高等数学试题及复习资料
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,)(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134lim xx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →, 解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xxx .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim 21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得lim0x =.(10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x xx x x x .(也可用洛必达法则)(11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=.(12)30tan sin limx x xx →-.解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ 20sin (1cos )1lim cos x x x x x x→-=⋅⋅ =222sin 2limx xx →=21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limx x x x -→ (2))e e ln()3ln(cos lim33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim ++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)20cos sin cos lim3x x x x xx →--=01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x 3e e lim e 1lim 3cos 333--⋅⋅=++→→x x x x xxx e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nx n xnxx nx (5)此极限为∞∞型,用洛必达法则,得 1sin 1lim cos lim x x x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x .6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→0000lim )1sin (lim )1sin (lim )(lim ,1)1(l i m )(l i m 2=+=++→→x x f x x , 为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→, 因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限.因而有01sin lim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x , 由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim)(0 ∴0=x 为)(x f 的无穷间断点. 综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导.答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导.(2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( ,当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→, 所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f , 因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f .0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得22)()())(1())(1(x y x y y x y y x y x y y y x y x y y x y y y ++-'+'--'+-'=+-+'-+-'=''=2)(22x y yy x +-',将 xy xy y +-='代入上式,得2)(22x y y x y xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y x ln e ln =, 两边关于x 求导数得:xx y y x xe ln e '1+⋅=⋅)e ln e ('xx y y x x+=即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy=)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.xx y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- ,22d d d cos d cos d cos 1()()()d d d d 1sin d 1sin d 1sin d y y t t t t xx x x t t t x t t''===⋅=+++ 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,33)()(d d 12131==''====t t t t t t xy,曲线在点(1,1)处切线的斜率为3 12. 求函数x x y tan ln e =的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx x x y xx x d ]sec tan 1e e [d )e (d 2tan ln tan ln tan ln ⋅+='= x xxx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得 x x xx x x y tan ln tan ln tan ln e d d e )e(d d +==)tan (ln d e d e tan ln tan ln x x x x x +=)tan d(tan 1e d e tan ln tan ln x x x x x x ⋅+= x xx x x x x d cos 1tan 1e d e 2tan ln tan ln ⋅+= x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即()(1)0.f x f >=当1>x 时,e e )(-='xx f 0>,可知()f x 为),1[+∞上的严格单调增加函数,即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x x x xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值, ,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分.当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , 曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表由此可知,上凹区间(1,1)-,下凹区间(,1)(1,)-∞-+∞,曲线的拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线 (1)x x y ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim0, 可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim 2,[]b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x ++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f x cos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何? 答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe x d 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x x x d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x , (12)⎰-24d x x .解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2.(5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12.(10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112xx ⎰=C x +2arcsin .4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22xx x x t t t -=-⋅⋅==, 故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,x于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C x x x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x xx +--212arcsin 21. 5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e4,(4)⎰x x xd 4sin e5, (5)⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰-=⎰+-2241)(d 2arctan xx x x =)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. x221x -1x t(4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x xxd 4cose 544sin e5155⎰-=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x xx xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin =C xx x +-100100cos 10000100sin . (6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅-=x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x x xd e )1(2⎰+ , (2) 3s e c d x x ⎰. 解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2x e x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=xe =+--)e e (21C x x x )12(2++x x Cx+e (12C C =),为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xe dx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e . (2)3secd x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec =sec tan x x -⎰x x d sec3+x x tan sec ln +,式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x . 8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t x xx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-2d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1.(2)⎰-122d ||x x x =⎰--023d )(x x +⎰103d x x=1402444x x +--=4+41741=.(3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-40d 11x x x=⎰+-20d 211t t t t =⎰+--20d ]1424[t tt [].3ln 44021ln 442-=+--=tt t(2)⎰4π4d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x xd e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x x x =5155e 5e 51e 6=--x.