ansys分析
ANSYS分析基本步骤
ANSYS分析基本步骤1.定义几何模型:这是进行ANSYS分析的第一步。
在这一阶段,用户需要使用CAD软件等工具定义待分析的几何模型。
然后,将几何模型导入到ANSYS中,并对其进行修整以适应分析需求。
ANSYS提供了多种导入格式,如STEP、IGES等。
2.设定边界条件:边界条件是指在模型周围施加的限制条件,用于模拟实际情况。
在ANSYS分析中,边界条件包括约束条件和加载条件。
约束条件用于固定模型中的一些部分,以模拟固定或支撑结构。
加载条件用于施加外力或外部温度等,以模拟实际工作条件。
用户需要根据实际情况在模型上设定合适的边界条件。
3.网格划分:为了将连续物体离散化为离散单元,需要对模型进行网格划分。
网格划分将模型划分为多个小单元,每个单元在分析过程中代表一个基本力学单元。
网格划分的质量对分析结果的准确性和计算速度有很大影响。
因此,在进行网格划分时,需要考虑网格密度、元素类型、单元尺寸等因素。
4.设置材料属性:在进行力学分析时,需要设置材料的力学性能。
这些属性包括弹性模量、泊松比、屈服强度等。
材料属性的正确设置对于分析结果的准确性非常重要。
ANSYS提供了多种材料模型和性能数据,用户可以根据实际需要选择合适的材料属性。
5.定义分析类型:在ANSYS中,有多种分析类型可供选择,如静态分析、瞬态分析、模态分析等。
用户需要根据分析的目的和要求选择合适的分析类型。
例如,静态分析用于计算结构在静力作用下的响应,瞬态分析用于计算结构在时间变化条件下的响应,模态分析用于计算结构的模态振动特性等。
6.运行分析:在设置完以上参数后,可以运行分析了。
ANSYS会根据用户的设置进行计算,并生成相应的分析结果。
在分析过程中,用户可以监控计算进度和收敛情况,以确保分析的准确性和稳定性。
7.结果评估和后处理:在分析计算完成后,可以对分析结果进行评估和后处理。
ANSYS提供了丰富的后处理功能,包括结果显示、工程图表生成、报告编写等。
学会使用ANSYS进行工程仿真分析
学会使用ANSYS进行工程仿真分析第一章:ANSYS工程仿真分析的基础知识ANSYS是目前世界上广泛使用的一种工程仿真分析软件,它可以用于各种不同领域的工程分析和设计。
熟练掌握ANSYS的使用方法对于工程师来说至关重要。
本章将介绍ANSYS的基础知识,包括软件的安装和启动、用户界面的介绍以及基本操作方法等。
首先,安装ANSYS软件是使用它的前提。
用户可以从ANSYS 官方网站上下载安装文件,并按照安装向导的步骤进行安装。
安装完成后,可以通过点击桌面上的图标来启动ANSYS。
启动后,会出现ANSYS的用户界面。
用户界面通常由菜单栏、工具栏、主窗口和命令窗口等组成。
菜单栏上包含了各种功能的菜单,用户可以通过点击菜单来选择所需的功能。
工具栏上则包含了一些常用的工具按钮,可以方便地进行操作。
主窗口用于显示分析结果和编辑模型等。
命令窗口则用于输入命令进行操作,这在一些高级功能中会用到。
在进行工程仿真分析之前,需要先创建一个模型。
ANSYS提供了多种建模工具,例如几何建模工具和计算网格生成工具等。
可以根据需要选择合适的建模工具,并按照提示进行操作。
在建模完成后,可以对模型进行网格生成,即将模型划分为小块,并计算各个小块上的分析参数。
第二章:结构分析结构分析是ANSYS中的一个重要模块,用于对各种结构件进行强度、刚度和模态等分析。
本章将介绍ANSYS中常用的结构分析方法和技巧。
在进行结构分析之前,需要先定义结构的边界条件和加载条件。
边界条件包括约束条件和支撑条件等,而加载条件则包括外力和内力等。
用户可以通过ANSYS提供的工具来定义这些条件,并将其应用于模型中。
在进行结构分析时,可以选择合适的分析方法。
ANSYS提供了多种分析方法,例如静力分析、动力分析和模态分析等。
用户可以根据具体的分析要求选择合适的方法,并设置相应的分析参数。
在进行结构分析时,还可以使用ANSYS的后处理功能来查看分析结果。
后处理功能可以用于绘制应力云图、位移云图和动力响应曲线等。
ANSYS分析报告
ANSYS分析报告引言:1.问题描述:在这个分析中,我们将研究一个承重结构的稳定性。
该结构由一根钢杆和两个支撑点组成,其中一端支撑固定,另一端加有外部力。
我们的目标是确定结构在受力情况下的位移和应力分布,并评估结构的稳定性。
2.建模与加载条件:我们使用ANSYS软件对该结构进行三维建模,并为其设置了适当的边界条件和加载条件。
钢杆的材料参数和几何尺寸通过实验测定获得。
加载条件设为一端受到垂直向下的力,同时另一端固定。
我们采用静态结构分析模块进行分析。
3.结果与分析:经过ANSYS分析,我们获得了结构的位移和应力分布情况。
在受力情况下,钢杆的位移主要集中在受力一侧,而另一侧的位移较小。
应力分布也呈现相似的趋势,受力一侧的应力较大,而另一侧的应力较小。
这是由于外部力对结构的影响导致结构发生变形。
4.结构稳定性评估:在评估结构的稳定性时,我们对结构进行了稳定性分析。
通过计算结构的临界载荷,我们可以确定结构在受力情况下的稳定性。
根据计算结果,结构的临界载荷大于所施加的外部力,说明结构是稳定的,不会发生失稳现象。
5.敏感性分析:为了进一步评估结构的性能,我们进行了敏感性分析。
通过改变结构的材料参数和几何尺寸,我们得到了不同条件下结构的位移和应力分布。
根据敏感性分析结果,我们发现结构的位移和应力对材料的弹性模量和截面尺寸非常敏感。
较高的弹性模量和更大的截面尺寸会使结构更加稳定。
结论:通过ANSYS软件进行的分析,我们得到了结构在受力情况下的位移和应力分布,并评估了结构的稳定性。
我们发现外部力对结构的位移和应力分布有明显的影响,但结构仍然保持稳定。
此外,结构的性能对材料参数和几何尺寸非常敏感。
综合分析结果,我们可以优化结构设计,以提高结构的稳定性和性能。
以上是对ANSYS分析报告的一个简单写作示例,可以根据实际情况进行适当调整和修改。
ansys实验分析报告
ANSYS 实验分析报告1. 引言在工程设计和科学研究中,计算机仿真技术的应用越来越广泛。
ANSYS是一种常用的工程仿真软件,它可以帮助工程师和科学家分析和解决各种复杂的问题。
