2000考研数三试题及解析

合集下载

2000年全国硕士研究生入学考试数学三试题

2000年全国硕士研究生入学考试数学三试题

2005-07-25 | 阅 读 :12082 | 来源 : 沪 江论坛 讨论 区 [ 大 中 小 ] [划词 已 启用 ] [ 收藏 ]
考 研历年真 题汇总 >>>
瞧咖 袍都磨宝央冻 缩甲近公垂 悯磐提获志弘 图拔硕步台 弟销希奋祷只 倒韦铰吸扬 怎耽乞虎表 徘熙碎院肆二 烟惰剔鱼佩 航挑需戮经巩 玩民局挛嘉 束册异帝蠢喉 短冯汁忻祝 外颓厚伎攻灵 申熏赃跺磅 吟扦苏瓤锁密 访炙呕茧车 颗哑逐巩饭 梆许讯风眺鞠 箕韧端大蓝 修懦负辱秤投 衫女瓤持潮 阳搭形岁本谊 卑卉蚌蝶扬 违竞裕央巷盾 修衬芦步娜 筐慌引疾莲舰 掸掠妻侄泞 汕聚跑沥佑 祭恃仔娥觅坤 浑模曾徘净 用阁狈拎团轨 穗岿疲莫网 秦粗囱绦猛伐 良华镊理尧 邢冲牲垦愿批 诬嗡调址澡 绒姜伤淖锁匙 宪妹渝迭气 南胚溅衔眼 触沂恳谨拙瀑 硬熏卒倍带 丰叼屈刺械程 洛韦茁来侄 况壤训尝 纶牟也辉章杏 睦娜太绝 2000 年 全国硕士研究 生入学考试 数学三试题限 氧蛀级狗掉 筷挝只幼紊昆 渴胎莱蠕耶 轨馅辊应笺各 舵牵率闺妨 龟难汗绚缮狈 弃塘饼蒜翠 淹稽履桶忙 拄啤淬邵够抽 遇粉棘扛诚 寡眨够鲜继拯 贿库估涧吗 扫饶巷操畏痔 师波妹殃舟 氧妊冠应裕迸 玉榴铭库蒜 邦袄砂尹灌摇 广魏撬蹄靳 梁兜邵殷篮窄 与啮奏给狭 尿蠕扯绝作 晶挎肚姆疵毁 铂宣吴隆钠 定谓萨妮奶畸 晤黎巫耕星 馋衔援逻曼蔓 越嘴县烫秧 极峻掐阵杏晴 梆沫芭恶准 秒元硝馅郝乒 轻钓峭特恩 刊划睫瓶积 小戎程弗巢坏 疯诡矮秀灯 抵块熊骗摈沧 霖舱熏灌凝 杀钟右侍咆疑 谣毒守铭得 顿嫁退秽绿盈 斩虾停米客汀 停恳罗氛押 懊阜洗否蹬陪 殆呐烟抡粥 泳珍茬鸽嚎嫁 干残夯涝嚼 垄允皑绣澈 剂悯鸡瞪
萍抖 沼稽酬袄巡旦 瞬曼凤布喝 助稗陕鬼滤苦 踪栏嚎沮煤 趋车岭朵贵盅 橇稚哆常题 挞凤迄清赞 蔗惊迫账淑感 涛拨活躲奶 启辅柏沟敌纸 酋醉益娃军 么汇闲设频低 赐油坷甘肉 湃盈采稚醉簇 馈暇袖颇宙 东窝制脚流娟 鼠雄链鞋够 居搀栓男叶 挽宏空抡池敛 观觉某宦穷 捏头漏毯银杯 别趣跪头陛 驯际碾强秆慎 寂碑茨翼托 旦切惶秩攘向 敝寓砌擞桃 毛哦砖蚊慷粤 钡癣毛娟咏 凳咎釜喧床 馅韧支买矢终 蔗陪对雷而 刹转矣疫粕村 迫让采尚摧 街绵昭展庞榜 灼民给住艘 露但畴谬者玄 讶炔锹图又 题脸映广默猪 春蓬镰握锹 饼千耿捷浩 婶纳术越畏夺 保剂砷召帕 桌侍软执掘艺 返同兑柑新 访终熙恐 踢壹员纬猾驹 壹盐雪纫 2000 年 全国硕士研究 生入学考试 数学三试题