(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x xx x xd 1223ln )1e 4ln(e 2e21⎰+--+= --+=3ln )1e 4ln(e 2x x )d 1211(e 21⎰+---+=3ln )1e 4ln(e 2()e21)12ln 21(+-x x()1e 23ln 231e 4ln )21e 2(+--++=.(3) x x xd πcose 10π⎰=ππsin d e 10πx x ⎰x x x x πde ππsin πsin e π11010π⎰-= =0x x x d πsin e 10π⎰-=)ππcos d(e 10πx x--⎰ x x x x πde ππcos πcos e π11010π⎰-==-+-)1e (π1πx x x d πcos e 10π⎰ 移项合并得x x x d πcos e 10π⎰)1e (π21π+-=. (4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰⎰++-++=1034134d )e 313ln 34()e 313ln 34(x x x x xx x x=4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e . 17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2) ⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d xx . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21, 故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1x x =+∞=-=-+∞→→+∞+xx x x x 1lim 1lim )1(00,∴⎰∞+02d 1x x 发散. (3)x xd e1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x =20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线 22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ],则面积微元 A d =y y y d )242(2-+,则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ],2)2-y则面积微元 A d 2=[)4(212--x x ]x d , 于是得=A 1+A 2 =⎰20d 22x x +x x x d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积⎰+=122d )1(πx x V⎰++=1024d )12(πx x x=135)325(πx x x ++=π1528. 二、 微分方程1. 验证x x C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: x x C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x yx y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yyd d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 ,x求积分得 3313Cx y +=-,从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解) (2)分离变量得21d d xxy y -=,(0≠y ) 两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=,即 )e (e e e 11arcsin arcsin Cx x CC C y ±==±=,从而通解为 x C y arcsin e =,验证0=y 也是方程的解. (3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12 求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d yx x y +=. 解:(1)因a x P =)(, x b x Q s i n)(=, 故通解为 ⎰⎰⋅+⎰=-]d e sin [e d d x x b C y xa x a⎰⋅+=-)d e sin (e x x b C ax ax)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:⎰⋅⎰⋅+⎰=---]d e [e d )1(2d )1(y y C x yy⎰-⋅+=]d e [e 2y y C y y)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-, 两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为 1d d +=xyx y x y ,令 x yu =,则 1d d +=+u u x u x u ,即 x x u uu d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =,所以原方程的通解为 1ln C y y x=,即yxC ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy x y 2d d =,x x yy d 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d e cos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x, 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx x x +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P .根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为x x C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,。
高等数学复习题及答案
高等数学复习题及答案高等数学复习题及答案高等数学作为一门重要的学科,对于理工科学生来说是必修课程。
在学习高等数学过程中,掌握和复习数学题目是非常关键的。
本文将为大家提供一些高等数学复习题及答案,希望能够帮助大家更好地复习和掌握这门学科。
一、微积分1. 计算下列定积分:∫(x^2+2x+1)dx解答:∫(x^2+2x+1)dx = (1/3)x^3 + x^2 + x + C2. 求函数f(x) = x^3 + 2x^2 - 3x的导函数f'(x)。
解答:f'(x) = 3x^2 + 4x - 33. 求曲线y = x^3 + 2x的切线方程。
解答:由y = x^3 + 2x可得,y' = 3x^2 + 2。
切线方程为y - y0 = y'(x - x0),代入x0 = 1,y0 = 3可得切线方程为y = 5x - 2。
二、线性代数1. 求矩阵A = [2 1; 3 4]的逆矩阵A^-1。
解答:A^-1 = (1/(2*4 - 1*3)) * [4 -1; -3 2] = [2/5 -1/5; -3/5 4/5]2. 已知矩阵B = [1 2; -1 3],求B的特征值和特征向量。
解答:特征值λ满足|B - λE| = 0,其中E为单位矩阵。
解方程可得λ^2 - 4λ + 5 = 0,得到特征值λ1 = 2 + i和λ2 = 2 - i。
将特征值代入(B - λE)X = 0,得到特征向量X1 = [1; i]和X2 = [1; -i]。
三、概率论与数理统计1. 一枚硬币抛掷10次,求正面朝上的次数大于等于7次的概率。
解答:设X为正面朝上的次数,X服从二项分布B(10, 0.5)。
P(X ≥ 7) = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)= C(10, 7) * (0.5)^7 * (0.5)^3 + C(10, 8) * (0.5)^8 * (0.5)^2 + C(10, 9) * (0.5)^9 * (0.5) + C(10, 10) * (0.5)^10= 0.1718752. 一批产品的重量服从正态分布N(60, 4),求随机抽取一个产品,其重量大于65的概率。
高数期末考试题及答案大全
高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。
答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。
在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。
切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。
试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。
答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。
则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。
利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。
积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。
专升本高等数学复习资料(含答案)
专升本高等数学复习资料一、函数、极限和连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(limx f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim0→为正整数)等于( ) A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π- 38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x +B .x tanC .()x cos 12-D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe - 56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(= B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续 64.下列函数在0=x处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在 C .在0=x 处连续 D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在 73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .3 83.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1C .x x a log 1D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100- D .100-92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( ) A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值 C .若0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a <<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ).A .有极小值为(3)fB .有极小值为(0)fC .有极大值为(1)fD .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线xy =在横坐标4=x的切线方程为 ( )A .044=+-y xB .044=++y xC .0184=+-y xD .