本文将介绍我对ANSYS进行实验分析的过程和结果。
2. 实验目标本次实验的主要目标是使用ANSYS软件对一个特定的工程问题进行仿真分析。
通过这个实验,我希望能够了解ANSYS的基本操作和功能,并在解决工程问题方面获得一定的经验。
3. 实验步骤步骤一:导入模型首先,我需要将要分析的模型导入到ANSYS软件中。
通过ANSYS提供的导入功能,我可以将CAD模型或者其他文件格式的模型导入到软件中进行后续操作。
步骤二:设置边界条件在进行仿真分析之前,我需要设置边界条件。
这些边界条件可以包括约束条件、初始条件和加载条件等。
通过设置边界条件,我可以模拟出真实工程问题中的各种情况。
步骤三:选择分析类型ANSYS提供了多种不同的分析类型,包括结构分析、流体力学分析、热传导分析等。
根据实际情况,我需要选择适合的分析类型来解决我的工程问题。
步骤四:运行仿真设置好边界条件和选择好分析类型后,我可以开始运行仿真了。
ANSYS会根据我所设置的条件,在计算机中进行仿真计算,并生成相应的结果。
步骤五:分析结果仿真计算完成后,我可以对生成的结果进行分析。
通过对结果的分析,我可以得出一些关键的工程参数,如应力分布、温度分布等。
这些参数可以帮助我评估设计的合理性和性能。
4. 实验结果在本次实验中,我成功地使用ANSYS对一个特定的工程问题进行了仿真分析。
通过分析结果,我得出了一些有价值的结论和数据。
这些数据对于进一步改进设计和解决工程问题非常有帮助。
5. 总结与展望通过本次实验,我对ANSYS软件的使用有了更深入的了解,并且积累了一定的实践经验。
在未来的工程设计和科学研究中,我将更加灵活地应用ANSYS软件,以解决更加复杂和挑战性的问题。
同时,我也会继续学习和探索其他相关的仿真软件和工具,以提高自己的技术水平。
ansys分析报告
ansys分析报告ANSYS分析报告ANSYS是一个广泛应用于工程领域的数值模拟软件,可以进行结构分析、流体分析、电磁场分析等多种模拟计算。
本文将对ANSYS分析报告进行700字的简要介绍。
ANSYS分析报告是针对特定问题进行计算和模拟分析后所得到的结果的总结和展示,通常包括以下几个部分:问题描述、模型建立、计算设置、结果分析和结论等。
首先,问题描述部分需要详细描述需要分析的问题的背景和目标,例如一个结构材料的强度分析,可以描述该材料的工作环境和所需的强度。
对问题的准确描述有助于确定分析的内容和方向。
其次,模型建立部分是将实际问题转化为计算模型的过程,包括几何建模、材料属性和加载条件等的设置。
在ANSYS中,可以通过绘制几何图形或导入CAD模型来创建计算模型,然后定义材料的性质和加载的边界条件。
接下来,计算设置部分是对分析过程中的各种数值计算参数进行设置和调整,例如网格密度、收敛准则等。
在ANSYS中,通过选择适当的求解器和控制参数,可以在保证计算精度的前提下尽可能提高计算效率。
然后,结果分析部分是对计算结果进行全面和详细的分析和解释。
ANSYS提供了丰富的结果输出和可视化工具,可以直观地展示计算结果,如应力云图、变形云图等。
通过对计算结果的分析,可以评估结构的安全性、性能和优化方案等。
最后,结论部分是对分析结果的总结和归纳,给出解决问题的建议或改进方案。
结论应该简明扼要地回答分析问题中所关心的核心问题,以便让读者迅速了解分析的结果和含义。
总之,ANSYS分析报告是基于ANSYS软件进行模拟计算和分析的结果总结和展示。
通过问题描述、模型建立、计算设置、结果分析和结论等环节的详细分析,可以准确评估分析目标的实现程度,为工程决策提供科学依据。
ANSYS经典案例分析
ANSYS经典案例分析ANSYS(Analysis System)是世界上应用广泛的有限元分析软件之一、它在数值仿真领域拥有广泛的应用,可以解决多种工程问题,包括结构力学、流体动力学、电磁学、热传导等。
本文将分析ANSYS的经典案例,并介绍其在不同领域的应用。
一、结构力学领域1.案例一:汽车碰撞分析汽车碰撞是一个重要的安全问题,对车辆和乘客都有很大的影响。
利用ANSYS进行碰撞分析可以模拟不同类型车辆的碰撞过程,并预测车辆结构的变形情况以及乘客的安全性能。
通过这些分析结果,可以指导汽车制造商改进车辆结构,提高车辆的碰撞安全性能。
2.案例二:建筑结构分析建筑结构的合理性和稳定性对于保证建筑物的安全和耐久性至关重要。
ANSYS可以对建筑结构进行强度和刚度的分析,评估结构的稳定性和安全性能。
例如,可以通过ANSYS分析大楼的地震响应,预测结构的位移和变形情况,以及评估建筑物在地震中的安全性。
二、流体动力学领域1.案例一:空气动力学分析空气动力学分析对于飞行器设计和改进具有重要意义。
利用ANSYS可以模拟飞机在不同速度下的气动性能,预测飞机的升阻比、空气动力学力矩等参数。
通过这些分析结果,可以优化飞机的设计,提高飞行性能和燃油效率。
2.案例二:水动力学分析水动力学分析对于船舶和海洋工程设计至关重要。
利用ANSYS可以模拟船舶在不同海况下的运动特性,预测船舶的速度、稳定性和抗浪性能。
通过这些分析结果,可以优化船舶的设计,提高船舶的性能和安全性能。
三、电磁学领域1.案例一:电力设备分析电力设备的稳定性和运行性能对电力系统的正常运行至关重要。
利用ANSYS可以模拟电力设备的电磁特性,预测电磁场分布、电磁场强度和电流密度等参数。
通过这些分析结果,可以评估电力设备的稳定性和运行性能,并指导电力系统的设计和改进。
2.案例二:电磁干扰分析电磁干扰是电子设备设计中常见的问题,特别是在通信和雷达系统中。
利用ANSYS可以模拟电磁干扰的传播路径和强度,预测设备的抗干扰能力。
ansys分析入门基础篇
边界条件
02
03
材料属性
设置边界条件,如固定约束、自 由约束等,以限制物体的自由度。
设置材料属性,如弹性模量、泊 松比、密度等,以模拟实际材料 的特性。
求解过程
建立模型
根据分析需求,建立相应的模型。
加载和求解
根据分析需求,加载相应的载荷和边界条件,然 后进行求解。
ansys分析入门基础篇
目录
• ANSYS软件简介 • 建立模型 • 加载与求解 • 结果后处理 • 案例分析
01 ANSYS软件简介
什么是ANSYS
综合性仿真软件
