七年级上册数学全册单元试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学全册单元试卷培优测试卷

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.如图,已知:点不在同一条直线, .

(1)求证: .

(2)如图②,分别为的平分线所在直线,试探究与的数量关系;

(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.

【答案】(1)证明:过点C作,则,

(2)解:过点Q作,则,

∵,

∵分别为的平分线所在直线∴

(3):1:2:2

【解析】【解答】解:(3)∵

∴ .故答案为: .

【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出

,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.

2.已知线段AB=6.

(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;

(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,

可以组成的线段为:3+2+1=6(条),

∵AB=6,点C、D为线段AB的三等分点,

∴AC=CD=DB=2,AD=BC=4,

∴这些线段长度的和为:2+2+2+4+4+6=20.

(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,

∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);

根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:

A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;

∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;

②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;

③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;

④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;

∴这些线段长度的和为:48+24+12+4=88.

【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段

的概念先找出所有线段,从而求得它们的和.

(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.

3.如图,线段AB=20cm.

(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?

(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.

【答案】(1)解:设x秒点P、Q两点相遇根据题意得:

2x+3x=20,

解得x=4

答:4秒后,点P、Q两点相遇。

(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒

②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒

【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;

(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。

4.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.

(1)若∠EOB=30°,则∠COF=________;

(2)若∠COF=20°,则∠EOB=________;

(3)若∠COF=n°,则∠EOB=________(用含n的式子表示).

(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.

【答案】(1)20°

(2)40°

(3)80°-2n°

(4)如图所示:∠EOB=80°+2∠COF.

证明:设∠COF=n°,则∠AOF=∠AOC-∠COF=30°-n°,

又∵OF平分∠AOE,

∴∠AOE=2∠AOF=60°-2n°.

∴∠EOB=∠AOB-∠AOE=140°-(60°-2n°)=(80+2n)°

即∠EOB=80°+2∠COF.

【解析】【解答】(1)∵∠AOB=140°,∠EOB=30°,

∴∠AOE=∠AOB-∠EOB=140°-30°=110°,

∵OF平分∠AOE,

∴∠AOF= ∠AOE= ×110°=55°,

∴∠COF=∠AOF-∠AOC,

=55°-30°,

=25°;

故答案为:25°;

(2)∵∠AOC=30°,∠COF=20°,

∴∠AOF=∠AOC+∠COF=30°+20°=50°,

相关文档
最新文档