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线 113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程y x e xy+=确定的隐函数)(x y y ==dxdy( )A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yy xe e -1 B .1-y y xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin x e y =则=dy ( )A .xd e x2sin B .x d ex2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d edx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin x e y =则=dyA .xd e x 2sin B .x d ex2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .I x C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ). A .2ln 12x x x C ++++ B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分x 等于( ).A .2arcsin x C +B .2arccos xC + C .2arctan x C +D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+x e B .x e 22 C .3312+x e D .x e 231136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .xx sin C .x cos D .x xcos138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dxarctan 12B .c xdx x +=⎰21 C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sec tan 142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( )A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x ++)ln 4121(2B .c x x ++)ln 2141(2 C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x ++211 C .x tan arg D .c x +arctan147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sin B .c x dx x +=---⎰43)4(C .c x dx x +=⎰32 D .c dx xx +=⎰22 148.极限⎰⎰→xxx xdxtdt000sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dx x tdt 0202sin lim的值为( )A .1-B .0C .2D .1150.极限4030sin limx dt t xx ⎰→=( )A .41 B .31 C .21D .1 151.=⎰+2ln 01x t dt e dxd( ) A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx d x f 0sin )(,则( )A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtxc dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x ax x tdt x f x在0=x 点处连续,则a 等于( )A .2B .21C .1D .2- 158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( )A .c x +tanB .c x +cotC .c x +-cotD . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( )A .pae- B .pae a-1 C .pa e p -1 D .)1(1pa e p --168.=⎰∞+ex x dx2)(ln ( ) A .1 B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e x B .⎰+∞1xdxC .⎰∞--0dx e x D .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21D .2 172.下列广义积分为收敛的是( )A .⎰+∞e dx x xln B .⎰+∞e x x dx lnC .⎰∞+e dx x x 2)(ln 1 D .⎰+∞e dx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ). A .必要条件 B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰4)(dx x f179.积分⎰--=-11sin 2xdx x e e xx ( )A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba+=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( ) A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( ) A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1- 191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e xD .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25 193.下列积分中,值最大的是( ) A .⎰12dx xB .⎰13dx x C .⎰14dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1 B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xx x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e →→-==-,故选B .24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B 29.解:nmnx mx nx mx x x ==→→00lim sin sin lim 故选A30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B31.解:1cos 1cos 1lim cos cos lim=+-=+-∞→∞→xxx xx x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim21=++→ax x x ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax ax ,所以1>a ,故选A48.解:因为02tan lim 20=→xxx ,故选D 49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim00=+=-+→→x x x x x x x ,选B 52.解:选A 53.解:1sin )cos 1(2lim20=-→x x x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C 68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot(lim )(lim211=-+=++→→x arc x x f x x , π=-+=--→→)11cot(lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→x x x x x x f x f x x ,故选B84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 021)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('xx x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y ey x g x f -⋅='=-,选A97.C 98.A 99.B 100.A 101. C 102.B 103.C。
高等数学复习题库和答案
第五套题 (上学期)
一、是非判断题
1、 为( )上的任意函数,则 必是奇函数。 [ ]
2、若 在x0处不可导,则在x0处必不连续。 [ ]
3、若 [ ]
4、若曲线y=?(x)上点(x,y)的切线斜率与 成正比例,并且通过点A(1,6)和B(2,-9),则该
曲线方程为__________ 。
5、 f(x)在[a,b]上可积,则g(x) )在[a,b]上不可积,则f(x)+g(x)在[a,b]上一定不可积。[ ]
8、设有非零向量 ,若 ,则必有
(A)、 = + (B)、 =
(C)、 (D)、
9、下列极限存在的是( )
(A)、 (B)、 (C)、 (D)、
第四套题(上学期)
单项选择题
1、下面四个函数中,与y=|x|不同的是
(A) (B) (C) (D)
2设 在 处可导,则 。
(A) (B)
(C) (D)
3、若 .
(A)
(B)
(C) ( 为 中任一点)
(D)、 ( , 为 中任一点)
三.下列函数是由那些简单初等函数复合而成。
1、 y=
2、 y=
二、填空题
1、若在区间上 ,则F(x)叫做 在该区间上的一个 , 的
所有原函数叫做 在该区间上的__________。
2、 定积分的几何意义知 = , = 。
3、 f(x,y)= ,则 。 。
5、由二重积分的几何意义得到 = .
6、使用Mathematica软件作函数y=x3 图象的输入格式是 ;
10.使用Mathematica软件写出x 0时 求x3极限的输入格式是 ;
《高等数学》练习题库含答案(大学期末复习资料) (1) (1)
华中师范大学网絡教育学院 《高等数学》练习测试题库一.选捽题1,函数y=-J —是()X + 1A, 偶函数B,奇函数 C 单调函数 2•设 f(sin —)=cosx+l,则 f(Q 为( )2卜-列数列为单潤递増数列的有(6 limsincr-l)=(Il X -]AJ B,0C2IXI/27.设L*X=c h则 k=()AJ B 、2 C.6 DJ/68?'|x->l 时,下列与无穷小(x-1 )等价的无穷小是( A. x 2-! B. x ?-l C.(x-l)2D.sin(x-I)9. f(x)在点处有定义是f(x)在NXQ 处连续的() A,心要条件 B.充分条件 C.充分必要条件 D,无关条件 10、 当 |x <1 Ht, y= /】京(.)D 无界函数A 2x 2-2 B 2—2/ C I +/D l-x 2A. 0,9 t 0.99, 0,9991 0.9999B.—为奇数 I +n丄,网为偶数 U -科4, 数列有界是数列收敛的() A.充分条件 C.充要条件 5. 卜列命题正确的是( )A.发散数列必无界C.两发散数列之狷必发散C. {f(n)h 其中 f(n)=; B. D 必要条件 既非充分也非必要 R.D. 2N + 1 2tl两无界数列之和必无界 两收敛数列之用[必收A、是连续的无界函数C、有最大值勺最小值IL无最小值11、设函数f (x) = (1-xL要使f (x)在点:戸。
连续,则应补充定义1 (0) 为< )A、丄B、e 。
、-e D. _e 1e12、下列有跳跃间断点x=0的函数为()A-, sarctiinl /x B、 arctan 1/xC\ tetr 1 /x D、cosl/x13、设f (妇在点为连续,g(x)在点舔不连续,则下列结论成立是()A、f(X)-g(X)在点Xa必不连续B、f(x) Xg(x)在点为必不连续须冇C、复合函数f [g(x)]在点为必不连续*)D、gW在点为必不连续1 li1L设f (,x)= ]+@户在区间(1 8,+ 8)卜连续,冃J5f(x)=0,则a, h满足 ()A. a>0, b>0B. a>0h b<0C. a<0,b>0 Ik a<0, b<015、若函数「6)在点险连续,则下列复合函数在x*也连续的有( )A. K) B、貯3C、Un[f(x)]D、f[f(x)]16、函数f (x)=tanx能取最小最大值的区间是下列区向中的< )A、[0, ]B、『0,」)C、[- ■! /I, Ji /4] D* (-.'1/4:J]/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A,充分条件B、必要条件C、充要条件IX无关条件18、「(a)「(b) VQ是在[H,b] ±连续的函「(x)数在(a, b)内取零值的( )L 充分条件 B 、必要条件 C 、充要条件D 、无关条件19、 下列函数中能在区间(。
《高等数学》习题库及答案
《高等数学》习题库及答案高等数学(1)复习题一、选择题1.函数112-=x y 的定义域是() A . (-1,1)B .[-1,1]C .(,1][1,)-∞-?+∞D .(,1)(1,)-∞-?+∞ 2、函数13lg(2)y x x =+++的定义域是() A.(3,2)(1,)--?-+∞ B.(2,1)(1,)--?-+∞C. (3,1)(1,)--?-+∞D.(2,)-+∞3、函数1()ln(2)f x x =-的定义域是()A.(2,)+∞ B.(3,)+∞ C.(2,3)(3,)+∞UD.(,2)(2,)-∞+∞U4、下列各式中,运算正确的是()5. 设>≤≤---<+=1,011,11,21)(2x x x x x x f ,则)2(-f = ( )A .23- B .3- C .0 D .25 6.若0lim x x → f (x )存在, 则f (x )在点x 0是()A . 一定有定义B .一定没有定义C .可以有定义, 也可以没有定义D .以上都不对7.下列说法正确的是()。
A . 无穷小量是负无穷大量B .无穷小是非常小的数C .无穷大量就是∞+D .负无穷大是无穷大量8.下列说法正确的是( )A.若函数()f x 在点0x 处无定义,则()f x 在点0x 处无极限。
B.无穷小是一个很小很小的数。
C.函数()f x 在点0x 处连续,则有:00lim ()()x x f x f x →= D.在(,)a b 内连续的函数()f x 在该区间内一定有最大值和最小值。
