。 2、详探阶段要解决的问题,所开展的工作、及其目的和任务(或成果) 。 解决的问题:1.以含油层系为基础的地质研究;2.储层特征及储层流体物性; 3. 储量估算; 4.天然能量评价; 5.生产能力 开展的工作:1.地震细测工作 4.开辟生产试验区 2.钻详探资料井(取心资料井) 5.基础井网布置 3 .油井试油和试采
石工 07-5 班
汽油比在构造高部位的井中不断升高,当气顶达到构造高部位井时,气油比将变得很高 采收率比溶解气驱大很多,为 20~40%,气顶驱比溶解气驱自喷时间更长 4.水压驱动(刚性水驱) 油层压力保持不变、 边底水或注入水推至油井后油井开始见水、 含水不断上升,产油量开始下降,但液量保持不变 生产汽油比等于原始溶解气油比。 4.水压驱动(弹性水驱) 当压力降到达边缘以后,油层压力将不断下降 若保持井底流压为常数,则产量将不断下降 由于油层压力高于饱和压力,所以气油比等原始溶解气油比 5.重力驱动 油藏压力迅速下降 构造低部位的井气油比低,构造高部位的井的气油比将会增加 二次气顶形成于未饱和油藏中,直到压力下降到饱和压力以下,重力驱才发挥作用 产水量低或不产水,采收率变化范围大 6.刚性气驱 油藏压力保持不变 驱替前期气油比和产液量保持恒定 后期驱替前缘到达出口端后气油比上升,产液量下降

《油藏工程》课后习题答案

《油藏工程》课后习题答案

油藏工程教材习题第一章:1.一个油田的正规开发一般要经历那几个阶段?答:一个油田的正规开发一般要经历以下三个阶段:(1)开发前的准备阶段:包括详探、开发试验等。

(2)开发设计和投产:包括油层研究和评价,全面部署开发井、制定射孔方案、注采方案和实施。

(3)开发方案的调整和完善。

2.合理的油田开发步骤通常包括那几个方面?答:合理的油田开发步骤通常包括以下几个方面:1.基础井网的布署。

2.确定生产井网和射孔方案。

3.编制注采方案。

3.油田开发方案的编制一般可分为那几个大的步骤?答:油田开发方案的编制一般可分为以下几个大的步骤:1、油气藏描述2、油气藏工程研究3、采油工程研究4、油田地面工程研究5、油田开发方案的经济评价6、油田开发方案的综合评价与优选。

4.论述油气田开发设计的特殊性。

答:一切工程实施之前,都有前期工程,要求有周密的设计。

有些工程在正式设计前还应有可行性研究。

对于油气田开发来说,也不例外,但又有其不同的特点。

(1)油藏的认识不是短时间一次完成的,需经历长期的由粗到细、由浅入深、由表及里的认识过程。

(2)油气田是流体的矿藏,凡是有联系的油藏矿体,必须视作统一的整体来开发,不能像固体矿藏那样,可以简单地分隔,独立地开发,而不影响相邻固体矿藏的蕴藏条件及邻近地段的含矿比。

(3)必须充分重视和发挥每口井的双重作用——生产与信息的效能,这是开发工作者时刻应该研究及考虑的着眼点。

(4)油田开发工程是知识密集、技术密集、资金密集的工业。

油气田地域辽阔,地面地下条件复杂、多样;各种井网、管网、集输系统星罗棋布;加之存在着多种因素的影响和干扰,使得油田开发工程必然是个知识密集、技术密集、资金密集的工业,是个综合运用多学科的巨大系统工程。