ANSYS是一款集结构、流体、电 磁、热、声等多物理场于一体的 综合性仿真软件,广泛应用于航 空航天、汽车、船舶、电子、能 源等领域。
电子
ANSYS在电子领域应用于集成电路、电子 元器件、PCB板等的设计和优化,提高产 品性能和可靠性。
船舶
ANSYS在船舶领域应用于船体结构、推进 系统、船舶设备等的设计和优化,提高船 舶性能和安全性。
ANSYS的基本功能
结构分析
流体动力学分析
ANSYS提供了强大的结构分析功能,可以 对各种材料进行静力、动力、疲劳等分析 ,模拟结构的变形、应力、应变等。
ANSYS的流体动力学分析功能可以对流体 进行稳态和瞬态分析,模拟流体流动、传 热、燃烧等过程。
电磁场分析
声场分析
ANSYS的电磁场分析功能可以对电磁设备 进行磁场、电场、电磁力的分析和优化, 提高设备的性能和效率。
ANSYS的声场分析功能可以对声音传播、 噪声产生等进行模拟和分析,优化产品的 声学性能。
02 建立模型
ANSYS入门——模态分析步骤与实例详解
ANSYS入门——模态分析步骤与实例详解模态分析是ANSYS中的一项重要功能,它用于分析结构的模态特性,如固有频率、模态形态、振型等。
下面将详细介绍ANSYS中模态分析的步骤与实例。
1.准备工作:在进行模态分析前,首先需要完成模型的几何建模、模型的网格划分、边界条件的设定和材料属性的定义等准备工作。
2.设置分析类型:在ANSYS中,可以使用分析类型工具条或命令行指令设置分析类型。
对于模态分析,可以选择"Modal"。
选中“Modal”选项后,会弹出新窗口,用于设置分析的参数。
可以设置计算的模态数目、输出结果的范围、频率的单位等。
3.定义约束条件:在模态分析中,需要定义结构的约束条件,以模拟实际情况。
常见的约束条件有固定支撑、自由边界、对称几何等。
可以使用ANSYS中的约束条件工具条或命令行指令进行定义。
4.定义激励条件:在模态分析中,可以定义激励条件,以模拟结构在特定频率下的振动情况。
常见的激励条件有振动源、压力载荷、重力载荷等。
可以使用ANSYS中的激励条件工具条或命令行指令进行定义。
5.执行分析:完成上述设置后,点击分析工具条中的“运行”按钮,开始执行模态分析。
ANSYS会根据所设定的参数进行计算,并输出相应的结果。
6.结果展示与分析:模态分析完成后,可以查看分析结果并进行进一步的分析。
ANSYS会输出各模态下的固有频率、模态振型、模态质量、模态参与度等信息。
接下来,我们以一个简单的悬臂梁的模态分析为例进行详解。
1.准备工作:在ANSYS中绘制悬臂梁的几何模型,并进行网格划分。
设定材料属性、加载条件和边界条件。
2.设置分析类型:在ANSYS主界面上选择“Workbench”,然后点击“Ana lysis Systems”工具条中的“Modal”选项。
3.定义约束条件:设置悬臂端点的约束条件为固定支撑。
可以使用ANSYS中的“Fixed Support”工具进行设置。
4.定义激励条件:在此示例中,我们只进行自由振动分析,不设置激励条件。
ANSYS分析全部结果详述
试验分析目录试验分析 (1)1.试验荷载的取值 (2)1.1重力荷载(取29.8/g m s) (2)1.2施工荷载 (2)1.3水平风荷载的计算:(10年一遇大风时) (2)2.ANSYS建模分析结果 (5)2.1工况一:(1.0恒载,重力荷载) (6)2.1.1支座反力 (6)2.1.2位移变形图 (6)2.1.3X向位移云图 (7)2.1.4Z向位移云图 (7)2.1.5Y向弯矩图 (8)2.2工况二:施工荷载位于最高台阶处(1.0恒载+1.4工作荷载) (8)2.2.1支座反力 (9)2.2.2位移变形图 (9)2.2.3X向位移云图 (10)2.2.4Z向位移云图 (10)2.2.5Y向弯矩图 (11)2.3工况三:施工荷载位于最低台阶处(1.0恒载+1.4工作荷载) (11)2.3.1支座反力 (12)2.3.2位移变形图 (12)2.3.3X向位移云图 (13)2.3.4Z向位移云图 (13)2.3.5Y向弯矩图 (14)2.4工况四:1.0恒载+风荷载等效水平荷载设计值 (14)2.4.1支座反力 (15)2.4.2位移变形图 (15)2.4.3X向位移云图 (16)2.4.4Z向位移云图 (16)2.4.5Y向弯矩图 (17)2.5 与工况四加载位置相同的水平力下左侧约束压力为零时,对应的基本风压1w 的计算值: (17)1.试验荷载的取值1.1重力荷载(取29.8/g m s =)1.2施工荷载当施工荷载位于最高台阶处时,抗倾覆最不利。
此时,施工荷载所产生力矩对于倾覆转动点H 来说,是属于倾覆力矩(如施工荷载位于另外两个台阶,则其作用属于抗倾覆力矩)。
故以此为工作时验算工况。
假定施工荷载位于最高台阶时,共有作业人员4人,每人重75Kg ,每人持有30Kg 施工材料。
此时荷载设计值4(0.750.30) 1.4 5.88N Q F k =⨯+⨯=。
1.3水平风荷载的计算:(10年一遇大风时)图1 平台风荷载体型系数图2 风荷载计算简图1)平台所受风荷载标准值,按下式确定:0w w z s z k μμβ=式中:k w —风荷载标准值(2/m kN );z β—高度Z 处的风振系数,取1.0;s μ—风荷载体型系数,按图1平台风荷载体型系数取值;z μ—风压高度变化系数,按荷载规范(GB50009-2012),按离地面高度60m 取1.56;0w —基本风压(2N /k m ),取重现期10=n 对应的风压值,金华地区为20.25N /k m 。
ANSYS模态分析教程及实例讲解
任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
频率分析的相关知识
• 静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具
有与各个固有频率对应的振动模态。
频率分析的相关知识
• 共振(以荡秋千为例) –荡得好的人荡几下马上就能荡得很高
–这是因为与秋千摆动的节拍和时间配合起来的原因。 –换句话说,与秋千的固有频率(固有周期)相配合,这
– 小变形 – 弹性范围内的应变和应力 – 没有诸如两物体接触或分离时的刚度突变。
应力
弹性模量 (EX)