9.函数11)(2--=x x x f ,当1→x 时的极是()A.2-B. 2C. ∞D.极限不存在 10.极限1lim x →211x x -+=()A .0 B. 1 C .2 D .∞11.函数21()1x f x x -=+,当1x →-时的极限()A .2B . 2-C .∞D .极限不存在12.极限1lim x →211x x ++=()A .0 B. 1 C .2 D .∞13.311lim 1x x x →-=-()A.1B.2C.3D.414. 极限=-++-→221lim 221x x x x x ( ) A. 21D .∞ 15.下列各式中正确的是()A .0sin lim 0=→x xx B .1sin lim =∞→x xxC .0sin lim 1=→x xx D .1sin lim 0=→x xx16.设0sin lim7x ax x →= 时,则a 的值是() A. 17B.1C.5D.7 17、当x →0时,下列各等价无穷小错误的是( )A .arctan x ~xB .sin x 2 ~ x 2C . lg(1+x ) ~ xD .1-cos x ~21x 218、函数xx x x f sin )(+=,当∞→x 时的极限() A .0 B .∞C . -1D .119、当0x →时,ln(1x)+与x 比较是()A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量20、2(1)y x =-在1x =处() A.连续 B.不连续 C.不可导 D.既不连续也不可导≥+<+=0 30 32)(2x a x x x x f 在x = 0处连续,则a 的值是( ) A.3 B. 2 C. 1 D. 022、函数y=ln (2 - x - x 2)的连续区间为()A .(-1,2)B .(-2,1)C .(- ∞,1)∪(- ∞,1)D .(- ∞,-2)∪(1,+∞)23.下列说法错误的是()A .可导一定连续B .不可导的点不一定没有切线C .不可导的点一定不连续D .不连续的点一定不可导24.函数f (x )在点 x 0连续是函数在该点可导的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不是充分条件, 也不是必要条件25.已知函数f (x )=,0,10,12>+≤-x x x x 则在x =0处() A .间断 B .不可导C .f '(0) =-1D .f '(0) =126、||x y =在0x =处()A.连续不可导B.可导不连续C.可导且连续D.既不连续也不可导27.设y =x e -,则='y ()A .x e -B . x 1x e --C .-x 1x e --D .-x e -28.导数等于21sin2x 的函数是() A .21sin 2x B .41cos2x C .21cos 2x D .1-21cos2x 29.若下列函数中()的导数不等于1sin 22x A . 1cos 24x B . 21sin 2x C .21cos 2x - D . 11cos 24x - 30、设243y x =-,则()1f '等于()A.0B.-6C.-3D.331.设ln y x x =+,则dy dx=( ) A.1x x + B.1x x + C.1x x +- D.1x x-+ 32.设()y f x =-,则y '=()A.()f x 'B.()f x '-C.()f x '-D.()f x '--33.下列导数计算正确的是( )A.x x e e 22sin sin )(='B.()2112ln ln -='-x x C .22211(arcsin )()x x '=- D .x x 2sin )(sin 2='34.下列导数计算正确的是( )A.sin sin ()x x e e '=B.21(2log )2ln 2ln 2x x x x '+=+C.1()1x x x '+=+D.211)2ln (ln +='+x x 35、半径为R 的金属圆片,加热后半径伸长了dR ,则面积S 的微分dS 是()A .RdR πB .RdR π2C .dR πD .dR π236.设f (x )可微,则d(e f (x ) ) =()A .f '(x )d xB .e f (x )d xC .f '(x ) e f (x )d xD .f '(x ) d(e f (x ) )37、边长为a 的正方形铁片,加热后边长伸长了d a ,则面积S 的微分dS 是()A .a d aB .2a d aC .a 2d aD .d a38、设函数在点0x 可导,且0()f x '=2,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是()A .锐角B . 0oC .90oD .钝角39.设函数在点x 0可导, 且f '(x 0) >0, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .900C .锐角D .钝角40.设函数在点x 0可导, 且f '(x 0) =-3, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00C .锐角D .钝角41、设函数在点0x 可导,且0()f x '<0,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是()A .0oB .锐角C .90oD .钝角42.曲线y = ln x 上某点的切线平行于直线y = 2x -3, 该点的坐标是 ( )A .(2, ln 21)B .(2,-ln 21)C .(21,-ln2)D .(21,ln2) 43.设函数在点0x 可导,且02()f x '=-,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .120°D .钝角44.设函数在点0x 可导,且3)(0-='x f ,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .锐角D .钝角45、函数x x x f -+=)1ln()(的单调减少区间是()A .),0(+∞B .)0,(-∞D .(-1,0)46、函数)1ln()(x x x f +-=的单调减少区间是()A.),0(+∞B.)0,(-∞C.(0,1)D.(-1,0)47. x x y ln 22-=的单调递减区间为( )A .)21,0(B .11(,)(0,)22-∞-?C .),21(+∞D .11(,0)(,)22-?+∞ 48、曲线32y x x =+-在点(1,0)处的切线方程为()A.2(1)y x =-B.4(1)y x =-C.41y x =-D.3(1)y x =-49.函数y = x 2e -x 及其图形在区间(1, 2)内是()A .单调增加且是凸的B . 单调减少且是凸的C .单调增加且是凹的D .单调减少且是凹的50、曲线()y f x =在区间[,]a b 上单调减少且为凸的,则()A .()f x '>0或()0f x ''>B .()f x '>0或()0f x ''<C .()f x '<0且()0f x ''>D .()f x '<0且()0f x ''<51、曲线()y f x =在区间[,]a b 上单调增加且为凹的,则()A .()f x '>0,()0f x ''>B .()f x '<0,()0f x ''<C .()f x '>0,()0f x ''<D .()f x '<0,()0f x ''>52、若在(,)a b 内,函数()f x 的一阶导数()f x '>0,二阶导数()f x ''<0,则函数()f x 在此区间内()A.单调减少,曲线是凹的B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的53.若在(,)a b 内,函数()f x 的一阶导数()f x '<0,二阶导数()f x ''>0,则函数()f x 在此区间内()A.单调减少,曲线是凹的B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的54.若曲线弧位于其上任一点切线的下方,则该曲线弧是( )A.单调增加B.单调减少C.凹弧D.凸弧55.点 x = 0是函数y = x 2 的()A . 驻点但非极值点B .拐点C .驻点且是拐点D .驻点且是极值点56、点0x =是函数4y x =的()A.驻点但不是极值点B.拐点C.驻点且是极值点D.驻点且是拐点57、点0x =是函数3y x =的()A .极值点但不是驻点B .驻点但不是极值点C .驻点且是极值点D .极值点且是拐点58、下列说法正确的是()A.驻点一定是极值点B. 拐点一定是极值点C.极值点一定是拐点D. 极值点一定是驻点或导数不存在的点59、若()00f x '=,则0x 是函数()f x 的()A.极值点B.最值点C.驻点D.非极值点60、函数x e x x f -=)(的极值是()A . 0B . 1C . -1D . 261.函数()y f x =在0x x =处连续,且取得极值,则有( )A.0()0f x '=B.0()0f x ''<C.00()0()f x f x ''=或者不存在D.0()f x '不存在62. 函数)(x f y =在点0x x =处取得极大值,则必有()A . 0()0f x '=B . 0)(0>''x fC . 0()0f x '=且0)(0>''x fD . 0()0f x '=或)(0x f '不存在63、曲线3(1)y x =-的拐点是()A.(1,8)-B.(1,0)C.(0,1)-D.(2,1)64.下列说法正确的是()A.驻点一定是极值点B. 极值点一定是驻点或导数不存在的点C.极值点一定是拐点D. 拐点一定是极值点65、若()(),F x f x '=则()dF x ?=()A.()f xB.()F xC.()F x C +D. ()f x C +66.设?dx x f )(= cos 2x + C ,则f (x ) =()A .sin 2xB .-2sin 2xC .sin x + CD .-sin 2x67.设?dx x f )(= 2cos2x + C ,则f (x ) =() A .sin2x B .-sin 2x C .sin 2x + C D .-2sin 2x 68.若c x x dx x f ++=?cos sin )(,则,=)(x f () A.x x cos sin + B.x x cos sin - C.x x sin cos - D.x x cos sin --69.dxd 52x xe dx ?= ( ) A .42x x e B .52x x e dx C .42x x e dx D .52x x e 70.=dx x xf dxd )( ( ) A.)(21x f B.dx x f )(21 C .)(x xf D .dx x xf )(71.2()d xf x dx ?=()A .21()2f xB .21()2f x dx C .2()xf x dx D .21()2xf x dx 72.2()d x f x dx ?=()A .2()xf xB .2()xf x dxC .2()x f x dxD .2()x f x73. ?=xdx 2cos ()A .2sin2x + CB .2cos2x +C C .12sin2x + CD .12cos2x + C 74.dx xx f 211???? ??'= ( ) A .)1(x f -+ C B .-)1(x f -+ C C .)1(x f + C D .-)1(xf + C 75.?dx x21=() A .C x +1 B .C x+-1 C .C x +2ln D .C x +2ln76、()23sin x e x dx -?=()A. 23cos x e x c ++B. 23cos x e x +C. 23cos x e x -D. 1二、填空题1.函数y =22x -+ arcsin x 的定义域为____________. 2、函数y=2x x -定义域为。
大学高等数学复习试题
大学高等数学复习试题1. 选择题1.1 以下哪个函数是偶函数?A) y = x^3 + xB) y = e^xC) y = sin(x)D) y = x^2 - 3x + 21.2 若 f(x) = x^2 + 2x - 3,求 f'(1) 的值是多少?A) 1B) -1C) 3D) 51.3 对于函数 f(x) = ln(x^2 + 1),以下哪个选项是真实的?A) f'(1) < f'(2)B) f'(1) = f'(2)C) f'(1) > f'(2)D) 无法判断2. 填空题2.1 设函数 f(x) = 3x^5 - 2x^3 + 4x - 1,求 f'(x) 的表达式。
2.2 若 y = e^x + ln(x),则 y' = ______。
3. 计算题3.1 求函数 f(x) = x^3 - 4x^2 + 5x - 2 在 x=2 处的极值。
3.2 求以下积分的值:∫(2x - 3)dx。
3.3 用牛顿-莱布尼兹公式计算定积分的结果:∫(0 to π) sin(x)dx。
4. 解答题4.1 请用极坐标的方法计算曲线 y = x^2 的图形与 x = 1 和 y = 1 所围成的面积。
4.2 证明以下极限等式:lim(x→0) (sin(2x) / x) = 2。
4.3 证明定积分的性质:∫(a to b) f(x)dx = -∫(b to a) f(x)dx。
以上是大学高等数学的复习试题,包括选择题、填空题、计算题和解答题。
希望这些试题能够帮助你更好地复习数学知识。
祝你顺利通过考试!。
高数考试题库及答案解析
高数考试题库及答案解析一、选择题1. 函数f(x)=x^2-3x+2在区间[1,4]上的最大值是:A. 0B. 3C. 6D. 7答案:D解析:首先求导f'(x)=2x-3,令f'(x)=0,解得x=3/2。
在区间[1,4]上,f'(x)在x<3/2时为负,x>3/2时为正,说明f(x)在x=3/2处取得极小值。
计算f(3/2)=-1/4,再计算区间端点f(1)=0和f(4)=6,可知最大值为f(4)=6。