5.简述油藏开发设计的原则。

答:油藏开发设计的原则包含以下几个方面:(一)规定采油速度和稳产期限(二)规定开采方式和注水方式(三)确定开发层系(四)确定开发步骤6.油田开发设计的主要步骤。

西南石油大学 《油藏工程》教学提纲 复习提纲

西南石油大学 《油藏工程》教学提纲 复习提纲

0.3
dfw/dr
2
0.2
1
0.1
0.05
0.1
0.15
0.2
0.25
R
0
0
0
0.05
0.1 R 0.15
0.2
0.25
10.5
12 10 lnWp 8
6 4 2 0
0
y = 0.0014x + 1.5325 R2 = 1
1000
2000
3000
4000N p 5000
6000
7000
4 3 2 l n R w o1 0 -1 -2 -3
教学提纲
第一章 油气藏概述(3学时) 主要内容:油气藏、油气藏条件、油气藏 分类、油气藏储量计算。
重 点:油气藏条件、油气藏分类 难 点:油气藏力学条件
第二章 油气藏流体(3学时) 主要内容:天然气性质、原油性质 (组成、相对密度、饱和压力、体积 系数、溶解气油比、原油密度、压缩 系数、原油粘度、原油相图)、地层 水性质。 重 点:天然气性质、原油性质 难 点:体积系数、压缩系数和原油 密度及其关系
6.2
0
200
400
600
800
0
1
y = 0.0398x + 0.0001
R2 = 1 2
3
4
5
W
6
7
W eW W inB jwW pB w
7.9
q 2kh(Pe Pwf ) (ln re s)
J f (kh, re ,s)
rw
rw
45 40 35 Pw 30 25 20 15 10
ppo0ogD
popo0ogD o po0poogD o

油藏工程总复习2010-0

油藏工程总复习2010-0

油藏工程
第六章 油藏物质平衡
封闭未饱和弹性驱动油藏 封闭:无相连水体,开采过程不会产生水侵作用; 未饱和油藏:无气顶,开采不考虑气体
N p Bo NBoi Ceff p
采出油量地下体积 原油有效压缩系数 Ceff 总压缩系数 地下体积膨胀量
Co Soi Cw S wc Cp 1 S wc
Hale Waihona Puke C t不稳定流动:井底压力降传到边界之前的流动 不稳定试井:在不稳定状态下对油井进行的测试
不稳定流动标志:
pwf t
pwf
C
t
油藏工程
第七章 油井试井
压力降落试井
为获得油井或油层的某些参数,在油井压力降落过程中 对油井进行的测试。
q 4t p(r , t ) pi ln 2 4kh r
pwf m
q 地层系数: kh 4m
q 地层流度: 4m h k
q k 4mh
ln t
试井分析曲线
1 pi pwf (1ks) 4 s ln 2 2 m rw
油藏工程
第七章 油井试井
压力恢复试井 油井以q稳定流量生产了tp 时间后关井,则井底流压 停止下降而开始上升,这个过程称为压力恢复。在该过程 中对油井进行的测试称作压力恢复试井。
Np Bo NBoi Ceff p W
Ceff
Co Soi Cw S wc Cp 1 S wc
油藏工程
第六章 油藏物质平衡
生产指示曲线法
Np Bo NBoi Ceff p W
NpBo
初始段水侵量小,体现封 闭未饱和弹性驱油藏特征
p 利用初期直线段斜率a求取地质储量

油藏地质学第4章油藏描述资料

油藏地质学第4章油藏描述资料
2.井壁取心的不足 ⑴岩心体积小,代表性差。 ⑵井壁岩层大多被污染,判别油气显示受到影响。 ⑶取心收获率较低(平均约为75%~80%),而且岩心归位仍 有0.3m的误差。
㈤岩心录井资料应用
1. 考察古生物特征; 2. 确定地层时代,进行地层对比; 3. 研究储层岩性、物性、含油性的关系,以及与电性的关系 4. 掌握生油特征及其他地化特征; 5. 观察岩性、沉积结构与构造、判断沉积环境; 6. 了解构造和断裂情况,如地层倾角、接触关系、断层位置等; 7. 检查开发效果,了解开发中所必须的资料数据。
四、油藏描述资料
基础前提:各种资料齐全准确 1.直接资料:岩心、岩屑录井资料、分析鉴定数据 2.间接资料:物探、测井、试油、试采 归纳起来包括:钻井地质资料
物探资料 测井资料 试油试采资料 动态资料
§1 钻井地质资料
地质录井的主要项目有:岩心录井、岩屑录井、钻时录井、钻 井液录井、气测录井。 一、岩屑录井资料
气测录井方式有两种:随钻气测与循环气测 应用:记录钻井液中可燃气体含量,
及时发现油气, 预报井喷。
§2 物探资料
一 地震勘探原理与方法
㈠概念
地震勘探(Seismic Exploration):就是人工手段激发地震 波,通过研究地震波在地层中的传播情况,以查明地下地质 构造,寻找油气藏的技术方法。
㈣ 油气水分布及性质 1. 油气水分布 2. 油气水界面与过渡带 3. 流体分布的控制因素 4. 流体性质
㈤ 地层压力、温度系统
㈥ 渗滤物理特征
1. 润湿性 2. 相对渗透率 3.毛细管力 4. 水驱油效率 5. 敏感性研究
㈦ 驱动能量和驱动类型
1.天然水头能量 2. 边、底水能量 3.弹性能量 4.气顶能量 5.溶解气能量 6. 重力能量