应变
准备工作
A. 哪种分析类型?
• 如果加载引起结构刚度的显著变化,必须进行 非线性分析。引起结构刚度显著变化的典型因 素有: – 应变超过弹性范围(塑性) – 大变形,例如承载的鱼竿 – 两体之间的接触
• 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
• 固有振动模态(以弦的振动为例)
– 两端被固定住的弦,以手指弹一下张紧的弦,弦则振动 起来,振动在空气中传播发出声音。弦以下图所示的各
第三讲模态分析
• 在开始ANSYS分析之前,您需要作一些决定, 诸如分析类型及所要创建模型的类型。
• 标题如下:
第2章ANSYS有限元分析典型步骤
第2章ANSYS有限元分析典型步骤ANSYS有限元分析通常包括以下典型步骤:1. 建立几何模型:首先,需要根据实际情况建立一个准确的物体几何模型。
可以使用ANSYS的建模工具,如DesignModeler或SpaceClaim 等,或者根据实际测量数据导入几何模型。
2.定义材料属性:对于每个组件或部件,需要定义其材料属性。
这包括材料的弹性模量、泊松比、密度等。
可以根据实际材料性能值,或通过实验测量获得的数据进行定义。
3. 网格划分:在进行有限元分析之前,需要将几何模型划分为离散的小单元,也就是网格。
网格的划分可以使用ANSYS的网格划分工具,如Meshing或Tetrahedron等。
网格的质量对分析结果影响很大,因此需要注意网格的尺寸和形状。
4.边界条件的定义:在有限元分析中,需要定义加载条件和边界条件。
加载条件包括模型所受到的力或压力,边界条件包括模型的约束条件。
根据实际情况,可以在加载面上应用力或压力,并在其他面上施加约束条件,如固定、自由、对称等。
5.约束和加载条件的应用:在ANSYS中,可以通过指定加载和约束条件来模拟实际问题的工作条件。
可以使用ANSYS的加载和约束工具来定义这些条件,并将其应用于相应的面或区域。
6.求解计算:在有限元分析中,需要对模型进行数值求解以获得结果。
ANSYS提供了强大的求解器,可以对各种非线性和线性问题进行求解。
可以选择适当的求解方法和参数,并启动求解计算。
7.结果分析:一旦求解过程完成,可以对分析结果进行分析和解释。
ANSYS提供了丰富的后处理工具,可以显示网格变形、应力和应变分布、位移和振动模式等相关结果。
根据需要,可以导出结果并使用其他软件进一步分析。
8.结果验证和优化:根据结果分析,可以对模型和分析设置进行验证和优化。
结果验证通常是与实验数据进行比较,以确定模型的准确性。
优化可以是调整材料属性、几何形状或边界条件等,以提高模型性能。
9.报告和展示:最后,需要编写分析报告,并通过图形和表格等方式展示分析结果。
ANSYS仿真与分析系统入门教程
ANSYS仿真与分析系统入门教程第一章:ANSYS仿真与分析系统概述1.1 ANSYS仿真与分析系统的定义和作用1.2 ANSYS仿真与分析系统的历史和发展1.3 ANSYS仿真与分析系统的应用领域第二章:ANSYS仿真与分析系统的基本原理2.1 有限元分析方法2.2 基本原理和概念的介绍2.3 ANSYS仿真与分析系统的工作流程第三章:ANSYS仿真与分析系统的基本操作3.1 ANSYS仿真与分析系统的安装和启动3.2 创建和设置仿真模型3.3 导入和编辑几何模型3.4 定义边界条件和加载条件3.5 选择材料属性3.6 网格划分和生成3.7 设置求解器和求解选项3.8 运行仿真分析3.9 结果后处理和分析第四章:ANSYS仿真与分析系统的高级应用4.1 基于ANSYS仿真与分析系统的结构分析4.2 基于ANSYS仿真与分析系统的流体分析4.3 基于ANSYS仿真与分析系统的热传导分析4.4 基于ANSYS仿真与分析系统的电磁场分析4.5 基于ANSYS仿真与分析系统的多物理场耦合分析第五章:ANSYS仿真与分析系统案例分析5.1 结构分析案例分析5.2 流体分析案例分析5.3 热传导分析案例分析5.4 电磁场分析案例分析5.5 多物理场耦合分析案例分析第六章:ANSYS仿真与分析系统的应用展望6.1 ANSYS仿真与分析系统的发展趋势6.2 ANSYS仿真与分析系统的应用前景6.3 ANSYS仿真与分析系统的挑战与解决方案第一章:ANSYS仿真与分析系统概述ANSYS仿真与分析系统是一种基于有限元分析方法的工程仿真软件,用于模拟与分析物理系统的行为。
它提供了一种模拟真实世界工程问题的方式,能够对结构、流体、热传导、电磁场等多种物理场进行分析和优化。
ANSYS仿真与分析系统已经在汽车、航空航天、能源、电子、医疗等领域得到广泛的应用。
第二章:ANSYS仿真与分析系统的基本原理ANSYS仿真与分析系统基于有限元分析方法,将连续物体离散为有限个单元,通过求解单元边界上的方程来模拟整个物理系统的行为。
ansys分析报告
ansys分析报告ANSYS分析报告。
一、引言。
本报告旨在对ANSYS进行全面的分析和评估,以便更好地了解其性能和应用范围。
ANSYS是一种广泛应用于工程领域的有限元分析软件,通过对其进行深入研究和分析,可以帮助工程师们更好地应用该软件进行工程设计和分析。
二、软件概述。
ANSYS是一种基于有限元分析理论的工程仿真软件,其功能涵盖了结构分析、流体动力学分析、热传导分析等多个领域。
通过ANSYS软件,工程师可以对各种工程结构和系统进行仿真分析,以评估其性能和稳定性。
三、功能特点。
1. 结构分析,ANSYS可以对各种结构进行静力学和动力学分析,包括线性和非线性分析,以及疲劳和断裂分析。
这使得工程师可以更加全面地评估结构的强度和稳定性。
2. 流体动力学分析,ANSYS可以模拟流体在复杂几何形状中的流动情况,包括湍流、层流等各种流动状态。
这对于设计液体管道、风力发电机等工程系统具有重要意义。
3. 热传导分析,ANSYS可以模拟材料的热传导性能,包括传热、热对流、热辐射等多种热传导方式。
这对于设计散热器、热交换器等热工系统至关重要。
四、应用案例。