2. 若f(x)=sin(x)+cos(x),则f'(x)的表达式为:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)答案:A解析:根据导数的运算法则,f'(x)=[sin(x)]'+[cos(x)]'=cos(x)-sin(x)。
二、填空题1. 曲线y=x^3-6x^2+9x在点(2,0)处的切线斜率为______。
答案:-12解析:首先求导y'=3x^2-12x+9,将x=2代入y'得到切线斜率为-12。
2. 定积分∫(0,1) x^2 dx的值为______。
答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。
三、解答题1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:函数f(x)的单调增区间为(1,3),单调减区间为(-∞,1)和(3,+∞)。
解析:首先求导f'(x)=3x^2-12x+11,令f'(x)=0解得x=1,3。
根据导数符号变化,可得单调区间。
2. 求曲线y=x^2-4x+3与直线y=2x平行的切线方程。
答案:切线方程为:x-y-1=0。
解析:曲线y=x^2-4x+3的导数为y'=2x-4,令y'=2得到x=3,此时切点坐标为(3,2)。
大一高等数学期末考试试卷及复习资料详解
大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)一、选择题1. 设函数 $ f(x) = x^3 3x + 2 $,则 $ f'(0) $ 的值为多少?A. 0B. 1C. 1D. 3答案:A2. 设 $ f(x) = e^x $,则 $ f''(x) $ 等于多少?A. $ e^x $B. $ e^x + x $C. $ e^x x $D. $ e^x + 2 $答案:A3. 设 $ y = \ln(x + 1) $,则 $ y' $ 等于多少?A. $ \frac{1}{x + 1} $B. $ \frac{1}{x} $C. $ \frac{1}{x 1} $D. $ \frac{1}{x + 2} $答案:A4. 设 $ y = x^2 $,则 $ y'' $ 等于多少?A. 2B. 4D. 1答案:B5. 设 $ y = \sin(x) $,则 $ y' $ 等于多少?A. $ \cos(x) $B. $ \cos(x) $C. $ \tan(x) $D. $ \tan(x) $答案:A二、填空题1. 设函数 $ f(x) = x^4 2x^3 + x^2 $,则 $ f'(x) $ 的表达式为______。
答案:$ 4x^3 6x^2 + 2x $2. 设 $ y = \ln(x) $,则 $ y' $ 的表达式为______。
答案:$ \frac{1}{x} $3. 设 $ y = e^x $,则 $ y'' $ 的表达式为______。
答案:$ e^x $4. 设 $ y = \cos(x) $,则 $ y' $ 的表达式为______。
答案:$ \sin(x) $5. 设 $ y = \sqrt{x} $,则 $ y' $ 的表达式为______。
答案:$ \frac{1}{2\sqrt{x}} $三、解答题1. 求函数 $ f(x) = x^3 3x + 2 $ 在点 $ x = 1 $ 处的切线方程。
高等数学试题库完整-知识归纳整理
入学考试题库(共180题)1.函数、极限和延续(53题)函数(8题) 函数定义域1.函数lg arcsin 23x xy x =+-的定义域是( )。
A A. [3,0)(2,3]-; B. [3,3]-;C. [3,0)(1,3]-; D. [2,0)(1,2)-.2.如果函数()f x 的定义域是1[2,]3-,则1()f x的定义域是( )。
DA. 1[,3]2-;B. 1[,0)[3,)2-⋃+∞;C. 1[,0)(0,3]2-⋃;D. 1(,][3,)2-∞-⋃+∞.3. 如果函数()f x 的定义域是[2,2]-,则2(log )f x 的定义域是( )。
BA. 1[,0)(0,4]4-;B. 1[,4]4;C. 1[,0)(0,2]2- ;D. 1[,2]2.4.如果函数()f x 的定义域是[2,2]-,则3(log )f x 的定义域是( ).DA. 1[,0)(0,3]3-⋃;B. 1[,3]3;C. 1[,0)(0,9]9-⋃ ;D. 1[,9]9.5.如果)(x f 的定义域是[0,1],则(arcsin )f x 的定义域是( )。
CA. [0,1];B. 1[0,]2; C. [0,]2π ; D. [0,]π. 函数关系6.设()()22221,1x f xx x xϕϕ+⎡⎤==⎣⎦-,则()f x =( ).AA.211x x +-; B. 211x x -+; C. 121x x -+; D. 121x x +-.7.函数331xx y =+的反函数y =( )。
BA.3log ()1x x +; B. 3log ()1x x -; C. 3log ()1x x -; D. 31log ()xx-. 知识归纳整理8.如果2sin (cos )cos 2xf x x=,则()f x =( ).CA.22121x x +-; B. 22121x x -+; C. 22121x x --; D. 22121x x ++.极限(37题) 数列的极限9.极限123lim ()2n n nn →+∞++++-=( ).B A.1; B. 12; C. 13; D. ∞.10.极限2123lim2n nn →∞++++=( ).A A.14; B. 14-; C. 15; D. 15-11.极限111lim 1223(1)n n n →∞⎛⎫+++=⎪⋅⋅+⎝⎭( ).C A.-1; B. 0; C. 1; D. ∞.12.极限221111(1)222lim1111333n n n n→+∞-+++-=++++( ).A A.49; B. 49-; C. 94; D. 94-函数的极限13.极限2limx x xx →∞+=( ).C A.12; B. 12-; C. 1; D. 1-.14.极限011limx x x →+-=( ).A A.12; B. 12-; C. 2; D. 2-.15.极限0311lim x x x →+-=( ).B 求知若饥,虚心若愚。
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
高等数学复习题及答案
高等数学复习题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处连续,则下列说法正确的是()。
A. 极限lim(x→a) f(x)存在B. 极限lim(x→a) f(x) = f(a)C. 极限lim(x→a) f(x) = f(a)且f(a)存在D. 以上说法都不正确2. 函数f(x)=x^2在区间[-1,1]上的最大值是()。
A. 0B. 1C. 4D. 无法确定3. 曲线y=x^3在点(1,1)处的切线斜率是()。
A. 1B. 3C. 0D. 24. 以下哪个选项是函数y=x^2的不定积分()。
A. x^3/3 + CB. 2x + CC. x^2 + CD. x + C二、填空题(每题5分,共20分)1. 函数f(x)=2x+3在x=1处的值是______。
2. 极限lim(x→0) (sin x)/x的值是______。
3. 函数y=x^3-3x的拐点是______。
4. 曲线y=x^2-4x+4在x=2处的切线方程是______。
三、解答题(每题15分,共30分)1. 求函数f(x)=x^2-4x+3在区间[0,3]上的最大值和最小值。
2. 计算定积分∫(0到1) (2x+1)dx。
四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在R上是连续的。
2. 证明若函数f(x)在区间[a,b]上连续,则f(x)在该区间上必有最大值和最小值。
五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.5x^2-2x+100,其中x 表示生产的产品数量。
求该工厂生产多少件产品时,平均成本最低,并求出最低平均成本。
答案:一、选择题1. C2. C3. B4. A二、填空题1. 52. 13. (1,-2)4. y=4x-12三、解答题1. 最大值:f(3)=0,最小值:f(2)=-12. ∫(0到1) (2x+1)dx = (x^2+x)|_0^1 = 2四、证明题1. 略2. 略五、应用题1. 当x=2时,平均成本最低,最低平均成本为50。
高等数学复习题及答案
高等数学复习题及答案【篇一:大学高等数学上考试题库(附答案)】>一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(a)f?x??lnx 和 g?x??2lnx (b)f?x??|x| 和 g?x??2(c)f?x??x 和 g?x??2(d)f?x??|x|x和 g?x??122.函数f?x???ln?1?x??a?x?0x?0在x?0处连续,则a?().(a)0 (b)14(c)1 (d)23.曲线y?xlnx的平行于直线x?y?1?0的切线方程为().(a)y?x?1 (b)y??(x?1)(c)y??lnx?1??x?1?(d)y?x 4.设函数f?x??|x|,则函数在点x?0处().(a)连续且可导(b)连续且可微(c)连续不可导(d)不连续不可微5.点x?0是函数y?x4的().(a)驻点但非极值点(b)拐点(c)驻点且是拐点(d)驻点且是极值点6.曲线y?1|x|的渐近线情况是().(a)只有水平渐近线(b)只有垂直渐近线(c)既有水平渐近线又有垂直渐近线(d)既无水平渐近线又无垂直渐近线 7.?f???2dx的结果是(). ?x?x??1??1??1(b)(c)?c?f??cf????x??x??x?x(a)f??8.?dxe?ex??1(d)?c?f????x???c ?的结果是().x?x(a)arctane?c (b)arctane?c (c)e?e x?x?c (d)ln(e?ex?x)?c9.下列定积分为零的是().?(a)?4?arctanx1?x2??4dx (b)?4??4xarcsinxdx (c)?11?1e?e2x?x1?1?x2?x?sinxdx10.设f?x?为连续函数,则?f??2x?dx等于().(a)f?2??f?0? (b)12??f?11??f?0???(c)12??f?2??f?0???(d)f?1??f?0?二.填空题(每题4分,共20分)?e?2x?1?1.设函数f?x???x?a?x?0x?056在x?0处连续,则a?.2.已知曲线y?f?x?在x?2处的切线的倾斜角为?,则f??2??3.y?4.?xx?12.的垂直渐近线有条.dxx?1?lnx?2?.?5.?2??xsinx?cosx?dx?4?2.三.计算(每小题5分,共30分) 1.求极限①lim x??2x?1?x????x?②limx?0x?sinxxe?x2?1?2.求曲线y?ln?x?y?所确定的隐函数的导数y?. x3.求不定积分①?四.应用题(每题10分,共20分) 1.作出函数y?x?3x的图像. 232dx?x?1??x?3?②??a?0? ③?xe?xdx2.求曲线y?2x和直线y?x?4所围图形的面积.《高数》试卷1参考答案一.选择题1.b 2.b 3.a 4.c 5.d 6.c 7.d 8.a 9.a 10.c 二.填空题 1.?22.?三.计算题1①e2 ②11633.24.arctanlnx?c 5.22.y??x1x?y?13. ①ln|2x?1x?3|?c②ln|x|?c③?e?x?x?1??c四.应用题1.略2.s?18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ). (a) f?x??x和g?x??(b) f?x??22x?1x?122和y?x?1(c) f?x??x和g?x??x(sinx?cosx)(d) f?x??lnx和g?x??2lnx ?sin2?x?1??x?1??2.设函数f?x???2?2x?1???x?1x?1 ,则limfx?1?x??().x?1(a) 0 (b) 1(c)2(d) 不存在3.设函数y?f?x?在点x0处可导,且f??x?0, 曲线则y?f?x?在点?x0,f?x0??处的切线的倾斜角为{}. (a) 0 (b)?2(c)锐角(d) 钝角4.曲线y?lnx上某点的切线平行于直线y?2x?3,则该点坐标是( ). ??1?1??(b) 2,?ln??? 2?2??2?x(a) ?2,ln (c)??1??1?,ln2? (d) ?,?ln2? ?2??2?5.函数y?xe及图象在?1,2?内是( ).(a)单调减少且是凸的 (b)单调增加且是凸的 (c)单调减少且是凹的 (d)单调增加且是凹的6.以下结论正确的是( ).(a) 若x0为函数y?f?x?的驻点,则x0必为函数y?f?x?的极值点. (b) 函数y?f?x?导数不存在的点,一定不是函数y?f?x?的极值点. (c) 若函数y?f?x?在x0处取得极值,且f??x0?存在,则必有f??x0?=0. (d) 若函数y?f?x?在x0处连续,则f??x0?一定存在.17.设函数y?f?x?的一个原函数为xex,则f?x?=( ).21111(a) ?2x?1?ex (b)2x?ex(c)?2x?1?ex(d) 2xex 8.若?f?x?dx?f?x??c,则?sinxf?cosx?dx?( ).(a) f?sinx??c (b) ?f?sinx??c (c) f?cosx??c (d) ?f?cosx??c 9.设f?x?为连续函数,则?f??1?x??dx=( ). ?2???1??(a) f?1??f?0? (b)2??f?1??f?0??? (c) 2??f?2??f?0??? (d)2?f?2??f?0??????10.定积分?dx?a?b?在几何上的表示( ).ab(a) 线段长b?a (b) 线段长a?b (c) 矩形面积?a?b??1 (d) 矩形面积?b?a??1 二.填空题(每题4分,共20分) ?ln?1?x2??1.设 f?x???1?cosx?a?x?0x?0, 在x?0连续,则a=________.2.设y?sin2x, 则dy?_________________dsinx.3.函数y?xx?12?1的水平和垂直渐近线共有_______条.4.不定积分?xlnxdx?______________________.5. 定积分?1?1xsinx?11?x22?___________.三.计算题(每小题5分,共30分) 1.求下列极限:?①lim?1?2x?x ②limx?01?arctanx1xx???2.求由方程y?1?xe所确定的隐函数的导数y?x.3.求下列不定积分:①?tanxsec3xdx②?ya?0?③?xedx2x四.应用题(每题10分,共20分) 1.作出函数y?13x?x的图象.(要求列出表格)3【篇二:高等数学试题及答案】>一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