油藏工程参数计算及图版

油藏工程参数计算及图版

1.2 油气藏工程参数计算及图版1.2.1原油地面粘度与地面密度的关系原油地面粘度随着密度的增大而增高,即密度大原油稠。

在密度较小时,粘度随密度增大缓慢增高,当密度较大时,原油粘度显著增高。

胜利油区几个大油田如胜坨、孤岛、孤东及埕岛油田的原油地面粘度随地面密度变化规律基本一致,但粘度随密度的变化速度仍有所差异。

如图,1.2.2原油地下粘度和地面粘度的关系原油地下粘度是油藏工程研究中重要参数之一。

其值通常由高压物性样品测取获得。

但大量的高压物性样品取得是困难的。

为了解掌握油藏地下原油粘度,油藏工程师一般用一定数量样品的高压物性分析的地下原油粘度与容易获取的地面原油粘度做统计关系,间接地计算油藏的地下原油粘度值。

下面是胜坨油田、东辛油田、埕岛等几个油田油层条件下原油粘度和地面脱气原油粘度的统计关系图。

见图12-2-1、2、3。

1.2。

3原油体积系数~油层压力、地面原油粘度~温度图一所示为综合胜利油田地层原油体积系数与压力关系曲线。

该图版是用单次脱气体积系数查在不同压力下多级脱气体积系数数据图二所示为综合胜利油田稠油地面原油粘温曲线。

该图版是用50℃地面原油的粘度查出不同温度下粘度变化数据1.2.4 天然气粘度~温度天然气的粘度取决于其组成、压力和温度。

在高压和低压下,其变化规律是截然不同的。

在国际单位制中,粘度的单位是κγ∙σ/μ2,工程上常用的单位为泊(∏α∙σ)及厘泊(X∏,μ∏α∙σ),其换算关系为:1κγ∙σ/μ2=98.1(∏α∙σ)=9810(X∏)1. 常压下(0.1M∏α)的天然气粘度在低压条件下,天然气的粘度与压力关系不大,它随温度的升高而增大,随分子量的增大而降低。

目前,普遍应用Xαρρ、Kοβαψσηι和Bυρροωσ发表的图版(图版1)。

常压下(0.1M∏α)的天然气粘度可以根据下式进行计算:µN0=Σψιµι(Mι)1/2/〔Σψι(Mι)1/2〕 (1)式中:µN0 常压下天然气的粘度,X∏;µι 常压下组分i的粘度,X∏;ψι 天然气中组分i的摩尔份数,%;Mι 组分i的分子量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油藏工程第四章油气藏压力与温度 N[1]
维持该速度: 1km2地面露头日注水量2000m3
类似“天池”的水源,或年720mm以上的稳定降雨 量 存在泉水形式的出口。
油藏工程第四章油气藏压力与温度 N[1]
七、压力方程的确定
1. 多井方法 P
D
油藏工程第四章油气藏压力与温度 N[1]
七、压力方程的确定
断产油层位和吸水层位。
对于采油井来说,地层流出
的液体在井筒来不及充分散热即
被采出地面,因此,流温一般比
静温高。但是,在出油层位以下
的井段,流温梯度曲线与静温梯
度曲线是重合的。因此,流温梯
度曲线开始偏离静温梯度曲线的
深度,即为出油层位。通过更为
D
复杂的微温差生产测井曲线,还
可以计算出每个小层的产油量。
Pair P
Ps
D
Pw
Pob
油藏工程第四章油气藏压力与温度 N[1]
五、压力系数
地层岩石孔隙中流体的实测压力,矿场上 称 之之 间为 的地关层系压满力足下Pf,式实:测地层压力与静水压力
地层超 压