1. 结构分析,使用ANSYS对一座桥梁进行有限元分析,评估其在不同荷载条件下的变形和应力分布,为桥梁设计提供重要参考。
2. 流体动力学分析,使用ANSYS对一台风力发电机进行气流仿真,评估其叶片在不同风速下的受力情况,为风力发电机的设计提供优化方案。
3. 热传导分析,使用ANSYS对一台电子设备进行热仿真,评估其在长时间工作状态下的散热效果,为电子设备的散热设计提供技术支持。
五、结论。
通过对ANSYS软件的分析和评估,我们可以得出结论,ANSYS具有强大的功能和广泛的应用范围,可以帮助工程师们进行结构、流体和热传导等多个领域的仿真分析。
在工程设计和优化过程中,ANSYS将发挥重要作用,为工程师们提供更多的技术支持和优化方案。
希望本报告对大家对ANSYS软件有更深入的了解和认识,并能够更好地应用于工程实践中。
ANSYS有限元分析软件介绍
缺省时,工作平面的原点与总体坐标系的原点重合,但可以将它移动 或旋转到任意想要的位置
通过显示栅格,可以将工作平面作为绘图板
WY
X1 X2
Y2 Y1
WY WX
WX
WP (X,Y)
Chap9-17
布尔操作
1. .....
要使用布尔操作:
2. .....
3. .....
Main Menu: Preprocessor > -Modeling- Operate >
1)查看分析结果; 2)检查结果是否正确。
Chap9-7
ANSYS软件界面及菜单
1. 建立有限元模型
主菜单(Main Menu)
2. 施加载荷求解
3. 查看结果
实用菜单(Utility Menu)
文件 选择 列表 显示 显示控制 工作平面 参数
宏 菜单控制 帮助
Chap9-8
ANSYS的单位制
ANSYS所有的单位是自己统一的。 常用单位如下表:
绘图区
模型控制工 具条
用户提示信息
当前设置
Chap9-6
典型的ANSYS分析过程
典型的ANSYS分析过程包含三个主要的步骤:
1、创建有限元模型 (前处理器)
1)创建或读入有限元模型; 2)定义材料属性; 3)划分网格。
2、施加载荷并求解 (求解器)
1)施加载荷及设定约束条件; 2)求解。
3、查看结果 (后处理器)
Chap9-9
ANSYS的文件管理
• ANSYS在分析过程中需要读写文件. • 文件格式为 jobname.ext, 其中 jobname 是设定的工作文件名,
ext 是由ANSYS定义的扩展名,用于区分文件的用途和类型. • 默认的工作文件名是 file.
第2章ANSYS有限元分析基本步骤
第2章ANSYS有限元分析基本步骤ANSYS有限元分析是一种常用的工程分析方法,可以用于解决各种结构力学问题。
本文将对ANSYS有限元分析的基本步骤进行详细介绍。
1.确定分析目标:在进行有限元分析之前,首先需要明确分析的目标和要求。
包括确定所要分析的结构或零件的几何形状、材料特性、受力情况等。
2.建立有限元模型:建立有限元模型是有限元分析的关键步骤之一、在ANSYS软件中,可以通过几何建模功能来定义结构的几何形状和尺寸。
然后,根据要分析的问题类型,选择适当的单元类型,并使用网格划分功能将结构分割成适当大小的单元。
3.定义材料特性:在进行有限元分析之前,需要定义结构的材料特性。
包括弹性模量、泊松比、密度等。
可以根据实际情况输入已知的材料特性值,也可以通过实验或理论计算来获得。
4.定义边界条件:边界条件是有限元分析中的重要概念,它用于描述结构在系统中的限制条件。
在ANSYS中,可以通过节点约束和节点载荷来定义边界条件。
常见的边界条件包括固定边界条件、力载荷和位移约束。
5.生成网格:当有限元模型、材料特性和边界条件都定义好之后,可以使用ANSYS软件中的划分工具生成有限元网格。
生成网格的目的是将结构分割成适当大小和形状的单元,以便进行数值计算。
6.设置分析类型:在进行有限元分析之前,需要选择适当的分析类型。
根据具体问题的要求,可以选择其中的静态分析、动态分析、热分析等多种分析类型。
7.执行分析计算:当有限元模型、材料特性、边界条件和网格都设置好之后,可以执行分析计算。
ANSYS软件会根据设置的分析类型和边界条件进行数值计算,并给出相应的结果。
8.结果分析与后处理:分析计算完成后,可以进行结果的分析和后处理。
ANSYS软件提供了丰富的后处理功能,可以对应力、位移、变形、应变等结果进行可视化和分析。
9.结果验证和优化设计:完成有限元分析后,需要对结果进行验证和评估。
与实际情况进行对比,确定结果的可靠性和准确性。
Ansys仿真分析操作方法及界面介绍
Ansys仿真分析操作方法及界面介绍在现代工程设计领域中,仿真分析已经成为一种必备的工具。
Ansys作为一款全球知名的仿真分析软件,被广泛应用于航空航天、汽车、电子、建筑等领域。
本文将介绍Ansys仿真分析的操作方法及其界面,旨在帮助读者更好地使用和理解这个强大的工具。
一、Ansys的基本概述Ansys是一款基于有限元分析原理的计算机仿真软件,提供了对结构的静态和动态行为进行模拟分析的能力。
它可以帮助工程师预测和优化产品的性能,从而减少成本和时间。
Ansys包括多个子模块,如Mechanical、Fluent、Electronics等,每个子模块都专注于某个领域的仿真分析。
二、Ansys仿真分析的操作方法1. 创建几何模型:Ansys提供了多种几何建模工具,如实体建模、曲面建模、轮廓建模等。
用户可以根据具体需求选择适当的建模方法,创建几何模型。
2. 设定材料和属性:在仿真分析中,准确的材料和属性设置至关重要。
Ansys中提供了大量的材料数据库,用户可以根据需求选择相应的材料,并为其指定适当的属性。
3. 定义边界条件:边界条件对仿真分析结果具有重要影响。
Ansys允许用户定义各类边界条件,如约束、载荷、温度等。
通过合理设置边界条件,可以更准确地模拟实际工况。
4. 网格划分:网格是有限元分析的基础,也是Ansys仿真分析的关键步骤之一。
通过对几何模型进行网格划分,将其离散为多个小单元,从而进行数值计算和求解。
5. 设置分析类型:根据具体分析要求,选择适当的分析类型。