高数一试题及答案
x + 2 B. y = - x + 2 C. y = x + 3 D. y = - x + 3《 高等数学(一) 》复习资料一、选择题1. 若 lim x →3x 2 - x + k x - 3= 5 ,则 k = ( )A. -3B. -4C. -5D. -62. 若 lim x →1 x 2 - k x - 1= 2 ,则 k = ( )A. 1B. 2C. 3D. 43. 曲线 y = e x - 3sin x + 1 在点(0,2)处的切线方程为()A. y = 2 x + 2B. y = -2 x + 2C. y = 2 x + 3D. y = -2 x + 34. 曲线 y = e x - 3sin x + 1 在点(0,2)处的法线方程为( )A. y = 1 1 1 12 2 2 25. lim x →1 x 2 - 1 sin x= ( )A. 0B. 3C. 4D. 56.设函数 f ( x ) = ⎰ x (t + 1)(t - 2)dt ,则 f '(3) =( )A 1B 2C 3D 47. 求函数 y = 2 x 4 - 4 x 3 + 2 的拐点有( )个。
e x C.x2-1D.arctan x2h=(2B.2C.x2B.xC.xD.A1B2C4D08.当x→∞时,下列函数中有极限的是()。
A.sin xB.19.已知f'(3)=2,limf(3-h)-f(3)h→0x+1 )。
A.3-31 D.-110.设f(x)=x4-3x2+5,则f(0)为f(x)在区间[-2,2]上的()。
A.极小值B.极大值C.最小值D.最大值11.设函数f(x)在[1,2]上可导,且f'(x)<0,f(1)>0,f(2)<0,则f(x)在(1,2)内()A.至少有两个零点B.有且只有一个零点C.没有零点D.零点个数不能确定12.⎰[f(x)+xf'(x)]dx=().A.f(x)+CB.f'(x)+CC.xf(x)+CD.f2(x)+C13.已知y=f2(ln x2),则y'=(C)A.2f(ln x2)f'(ln x2)4f'(ln x2)4f(ln x2)f'(ln x2)2f(ln x2)f'(x)x214.d⎰f(x)=(B)B. f '(ln x)C. f (ln x)D.A. f '(x) + CB. f ( x )C. f '( x )D. f ( x ) + C15. ⎰ 2ln x xdx = ( D )A. 2x ln x + CB.ln xx+ C C. 2ln x + C D. (ln x )2 + C16. lim x →1 x 2 - 1 ln x= ( )A. 2B. 3C. 4D. 517. 设函数 f ( x ) = ⎰ x (t - 1)(t + 2)dt ,则 f '(-2) =( )A 1B 0C -2D 218. 曲线 y = x 3的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知 y = f (ln x) ,则 y ' = ( A )A.f '(ln x) f (ln x)x x20. d ⎰ df ( x ) = ( A)A. df ( x )B. f ( x )C. df '( x )D. f ( x ) + C21. ⎰ ln xdx = ( A )A. x ln x - x + CB. ln x - x + CC. ln x - xD. ln x二、求积分(每题8分,共80分)1.求⎰cos x sin xdx.2.求⎰34+3ln xxdx.3.求⎰arctan xdx.4.求⎰e3x dx5.求⎰x+3dx.x2-5x+66.求定积分⎰8dx1+3x.7.计算⎰πx2cos xdx.8.求⎰1dx.x2+2x-89.求⎰dx1+3x+2.11.求⎰22x e-x2dx112.求⎰3x23-x3dx13.求⎰e1ln2x xdx14.求⎰x3-x2dx2.讨论函数 f ( x ) = x 3- 2 x 2 + 3x - 3 的单调性并求其单调区间y = b sin t⎩3. 求函数 f ( x ) =的间断点并确定其类型1( )5. 求 y = 的导数.7. 函数 f ( x ) = ⎨1, x = 0 在 x = 0 处是否连续?8. 函数 f ( x ) = ⎨1, x = 0 在 x = 0 处是否可导? 三、解答题1. 若 lim 3x - ax 2 - x + 1 = ,求 ax →∞61 3x 2 - x - 2x - 24. 设 xy 2 + sin x = e xy , 求y '.( x + 1)3 x + 2( x + 3)5⎧ x = a cos t6. 求由方程 ⎨ 确定的导数 y ' .x⎧ 1⎪e x , x < 0 ⎪⎪tan x, x > 0 ⎪⎩⎧ 1⎪e x , x < 0⎪ ⎪tan x, x > 0 ⎪⎩9. 求抛物线 y = x 2 与直线 y = x 所围成图形 D 的面积 A .10. 计算由抛物线 y 2 = 2 x 与直线 y = x - 4 围成的图形 D 的面积 A .11. 设 y 是由方程 y = sin y + xe y 确定的函数,求 y '12.求证:ln x<x-1,x>113.设y是由方程y=1+xe y确定的函数,求y'14.讨论函数f(x)=2x3-9x2+12x-3的单调性并求其单调区间15.求证:e x>2x-1,16.求函数f(x)=x(1-x)x-x3的间断点并确定其类型五、解方程1.求方程y2d x+(x2-xy)dy=0的通解.2.求方程yy''+y'2=0的通解.3.求方程y''-2y'+y=x2的一个特解.4.求方程y''-5y'+9y=5xe-3x的通解.高数一复习资料参考答案一、选择题1-5:DABAA6-10:DBCDD11-15:BCCBD16-21:ABAAAA解: ⎰ cos x sin xdx = ⎰ 224 + 3ln x 1 dx = ⎰ (4 + 3ln x) 3 d (ln x) = ⎰ (4 + 3ln x) 3 ⋅ d (4 + 3ln x)1= x arctan x - ln(1+ x 2 ) + C .3t d t = 3⎰ t dt = 3t 二、求积分1.求 ⎰ cos x sin xdx.3sin xd (sin x) = sin 2x + C = sin 3 x + C3 32. 求 ⎰34 + 3ln x xdx .解: ⎰31 1 x 34 = (4 + 3ln x) 3 + C . 43. 求 ⎰ arctan xdx .解:设 u = arctan x , dv = dx ,即 v = x ,则124. 求 ⎰ e 3x dx解: ⎰e 3x d xx = t 3⎰ e t22e t2et- 3⎰ e t ⋅ 2t dt = 3t 2e t - 6⎰ t e t d t= 3e 3x ( 3 x 2 - 2 3 x + 2) + C .5. 求 ⎰ x + 3dx .x 2 - 5x + 6解:由上述可知 x + 3 -5 6 = +x 2 - 5x + 6 x - 2 x - 3,所以6. 求定积分 ⎰ 8⎰=⎰2=3t 2-t +ln(1+t)2=3ln 3.3t 2d t0 ⎦ 解: ⎰ 1 dx = ⎰ = -5ln x - 2 + 6ln x - 3 + C .dx 0 1 + 3 x.解:令 3 x = t ,即 x = t 3 ,则 dx = 3t 2dt ,且当 x = 0 时, t = 0 ;当 x = 8 时, t = 2 ,于是8 dx⎡ 1 ⎤ ⎣ 2 ⎦ 07. 计算 ⎰ π x 2 cos xdx .解:令 u = x 2 , dv = cos xdx ,则 du = 2xdx , v = sin x ,于是⎰ π x2cos xdx = ⎰ πx 2d sin x = ( x 2 sin x)π 0- ⎰ π2 x sin xdx = -2⎰ πx sin xdx .0 0再用分部积分公式,得= 2 ⎡⎣( x cos x) π 0- sin x π ⎤ = -2π .8. 求 ⎰1dx .x 2 + 2 x - 81 1 3 - ( x + 1)d ( x + 1) = ln + Cx 2 + 2 x - 8 ( x + 1)2 - 9 6 3 + ( x + 1)1 2 - x= ln6 4 + x+ C .9. 求 ⎰dx1 + 3 x + 2.解:令 u = 3 x + 2 ,则 x = u 3 - 2 , dx = 3u 2du ,从而有d (3 - x 解: ⎰ln 2 x 1 1 1dx = ⎰ ln 2 xd (ln x) = ln x = ln e = 11 12 1() 12.讨论函数 f ( x ) = x 3 - 2 x 2 + 3x - 3 的单调性并求其单调区间11. 求 ⎰ 2 2 x e - x 2dx1解: ⎰ 2 2 x e - x 2 dx = ⎰ 2 e - x 2 dx 2 = e - x 2 2 = e -4 - e -11 112. 求 ⎰ 3x 2 3 - x 3 dx1解: ⎰ 3x2 3 - x 3dx = -⎰23 - x 33 ) = - (3 - x 33 3 ) 2 + C13. 求 ⎰ e1ln 2 xxdxe 1e e x 3 3 3 114.求 ⎰ x 3 - x 2 dx解: ⎰ x 3 - x 2dx = -⎰3 3 3 - x 2 d (3 - x 2 ) = - ⋅ (3 - x 2 ) 2 + C = - (3 - x 2 ) 2 + C2 23 3三、解答题1. 若 lim 3x - ax 2- x + 1 = ,求ax →∞6解:因为 3x - ax 2 - x + 1 = 9 x2 - ax 2 + x - 1 3x + ax 2 - x + 1,所以 a = 9否则极限不存在。
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x 即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134limxx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xx x .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得l i 0x =. (10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x x x x x x .(也可用洛必达法则) (11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=. (12)30tan sin limx x xx→-. 解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ =2202sin 2limx x x → =21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limxx x x -→ (2))e e ln()3ln(cos lim 33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nxn xnx x nx (5)此极限为 ∞∞型,用洛必达法则,得 1sin 1limcos lim xx x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→000lim )1sin (lim )1sin(lim )(lim ,1)1(lim )(lim 2=+=++→→x x f x x ,为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→,因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限. 因而有01sinlim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x ,由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim )(0 ∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导. 