电力系统短期负荷预测方法研究综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统短期负荷预测方法研究综述
发表时间:2018-12-25T16:14:08.417Z 来源:《电力设备》2018年第23期作者:尹强
[导读] 摘要:随着电力工业发展的不断市场化,在与社会经济效益息息相关的当下,系统负荷预测在电力行业中扮演着愈加重要的角色。
(国网四川省电力公司攀枝花供电公司四川攀枝花 617000)
摘要:随着电力工业发展的不断市场化,在与社会经济效益息息相关的当下,系统负荷预测在电力行业中扮演着愈加重要的角色。而按照预测时间的长短,可将负荷预测模式分为长期,中期,短期和超短期。其中,短期负荷预测是电力系统稳定经济运行的基础,其预测结果将直接影响着电力系统控制过程的优良。因此关于短期负荷预测的精确性已逐步发展成为电力系统自动化领域中的一项重要研究课题。
关键词:电力系统;短期负荷;预测方法
一、负荷数据预处理
历史负荷数据由于多种原因可能会造成部分数据的丢失或者数据异常,异常的历史负荷数据会对短期负荷预测结果造成很大的影响。因此,想要提高短期负荷预测结果的精确度,在进行预测前,需对负荷数据进行预处理。传统的数据预处理方法包括插值法和纵向比较法等,为了提高预测的精确度又提出了双向比较法、滤波法、切比雪夫不等式法等多种数据预处理新方法。文献提出了用Savitzky-Golay平滑滤波器去处理历史负荷数据,与其它平均方法相比,本方法保留了原始数据的分布特性。文献利用粗糙集理论的属性,在保证历史负荷和气象因数等属性的情况下,推导出的预测负荷值满足一定的精确度,剔除属性集中的冗余信息,简化了判断规则,并利用遗传算法的全局搜索能力,挖掘得到相对预测量的最小约简属性集作为预测模型的输入变量。
二、短期电力负荷预测
短期电力负荷预测的特点。电力负荷预测是根据电力负荷和其影响因素的历史数据,结合实际情况建立相关的模型,对未来用电负荷量进行科学预测。短期负荷更是具有以下明显的特点:预测结果的不确定性和随机性;由于各类负荷预测都是在特定的环境和具体的条件下进行的,因此其具有条件性;短期负荷预测在时间上都有一定的限制,所以具有时间性;由于预测结果的不准确性和条件性,加上外部因素的不确定性,因此预测结果具有多方案性。
影响电力负荷预测精度的因素。在电力系统负荷预测的过程中,预测精度是最具有影响力的一个指标。过预测或欠预测均会对系统生产运行配送造成较为严重的后果。影响负荷的因素有很多,首要便是天气因素。而作为可估计的随机事件,气象预报本身不准确又会形成双重误差。再者,我国人口数量众多,贫富差距较大,因此随机负荷部分并非平稳的随机序列,反而有较大的不确定性。另外,一些特殊事件的随机发生也会使反映负荷的周期曲线产生较大的波动,使实际数据与影响因素之间的关系样本数难以确定。
三、智能预测方法
(一)专家系统法
专家系统法是根据某一领域的专家知识和专家经验建立的一个计算机系统,并且该系统能够运用这些知识和经验对未来进行合理的预测。知识库、推理机、知识获取部分和解释部分是一个完整专家系统的主要组成部分。通过该系统,运行人员能够识别预测日的类型,考虑天气对负荷预测的影响。专家系统法的优点是能够综合考虑多个影响因素,由于是一个计算机系统,该系统具有较好的透明性和交互性,对所得出的结论,能解释其依据,便于运行人员检查和修改,而且预测结果的精确度很高,能很好的反映负荷实际情况。不足之处就是需要大量的历史负荷数据,而数据量增多会导致运算速度慢;同时该算法不具有自主学习能力和利用模糊知识处理相关问题的能力;并且该算法拥有很强的规则性,而规则本身不具有普遍适应性,所以该预测方法不具备普遍适用性。
(二)人工神经网络法
人工神经网络是模仿人脑神经网络进行学习和处理问题的非线性系统。它由若干个具有并行运算功能的神经元节点及连接它们的相应的权值构成,通过激励函数实现输入变量到输出变量之间的非线性映射。用历史负荷作为训练样本去建立适宜的网络结构,当训练的网络结构达到预测要求后,就用此网络作为负荷预测的预测模型。人工神经网络的优点是对预测模型的要求不高,对高度非线性对象非常适用,具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,拥有的特点是其它算法所不具备的。不足之处是有很慢的学习收敛速度,也有可能结果收敛到局部最小点,并且没有很好的知识表达能力,对调度人员经验中存在的模糊知识没有得到充分的利用,依据主观经验确定网络层数和神经元个数。把人工神经网络方法运用于风电功率短期预测中,以数值天气预报为基础,拥有良好的人机交互界面,与能量管理系统实现了完美的连接,预测结果拥有良好的精确度。组合的预测方法,把人工神经网络法和经验模式分解相结合,用经验模式分解的自适应性,分别对各个分量进行分析,准确的把握负荷变化特性和环境因素影响,最后采用与分量相匹配的人工神经网络法进行预测。用人工神经网络去预测负荷模型的方法,用人工神经网络对最大、最小负荷时刻的负荷模型参数进行预测,分析了负荷模型与预测结果之间的灵敏度,以便了解它们之间的影响程度,去寻找提高精确度的方法。
四、支持向量机
支持向量机与神经网络类似,都是学习型的机制,但与神经网络不同,SVM使用的是数学方法和优化技术。其中支持向量是指那些在间隔区边缘的训练样本点,该方法给定一组训练样本,每个标记为属于两类,一个SVM训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。应用SVM进行电力系统负荷预测具有精度高、速度快等优点,不足之处在于存贮需求量大,编程困难,实际应用较难。
五、灰色模型法
灰色模型法是一种针对含有未知且不确定因素的系统进行预测的方法。通过对部分已知信息的开发,生成并提取有用信息,从而对系统运行行为和其演化规律进行正确且有效的描述和监控。该方法可在数据缺失的情况下找出某个时间段内数据变化的规律,以此建立负荷预测模型。灰色模型法分为普通灰色系统模型和最优化灰色模型两种。普通灰色预测模型是一种指数增长模型,当电力负荷严格按指数规律持续增长时,此方法的优势得以凸显———其预测精度高、所需样本少、人工耗时短且计算量小,所得预测结果还可以进行检验。缺点是对于具有波动性较大的电力负荷预测误差较大,因此并不适用于实际情况。但最优化灰色模型可以把波动幅度较大的原始数据序列变换成规律性较强的成指数递增变化的序列,以此来适应灰色模型法所需条件,大大增加了适用范围和预测精度。灰色模型法能很好的适用于