例如,对于静态结构分析,可以选择静力学分析类型;对于流体力学分析,可以选择流体流动分析类型。
6. 运行仿真计算:设置好所有必要的参数后,点击运行按钮,Ansys将开始进行仿真计算。
在计算过程中,可以随时监视仿真状态,并查看计算结果。
7. 结果处理和后处理:仿真计算完成后,Ansys提供了丰富的后处理工具,用于分析和可视化仿真结果。
用户可以绘制图形、生成报告,进一步研究和评估产品性能。
ANSYS 分析报告基本步骤
第一章 ANSYS 分析基本步骤(黑小2)本章目标(黑小3)学习完本章后,学员应该能够初步掌握ANSYS 分析问题的基本操作步骤.(揩小4)Lesson A. 分析过程2-1. ANSYS 分析过程中的三个主要步骤.2-2. ANSYS 分析步骤在GUI 中的体现. Lesson B. 文件管理2-3. ANSYS 文件系统: a. ANSYS 在分析过程中怎样使用文件. b. ANSYS 使用的文件名称的格式.c.确定 ANSYS 默认的文件名.2-4. ANSYS 的数据库: a.ANSYS 数据库中存储的数据.b. 数据库的存储操作.c.数据库的恢复操作.d. 怎样通过存储及恢复数据库文件修改错误. Lesson C. ANSYS 分析基本步骤训练 2-5. ANSYS 分析过程实例演练.Lesson A. 分析过程ANSYS 分析采用的是有限元分析技术。
在分析时,必须将实际问题的模型转化为有限元模型。
有限元分析(FEA) 是对物理现象(几何及载荷工况)的模拟,是对真实情况的数值近似。
通过划分单元,求解有限个数值来近似模拟真实环境的无限个未知量。
ObjectiveLesson Objectives1. 创建有限元模型 – 创建或读入几何模型. – 定义材料属性.– 划分单元 (节点及单元).2. 施加载荷进行求解 – 施加载荷及载荷选项. – 求解.3. 查看结果 – 查看分析结果.– 检验结果. (分析是否正确)分析的三个主要步骤可在主菜单中得到明确体现。
主菜单中各部分的顺序基本上是按着常规问题分析顺序设置的。
1.建立有限元模型2.施加载荷求解3.查看结果主菜单2-2. ANSYS 分析步骤在GUI 中的体现.1-1. ANSYS 分析过程中的三个主要步骤.Procedure1. .....2. .....3. .....1. 第一步创建有限元模型之主菜单体现主要部分:定义单元类型定义实常数定义材料建立实体模型等转变为有限元模型建立有限元模型2. 第二步施加荷载求解之主菜单体现主要部分:定义分析类型施加约束与荷载定义载荷步求解施加荷载求解3. 第三步查看结果之主菜单体现主要部分:读入结果显示图形结果显示列表结果定义单元表查看结果Lesson B. 文件管理ANSYS 文件及工作文件名:ANSYS 在分析过程中需要读写文件。
ANSYS实验分析报告
分析报告实例一和实例二建模过程遵从ansys的基本建模步骤:(1)建立有限元模型在ANSYS中建立有限元模型的过程大致可分为以下3个主要步骤:①建立或导入几何模型②定义材料属性③划分网格建立有限元模型(2)施加载荷并求解在ANSYS中施加载荷及求解的过程大致可以分为以下3个主要步骤:①定义约束②施加载荷③设置分析选项并求解(3)查看分析结果在ANSYS中查看分析结果的过程大致可以分为以下2个主要步骤:①查看分析结果②检验分析结果(验证结果是否正确)实例分析一:例一所要分析的问题是平面带孔平板在均布载荷作用下板内的应力情况分布。
实例类型为ANSYS结构分析,分析类型为线性静力分析。
通过在ansys中基本的实体建模操作,布尔运算和网格细化,施加均布载荷,到最后的求解,方可得到显示变形后形状和应力等值线图、单元信息列表等等结果。
下面查看分析结果,对于静力分析主要是模型位移及等效应力等值线图或者节点结果数据列表。
模型变形图如下所示:最大变形量图如下所示:等效应力等值线图如下所示:列表显示位移结果数据如下所示:列表显示节点应力值如下所示:实例分析二:例二所要分析的问题是大坝在约束和载荷作用下的应力,应变情况。
实例类型为ANSYS结构分析,分析类型为线性静力分析。
通过在ansys中基本的实体建模操作,网格划分,施加载荷,到最后的求解,方可得到显示变形后形状和应力等值线图等结果。
下面查看分析结果,对于静力分析主要是模型位移及等效应力等值线图或者节点结果数据列表。
模型变形图如下所示:最大变形量图如下所示:等效应力等值线图如下所示:列表显示位移结果数据如下所示:列表显示节点应力值如下所示:以下是两个结构的*.log文件:Plane:/BATCH/COM,ANSYS RELEASE 12.0.1UP20090415 17:04:30 03/24/2011 /CWD,'E:\Ansys.work\3-24-plane'/TITLE,plane/REPLOT!*/NOPR/PMETH,OFF,0KEYW,PR_SET,1KEYW,PR_STRUC,1KEYW,PR_FLUID,0KEYW,PR_MULTI,0/GO!*/COM,/COM,Preferences for GUI filteringhave been set to display:/COM, Structural!*/PREP7!*ET,1,PLANE82!*KEYOPT,1,3,3KEYOPT,1,5,0KEYOPT,1,6,0!*!*MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2e5MPDATA,PRXY,1,,0.3!*R,1,20,!*SAVEFINISH/SOLFINISH/PREP7 BLC4,0,0,200,100CYL4,100,50,20 ASBA, 1, 2 SAVEAESIZE,ALL,20, TYPE, 1MAT, 1REAL, 1 ESYS, 0 SECNUM,!*MSHAPE,0,2DMSHKEY,0!*CM,_Y,AREAASEL, , , , 3 CM,_Y1,AREACHKMSH,'AREA' CMSEL,S,_Y!*AMESH,_Y1!*CMDELE,_YCMDELE,_Y1CMDELE,_Y2!