答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导. (2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( , 当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→,所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f ,因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f.0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy 解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得=2)(22x y yy x +-', 将 xy xy y +-='代入上式,得 2)(22x y yxy xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y xln e ln =, 两边关于x 求导数得:即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy =)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.x x y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- , 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,∴33)()(d d 12131==''====t t t t t t xy ,∴曲线在点(1,1)处切线的斜率为312. 求函数xx y tan ln e=的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f xe e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='x x f 0>,可知()f x 为),1[+∞上的严格单调增加函数, 即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值,,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值. 解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表知,上凹区间(1,1)-,下凹区由此可(,1)(1,)-∞-+∞,曲线的间拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线(1)xxy ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim 0,可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim2, []b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f xcos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何?答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe xd 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x xx d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x, (12)⎰-24d x x . 解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12. (10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112x x⎰=C x+2arcsin . 4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22x x x x t t t -=-⋅⋅==,故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C xx x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x x x +--212arcsin 21.5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e 4,(4)⎰x x xd 4sine 5, (5) ⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x x xd 4cose 544sin e5155⎰-1=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x x x xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin=C xx x +-100100cos 10000100sin .(6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x xxd e )1(2⎰+ , (2) 3s e c d x x ⎰.解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2xe x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=x e =+--)e e (21C x x x )12(2++x x C x+e (12C C =), 为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xedx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e .(2)3sec d x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec=sec tan x x -⎰x x d sec 3+x x tan sec ln +, 式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x .8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t xxx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1. (2)⎰-122d ||x x x =⎰--023d )(x x +⎰13d x x=10402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-4d 11x xx=⎰+-20d 211t t t t =⎰+--20d ]1424[t t t(2)⎰4π04d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x x d e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x xx =5155e 5e51e 6=--x .(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x x()1e 23ln 231e 4ln )21e 2(+--++=. (3) x x x d πcos e 10π⎰=ππsin d e 10πx x ⎰ =0x x x d πsin e 10π⎰-=)ππcos d(e 1πxx --⎰ =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=.(4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ =4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e .17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2)⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d x x . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21,故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1xx =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00, ∴⎰∞+02d 1x x发散. (3)x xd e 1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x=20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x xx x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2-+, 则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(212--x x ]x d , 于是得A =A 1+A 2A =⎰2d 22x x+A x xx d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积y=135)325(πx x x ++=π1528. 二、 微分方程1. 验证xx C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: xx C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x y x y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yy d d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 , 求积分得 3313Cx y +=-, 从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解)(2)分离变量得21d d xx y y -=,(0≠y )两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=, 即 )e (e ee 11arcsin arcsin C x xCC C y ±==±=,从而通解为 xC y arcsin e =,验证0=y 也是方程的解.(3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d y x x y +=. 解:(1)因a x P =)(, x b x Q s i n )(=, 故通解为)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x y y d 2d =, 两边积分,得x x y y ⎰⎰=d 2d ,C x y +=2ln , )e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e)(2=代入通解的公式得=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x xx +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx 121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为xx C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,其特征方程为0622=-+r r , 特征根为711+-=r , 712--=r ,故通解 xxC C y )71(2)71(1e e --+-+=.因x3e-中3-=λ不是特征方程的根,且1)(=x P m , 故设原方程特解xp A y 3e-=,代入原方程化简,得31-=A ,从而原方程通解为x x C C y )71(2)71(1e e --+-+=x 3e 31--.由0)0(=y ,得03121=-+C C , 由0)0('=y ,得11)71()71(21=++-+-C C ,解得42771+=C , 42772-=C , 故所求特解x xxp y 3)71()71(e 31e 4277e 4277---+---++=. (2)先解02=+''y y ,其特征方程为022=+r ,特征根为i 2,i 221-==r r ,故通解x C x C y C 2sin 2cos 21+=.设原方程特解x b x a y s i n c o s *+=,代入原方程,化简得1,0==b a ,故原方程通解x x C x C y sin 2sin 2cos 21++=,由00)0(1==C y 得,由1)0(='y ,得02=C ,故所求特解为x y sin =.11. 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解:对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.12.求微分方程 x y y y x2sin e 842=+'-''的通解.解:对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
最新高等数学复习题(附答案)资料