时,表明实测地层压力与静水压力相等,也表
明地层岩石的孔隙与地面连通;

时,表明实测地层压力偏离了静水压力,也
油藏压力方程的作用
o o +w
w
油藏工程第四章油气藏压力与温度 N[1]
油藏压力方程的作用
油水过渡带高度为: 任意油水界面高度:
油藏工程第四章油气藏压力与温度 N[1]
油水界面倾斜原因分析
油藏工程第四章油气藏压力与温度 N[1]
以前人们对油水界面倾斜原因的分析
C、B点压差:
A、B两点: C点压力: B点压力:
五、压力系数
浅表地层的压力异常,多数是因为地层露头高程 差所致(如下图),而深部地层的压力异常主要是由于 地层岩石孔隙与地面失去了连通关系的原因所致,即 地层封闭的地层才可能产生压力异常。
H
深层地层产生异常高压的原因,
D
大多数都与油气聚集有关。
油藏工程第四章油气藏压力与温度 N[1]
五、压力系数
在某一地层深度处,由岩石固体骨架物质的 重量所产生的压力,称为骨架应力Ps,也称颗粒 压力,或固相压力,或基质压力,计算公式为:
其压力梯度为Gs:
压力梯度形式的骨架应力为:
油藏工程第四章油气藏压力与温度 N[1]
三、上覆压力 在某一地层深度处,由上覆岩石的固体骨架和孔隙 中流体的总重量所产生的压力,称为上覆(地层)压力Pob, 计算公式为:
油藏压力方程的作用
•3 判断压力系统
P
D
油藏工程第四章油气藏压力与温度 N[1]
ቤተ መጻሕፍቲ ባይዱ
油藏压力方程的作用
•4 判断出油层位
油藏工程第四章油气藏压力与温度 N[1]
油藏压力方程的作用
•5 确定流体界面 p
D
油藏工程第四章油气藏压力与温度 N[1]
油藏压力方程的作用
o o +w
w
油藏工程第四章油气藏压力与温度 N[1]
气层压力。油气层在未开发前,各处的地层压 力相对平衡,投入生产后,平衡状态遭到破坏。
油藏工程第四章油气藏压力与温度 N[1]
第一节 油气藏压力
原始地层压力Pi:
油气藏投入开发之前测量的压力
地层压力P:
油气生产过程中测量的压力
Pi P
油藏工程第四章油气藏压力与温度 N[1]
第一节 油气藏压力
井底流压Pwf:
2. 静压梯度法 P
D 静止状态下,对井筒的压力进行逐点测试。在未开 发前的第一口油井中使用。 (假设井筒中没有积水)
油藏工程第四章油气藏压力与温度 N[1]
七、压力方程的确定
3. 流体密度法
斜率
井底深度
处压力Pwi为原始地层压力Poi
油藏工程第四章油气藏压力与温度 N[1]
七、压力方程的确定
深度与海拔
为固体骨架和地层水的混合密度,表示为:
其压力梯度为Gob:
压力梯度形式的上覆压力为:
油藏工程第四章油气藏压力与温度 N[1]
四、应力关系方程 从前面的分析可以看出:在同一地层深度处,存在 Pob、Pw和Ps三个压力,它们满足下述关系方程:
Pair P
D
Pw Pob Ps
从上式可知:在上覆压力一 定时,若减小地层流体的压力, 则地层岩石的骨架应力就会增大。
D
深层正常压力地层 深层异常高压力地层
封闭地层异常高压 封闭地层异常低压
油藏工程第四章油气藏压力与温度 N[1]
六、油气藏压力
反映油井自喷能力的大小
余压 P0
油藏压力测点分布
油藏压深关系曲线
油藏工程第四章油气藏压力与温度 N[1]
油藏压力方程的作用
•1 判断流体类型
•2 计算原始地层压力
油藏工程第四章油气藏压力与温度 N[1]
表明地层岩石的孔隙与地面不连通。
由于孔隙连通性和地层流体矿化度以及温度的变化 等因素,实测地层压力一般都不同程度地偏离静水压力。
油藏工程第四章油气藏压力与温度 N[1]
五、压力系数
<20
低压地层
地层压力状态分类
=20~40 中等压力地层
(MPa)
=40~60 高压地层
>60
超高压地层
压力系数α定义为实测地层压力与相同深度处的静 水压力的比值,它衡量地层压力偏离静水压力的程 度,计算公式为:
油气流动即生产过程中测量的井底压力
井底静压Pws:
油气静止即关井过程中测量的井底压力
油藏工程第四章油气藏压力与温度 N[1]
第一节 油气藏压力
井口套压Pc:
井口套管处测量的压力
井口油压Pt:
井口油管处测量的压力
油藏工程第四章油气藏压力与温度 N[1]
第一节 油气藏压力
油压 套压
油藏工程第四章油气藏压力与温度 N[1]
油藏工程第四章油气藏压力与温度 N[1]
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/24
油藏工程第四章油气藏压力与温度 N[1]
油藏工程第四章油气藏压力与温度 N[1]
矿场实测静温资料演示(续)
T (oC)
Elevation (m)
油藏工程第四章油气藏压力与温度 N[1]
二、流温
油井流动状态下测到的井筒温度。 T
D
通过流温梯度曲线及其方程,可以确定井筒中的析蜡深度。
油藏工程第四章油气藏压力与温度 N[1]
T
矿场上一般用流温梯度曲线 与静温梯度曲线的对比分析,判
一、流体压力
流体压力与深度之间的关系方程,简 称P–D方程,其在直角坐标系中的关系曲 线,称为P–D曲线。
Pair P
D
Pw
油藏工程第四章油气藏压力与温度 N[1]
一、流体压力
压力梯度Gw:单位深度的压力变化值
Pair P
D
Pw
因此,流体压力也可以写成:
油藏工程第四章油气藏压力与温度 N[1]
二、骨架应力
油藏工程第四章油气藏 压力与温度N
2020/11/24
油藏工程第四章油气藏压力与温度 N[1]
第一节 油气藏压力 • 油藏驱动能量的重要指标 • 引发工程事故的主要原因
油藏工程第四章油气藏压力与温度 N[1]
第一节 油气藏压力
几个压力概念: 地层压力:
又称孔隙流体压力,是指地层孔隙内流体所承 受的压力。如果该流体为油或气,就称油层或
将深度换算成海拔高度:
补心面
地面
补心高
海平面
H0
D
H
油藏工程第四章油气藏压力与温度 N[1]
第二节 油气藏温度 一、静温
油井静止状态下测到的井筒温度。 T
D
油藏工程第四章油气藏压力与温度 N[1]
T
变温带
恒温带
D
D
T
不同季节 恒温带
油藏工程第四章油气藏压力与温度 N[1]
矿场实测静温资料演示
下面是某气田一口气井投产前实测静温数据
图中压力关系仅反映地层孔 隙与地面连通即正常地层压力的 情形。
油藏工程第四章油气藏压力与温度 N[1]
四、应力关系方程