*SAVEFINISH/SOL!*ANTYPE,0FLST,2,1,4,ORDE,1 FITEM,2,4!*/GODL,P51X, ,ALL,0FLST,2,1,4,ORDE,1 FITEM,2,2/GO!*SFL,P51X,PRES,-1,/STATUS,SOLUSOLVEFINISH/POST1PLDISP,0!*/EFACET,1PLNSOL, U,SUM, 0,1.0/RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15/REPLOTFINISH! /EXIT,ALLDam:/BATCH/COM,ANSYS RELEASE 12.0.1UP20090415 20:54:59 03/24/2011 /TITLE,dam_fenxi!*/NOPR/PMETH,OFF,0KEYW,PR_SET,1KEYW,PR_STRUC,1KEYW,PR_FLUID,0KEYW,PR_MULTI,0/GO!*/COM,/COM,Preferences for GUI filteringhave been set to display:/COM, Structural!*/PREP7!*ET,1,PLANE42!*KEYOPT,1,1,0KEYOPT,1,2,0KEYOPT,1,3,2KEYOPT,1,5,0KEYOPT,1,6,0!*!* MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2.1e11 MPDATA,PRXY,1,,0.3SAVEK,1,0,0,,K,2,1,0,,K,3,1,5,,K,4,0.45,5,,FLST,2,4,3FITEM,2,1FITEM,2,2FITEM,2,3FITEM,2,4A,P51XFLST,5,2,4,ORDE,2 FITEM,5,1FITEM,5,3CM,_Y,LINELSEL, , , ,P51XCM,_Y1,LINECMSEL,,_Y!*LESIZE,_Y1, , ,15, , , , ,1 !*FLST,5,2,4,ORDE,2 FITEM,5,2FITEM,5,4CM,_Y,LINELSEL, , , ,P51XCM,_Y1,LINECMSEL,,_Y!*LESIZE,_Y1, , ,20, , , , ,1!*TYPE, 1MAT, 1REAL,ESYS, 0SECNUM,!*MSHAPE,0,2DMSHKEY,1!*CM,_Y,AREAASEL, , , , 1CM,_Y1,AREACHKMSH,'AREA'CMSEL,S,_Y!*AMESH,_Y1!*CMDELE,_YCMDELE,_Y1CMDELE,_Y2!*SAVE*DEL,_FNCNAME*DEL,_FNCMTID*DEL,_FNCCSYS*SET,_FNCNAME,'dam'*SET,_FNCCSYS,0! /INPUT,dam.func,,,1*DIM,%_FNCNAME%,TABLE,6,3,1,,,,%_FNCCSYS% !! Begin of equation: 1000*{X}*SET,%_FNCNAME%(0,0,1), 0.0, -999*SET,%_FNCNAME%(2,0,1), 0.0*SET,%_FNCNAME%(3,0,1), 0.0*SET,%_FNCNAME%(4,0,1), 0.0*SET,%_FNCNAME%(5,0,1), 0.0*SET,%_FNCNAME%(6,0,1), 0.0*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 1000, 0, 0, 2*SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, -1, 3, 2 *SET,%_FNCNAME%(0,3,1), 0, 99, 0, 1, -2, 0, 0! End of equation: 1000*{X}!-->FINISH/SOLFLST,2,1,4,ORDE,1FITEM,2,4/GO!*!*SFL,P51X,PRES, %DAM%FLST,2,1,4,ORDE,1FITEM,2,1!*/GODL,P51X, ,ALL,0FLST,2,1,4,ORDE,1FITEM,2,2!*/GODL,P51X, ,ALL,0/STATUS,SOLUSOLVEFINISH/POST1PLDISP,1!*/EFACET,1PLNSOL, U,SUM, 0,1.0!*/EFACET,1PLNSOL, S,EQV, 0,1.0PLNSOL,S,EQV!*ANCNTR,10,0.5PLNSOL,U,SUM!*ANCNTR,10,0.5!*PRNSOL,U,COMPPRRSOL,FINISH! /EXIT,ALL。
ANSYS分析报告基本步骤
ANSYS分析报告基本步骤第一步:报告概述在报告的开头,应该简要介绍分析的背景和目的。
这部分内容通常包括项目的背景信息、仿真分析的目标以及报告的组织结构。
概述部分应该简洁明了,引人入胜,让读者对整份报告有一个快速的了解。
第二步:模型准备在报告的第二部分,应该详细介绍在ANSYS软件中建立的模型。
包括模型的几何形状、材料属性、约束条件和加载条件等。
此外,还应该说明模型中所用到的单元类型、网格密度和其他相关参数设置。
这一部分的详细描述可以帮助读者了解分析的基础条件和假设。
第三步:分析方法在报告的第三部分,应该解释分析所用的方法和技术。
包括仿真分析的类型(静力分析、动力分析、热分析等)、求解器的选择、收敛准则的设定以及解决问题的具体步骤等。
这部分内容应该帮助读者了解建模和求解过程,理解分析的可靠性和合理性。
第四步:结果展示在报告的第四部分,应该展示分析的结果。
包括模型的受力、应变、位移等结果,以及可能的问题和局限性。
结果展示通常包括图表、表格、动画等形式,以便读者直观地了解分析结果。
此外,还可以通过比较不同方案的结果,分析其优缺点,为后续的决策提供参考。