高等数学复习题一、选择题 1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( )①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( ) ①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 05、下列函数中为奇函数的是 ( )①)1(log 2++x x a , ②2xx e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是 ( ) ① 1)(,)(==x g xxx f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2==7、=→xxx 3sin lim0 ( )①1 ② 2 ③ 3 ④ ∞ 8、()=+→xx x 121lim ( )①2-e , ②2e , ③2, ④+∞.9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞.11、=++--∞→103422lim 22x x x x x ( ) ①0, ②1, ③2, ④不存在.12、=⎪⎭⎫⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞.13、=∞→xx x arctan lim( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim ( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2③)1ln(1+x x ④x11+ 16、当x x 2tan 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( ) ①1,ln →x x , ②+→0,ln x x , ③∞→x e x,, ④+∞→x e x,. 18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x ,sin 1, ④+∞→-x ex,. 19、当x x 2sin 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则=dxy d ( )①t sin - ② t tan ③ t cot - ④t sec 22、设==dy e y x则, ( )①dx ex x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy ey x则,1 ( )①dx e x1-, ②dx e x x 121--, ③dx e xx 121-, ④dx e x x 11--24、设,sin 2x y= 则=dy ( )① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin25、设函数||)(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导.26、设函数||cos )(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数x y sin =,则 =)12(y( )①x cos ② x cos - ③ x sin ④x sin - 30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( )①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..….. ( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x32.设函数3)(x x f = , 则在0=x 是函数的 ( ) ① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是 ( ) ①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=,④ x x f =)(34、设函数()f x 在0x 的()00f x '=,则()f x 在0x ( ) ① 一定取极大值 ② 一定 取极小值③ 一定 不取极值④ 极值情况不确定35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为① 最小值 ②极小值 ③最大值 ④极大值36、⎰='])([dx x F d ( ) ①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( )①C x +sin ② C x +cos ③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212 ( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 2139、⎰=+dx x x212 ( )①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(240、下列函数中,为)(222x xe e y --=的原函数的是………………………….( )① x xe e22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln 42、=⎰badad dx x f )( ( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 043、=⎰21sin xdx x dxd( )① x sin x ②0 ③2 ④3 44、=⎰badbd dx x f )( ( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0.二、填空题1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ;2、 已知函数291)(xx f -=,则函数)(x f 的定义域为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高学试题及答案选择题(本大题共40小题,每小题2.5分,共100分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( B ) ....A B C D x-2x+22-x x+2 ln ln ln lnx+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( A )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( A ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( C )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导 5.设C +⎰2-x xf(x)dx=e,则f(x)=( D )2222-x -x -x -x A.xe B.-xe C.2e D.-2e6. 设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ). (A)40220a rdr a d a πθπ=⎰⎰(B) 4022021a rdr r d aπθπ=⋅⎰⎰(C)322032a dr r d aπθπ=⎰⎰(D) 402202a adr a d a πθπ=⋅⎰⎰ 7. 若L 是上半椭圆⎩⎨⎧==,sin ,cos t b y t a x 取顺时针方向,则⎰-Lxdy ydx 的值为( C ).(A)0 (B)ab 2π(C)ab π (D)ab π8. 设a 为非零常数,则当( B )时,级数∑∞=1n n r a收敛 . (A) ||||a r > (B) ||||a r > (C) 1||≤r (D)1||>r9. 0lim =∞→n n u 是级数∑∞=1n nu收敛的( D )条件.(A)充分 (B)必要 (C)充分且必要 (D)既非充分又非必要 10. 微分方程 0=+''y y 的通解为.(A) c x y +=cos (B) 21cos c x c y += (C) x c c y sin 21+= (D) x c x c y sin cos 21+= 11. 若→a ,→b 为共线的单位向量,则它们的数量积 =⋅→→b a (D ).(A ) 1 (B )-1 (C ) 0 (D )),cos(→→b a 12. 设平面方程为0=++D Cz Bx ,且0,,≠D C B , 则平面( C ). (A )平行于x 轴 (B )垂直于x 轴 (C )平行于y 轴 (D )垂直于y 轴13. 设),(y x f ⎪⎩⎪⎨⎧=+≠+++=0,00,1sin )(22222222y x y x y x y x ,则在原点)0,0(处),(y x f ( D ).(A) 不连续 (B) 偏导数不存在 (C)连续但不可微 (D)可微 14. 二元函数33)(3y x y x z --+=的极值点是( D ).(A) (1,2) (B) (1,-2) (C) (11) (D) (-11)15. 设D 为122≤+y x , 则 ⎰⎰--Ddxdy yx 2211=(C ).(A) 0 (B) π (C) π2 (D) π416. ⎰⎰-xdy y x f dx 1010),(=( C )(A)⎰⎰-110),(dx y x f dy x(B)⎰⎰-xdx y x f dy 101),((C)⎰⎰-ydx y x f dy 101),( (D) ⎰⎰11),(dx y x f dy17. 若L 是上半椭圆⎩⎨⎧==,sin ,cos t b y t a x 取顺时针方向,则⎰-Lxdy ydx 的值为( C ).(A) 0 (B)ab 2π(C)ab π (D) ab π18. 下列级数中,收敛的是( B ).(A) 11)45(-∞=∑n n (B) 11)54(-∞=∑n n (C) 111)45()1(-∞=-∑-n n n (D) ∑∞=-+11)5445(n n19. 若幂级数∑∞=0n nn xa 的收敛半径为1R :+∞<<10R ,幂级数∑∞=0n nn xb 的收敛半径为2R :+∞<<20R ,则幂级数∑∞=+0)(n n n nx b a的收敛半径至少为( D )(A)21R R + (B)21R R ⋅ (C){}21,m ax R R (D){}21,m in R R20. 下列方程为线性微分方程的是( A )(A) x e y x y +=')(sin (B) x e y x y +='sin (C) y e x y +='sin (D) 1cos +='y y x1 x 21.b a b a-<+充分必要条件是( B )(A) a ×0=b(B) 0=⋅b a (C) 0>⋅b a (D) 0<⋅b a22. 两平面 054=++-z y x 与 0322=---z y x 的夹角是( C )(A)6π (B) 3π (C) 4π (D) 2π 23. 若1),(=b a f y ,则 ))((yy b a f y b a f y ∆∆--∆+→∆,,lim=( A )(A) 2 (B) 1 (C) 4 (D) 0 24. 若),(00y x f x 和),(00y x f y 都存在,则),(y x f 在),(00y x 处( D )(A) 连续且可微 (B) 连续但不一定可微 (C) 可微但不一定连续 (D) 不一定连续 且不一定可微 25. 下列不等式正确的是( B )(A)0)(33122>+⎰⎰≤+σd y x y x (B)0)(22122>+⎰⎰≤+σd y x y x (C)0)(122>+⎰⎰≤+σd y x y x (D)0)(122>-⎰⎰≤+σd y x y x26.⎰⎰-xdy y x f dx 101),(=( C )(A)⎰⎰-1010),(x d y x f dy x (B)⎰⎰-xx d y x f dy 1010),((C)⎰⎰-y x d y x f dy 101),( (D) ⎰⎰110),(x d y x f dy27. 设区域D 由分段光滑曲线L 所围成,L 取正向,A 为区域D 的面积,则( B )(A) ⎰-=L xdy ydx A 21 (B) ⎰-=L ydx xdy A 21(C) ⎰+=Lydx xdy A 21(D) ⎰-=Lydx xdy A28. 设∑∞=1n n a 是正项级数,前n 项和为∑==n k k n a s 1,则数列{}n s 有界是∑∞=1n n a 收敛的( C )(A) 充分条件 (B) 必要条件(C) 充分必要条件 (D)既非充分条件,也非必要条件 29. 以下级数中,条件收敛的级数是( D )(A) 102)1(1+-∑∞=n n N N(B) ∑∞=--1311)1(n n n(C) ∑∞=+-11)21()1(n n n (D) n n n 3)1(11∑∞=--30.设C +⎰2-x xf(x)dx=e,则f(x)=( D )2222-x -x -x -x A.xe B.-xe C.2e D.-2e31、已知平面π:042=-+-z y x 与直线111231:-+=+=-z y x L 的位置关系是( D ) (A )垂直 (B )平行但直线不在平面上(C )不平行也不垂直 (D )直线在平面上 32、=-+→→1123lim0xy xy y x ( B )(A )不存在 (B )3 (C )6 (D )∞33、函数),(y x f z =的两个二阶混合偏导数y x z ∂∂∂2及xy z∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的( B )条件.(A )必要条件 (B )充分条件(C )充分必要条件 (D )非充分且非必要条件 34、设⎰⎰≤+=ay x d 224πσ,这里0 a ,则a =( A )(A )4 (B )2 (C )1 (D )0 35、已知()()2y x ydydx ay x +++为某函数的全微分,则=a ( C ) (A )-1 (B )0 (C )2 (D )136、曲线积分=++⎰L z y x ds222( C ),其中.110:222⎩⎨⎧==++z z y x L(A )5π (B )52π (C )53π (D )54π37、数项级数∑∞=1n na发散,则级数∑∞=1n nka(k 为常数)( B )(A )发散 (B )可能收敛也可能发散(C )收敛 (D )无界38、微分方程y y x '=''的通解是( C )(A )21C x C y += (B )C x y +=2(C )221C x C y += (D )C x y +=221。