时,地层岩石就变成了普通固体物质,即变成:

时,地层岩石就变成了普通流体物质,即变成:
油藏工程第四章油气藏压力与温度 N[1]
四、应力关系方程
过去人们把静力平衡错误地当成了应力平衡,因 此得出下面错误的压深方程及其关系曲线。
第一节 油气藏压力
表压Pgau:
压力仪表直接测量的压力数值
绝对压力Pabs:
流体本身具有的实际压力
油藏工程中的压力与流体力学中的压强和固体力学
中的应力是相同的概念。
油藏工程第四章油气藏压力与温度 N[1]
一、流体压力
在某一地层深度处,由岩石 孔隙中流体的重量所产生的压力
注意单位
油藏工程第四章油气藏压力与温度 N[1]
油藏工程第四章油气藏压力与温度 N[1]
五、压力系数
Pair P
D
0.8 Pw 1.2
异常高压地层,能量充足,但容易突发工程事故:异 常低压地层,能量欠充足,钻井易漏失泥浆,但注水容易。 地层压力是否异常,与压力的绝对大小无关,而与压力的 相对大小有关(与静水压力相比)。较低的地层压力可能为 异常高压,而较高的地层压力也可能为异常低压。
油藏工程第四章油气藏压力与温度 N[1]
五、压力系数
地层超压系数 定义为地层静水压力的超压百分数, 计算公式为:
显然,
相关文档
最新文档