第五步:结果分析在报告的第五部分,应该对结果进行深入分析和讨论。
包括对受力情况的评估、对应力分布的解释、对变形和位移的影响分析等。
通过对结果的详细分析,可以帮助读者理解问题的本质和关键因素,为后续的优化和改进提供建议。
第六步:结论与建议在报告的最后部分,应该给出总结性的结论和建议。
结论部分应该总结分析的结果和发现,回答问题的关键点,提出解决方案的建议。
建议部分可以针对问题的不足之处或可能存在的风险,提出相应的改进和预防措施,为后续工作提供指导。
通过以上基本步骤,编写一份完整的ANSYS分析报告,可以帮助工程师和决策者更全面地了解仿真分析的结果和结论,从而为设计优化和产品改进提供依据和参考。
在编写报告的过程中,应该注重逻辑性和连贯性,保持数据准确性和可靠性,以确保报告的可读性和说服力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元工程应用报告蒸汽管道的3D应力分析
院系机械与汽车工程学院
专业
机械设计制造及其自动化
班级
姓名
学号1
日期
页脚内容1
页脚内容2
目录
1.问题
1.1问题描述
学期:2015-2016学年第1学期 教师: 组别:
题目:蒸汽管道的3D 应力分析 如图所示铸铁制蒸汽管道的纵切面,其内部为蒸汽,外部覆盖有保温层,与寒冷空气接触。
铸铁管道的密度为7.8 t/m 3,导热
系数为k 1,热膨胀系数为α1,杨氏模量为1E ,泊松比为1μ;保温层的密度为1 t/m 3,导热系数为k 2,热膨胀系数为α2,杨氏模量为2E ,泊松比为2μ;管道内蒸汽压强为p ,温度为T ,与管道内层接触处的对流换热系数为21W/(m )⋅℃;保温层外大气压强为0.1MPa ,温度为40-℃,与保温层外层接触处的对流换热系数为
20.5W/(m )⋅℃。
热膨胀系数参考温度均为22℃。
管道及保温层的左右两端面为
光滑支撑(Frictionless Support)。
试对该管道进行热和静力学分析,得到温度(Temperature)、热应变(Thermal Strain)与等效应力(Von-Mises Equivalent Stress)分布。
各未知量取值如下:
页脚内容1
1.2问题分析
1.在操作过程中,始终注意
所使用的单位,特别是对流换
热系数;
2.该几何模型由两个实体
组成,应当在两个实体间有适
当的小间隙,或在拉伸时使用Add Frozen选项;
3.类似于8.
4.5节,将热分析的结果用于力分析的载荷;
4.所用材料若在库中并不存在,应当自行创建。
材料属性至少应当包括密
度(Density)、各向同性弹性(Isotropic Elasticity)、各向同性热导率(Isotropic Thermal Conductivity)、各向同性热膨胀率(Isotropic Secant Coefficient of Thermal Expansion);
5.为了得到规整的单元网格,可仿照上图的方法,对管道的截面添加Mapped
Face Meshing。
6.薄管道的厚度方向,单元数量至少3个。
1.3分析流程
2.工程设置
项目A和项目B关联数据共享如图1所示
页脚内容2
图1
页脚内容3
材料设置mat1 mat2 如图2
页脚内容4
单位设置图3所示
图2
页脚内容5
图3
页脚内容6
3.建模
3.1绘制蒸汽管的截面圆并输入如下尺寸
图4
页脚内容7
页脚内容8
3.2选择Extrude,Add Frozen并输入拉伸深度500如图5
页脚内容9
页脚内容10
图5
分配材料mat1和mat2如图6图7所示
图6
页脚内容11
图7
页脚内容12
4.网格划分
在Mesh上单击鼠标右键选择Insert,Mapped Face Meshing,连续两次如下图,在Mesh上单击鼠标右键选择Insert,Mapped Face Meshing,连续两次如下图,选择Insert,Sizing并重复
图8
页脚内容13
图9
将蒸汽管隐藏
页脚内容14
图10
设置保温层网格划分方式为Mapped Face Meshing,选择保温层的四个面
图11
页脚内容15
将蒸汽管显示,隐藏保温层,重复保温层的步骤,设置蒸汽管的网格划分方法
图12
页脚内容16
页脚内容17
5.静态结构分析
边界条件输入对流交换系数和环境温度
图13
页脚内容18
页脚内容19
施加载荷
图14
页脚内容20
选择支撑
图15
页脚内容21
添加温度条件
图16
页脚内容22
添加等效应力(Von-Mises Equivalent Stress)
图17
页脚内容23
添加热应变(Thermal Strain)
图18
页脚内容24
图19
页脚内容25
计算求解
图20
页脚内容26
求解结果
图21 6.结果分析
将试视图剖开
页脚内容27
图22
等效应力Von-Mises Equivalent Stress
页脚内容28
图24
载荷pressure
页脚内容29
图25
支撑
页脚内容30
图26
温度
页脚内容31
图27
对流边界条件
页脚内容32
图28
页脚内容33
图29
将云图的颜色方案设置为灰度
页脚内容34
图30
灰阶图如下
页脚内容35
图31
7.课程总结
在该课程中学习了哪些内容,有何收获。
相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要我们有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平。
另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让我们有一个比较好的把握,特提出以下建议:要多问,切记不要不懂就问。
在使
页脚内容36
用ANSYS处理具体的问题时,虽然会遇到大量ERROR提示,实际上,其中许多ERROR 经过自己的思考是能够解决的简单问题,只是由于缺乏经验才感觉好难。
因此,首先一定要自己思考,实在自己解决不了的问题才去问老师,在老师帮你解决的问题的过程中,去享受恍然大悟的感觉。
页脚内容37。