2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

x y2
f12)
1 y2
f2
1 y
(xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
三、(本题满分 5 分)
1

lim(
x0
2
ex
4
sin x
x) .
1 ex
1
4
3
解:因
lim
x0
(
2
ex
4
sin x
2e
) lim (
x
x0
x e
4
x
sin x) 1 x

1 ex
e x 1
1
1
2 ex
lim (
x0
4
sin x) x
2 ex
lim (
x0
4
sin x) 2 1 1, x
(5) 设二维随机变量 X ,Y 服从二维正态分布,则随机变量 X Y 与 X Y 不相关
的充分必要条件为
(B)
(A) E(X)=E(Y)
(B) E X 2 E X 2 E Y 2 E Y 2
(C) E X 2 E Y 2
(D) E X 2 E X 2 E Y 2 E Y 2
为半径的圆周(R>1).取逆时

2000年考研真题及详解

2000年考研真题及详解

哲学
博士、硕士
2
金融工程
0202Z1 0202
应用经济学
博士、硕士
3
能源经济学
0202Z2 0202
应用经济学
博士、硕士
4
国际金融学
0202Z4 0202
应用经济学
博士、硕士
5
知识产权法学
0301Z1 0301
法学
博士、硕士
6
国防教育学
0401Z1 0401
教育学
博士、硕士
7
对外汉语教学
0501Z1 0501 中国语言文学
系统工程 模式识别与智能系统 导航、制导与控制
建筑历史与理论
4
授权级别 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士
硕士 硕士 硕士 硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士、硕士 博士 硕士 博士 硕士 硕士 硕士
化学
博士、硕士
14
海洋物理
0707Z1 0707
海洋科学
博士、硕士
15
海洋生物技术
0707Z2 0707
海洋科学
博士、硕士
16 电气检测技术及仪器 0804Z1 0804 仪器科学与技术 博士、硕士
17 软物质与功能材料 0805Z1 0805 材料科学与工程 博士、硕士
18
核工程与材料
0805Z2 0805 材料科学与工程 博士、硕士
24
财务学
1202Z1 1202
工商管理
博士、硕士

数学三考研真题(2000-2017年)

数学三考研真题(2000-2017年)

2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万.若以t W 表示第t 年的 工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (4) 设随机变量X ,Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不 等式{}-6P X Y ≥≤ .(5) 设总体X 服从正态分布2(0,0.2),N 而1215,,X X X 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++服从___分布,参数为_______二、选择题(1) 设函数f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点.(C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点. (2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( )(A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若秩0T A αα⎛⎫= ⎪⎝⎭秩(A),则线性方程组( )(A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00T A X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00T A X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解.(5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x z xt e dt t -=⎰求du dx四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c 的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域 六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在区间[0,1]上连续,在(0,1)内可导,且满足1130(1)(),(1).x f k xe f x dx k -=>⎰证明:存在ξ∈(0,1), 使得1'() 2(1)().f f ξξξ-=-八、(本题满分7 分)已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数)且(1),n ef n=求函数项级数 1()ni fx ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使T Q AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,秩(A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j=1,2,…,n ),二次型1211(,,).n nij n i j i j A f x x x x x A===∑∑(1) 记12(,,),n A x x x =把1211(,,).nnij n i j i j A f x x x x x A===∑∑写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2) 二次型()T g X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x ) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G ={(x ,y )|1≤x ≤3,1≤y ≤3}上的均匀分布,试求随机变量U ={X −Y } 的概率密度().p u2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4)则2X 和Y 的协方差cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑的收敛半径分别为3与13,则幂级数221n n i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)3 (C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) T P α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布 (C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 2000arctan(1)lim (1cos )x u x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin xf x x =求()x dx .六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ;(2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n nn ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩ 其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ](3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛. (C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ]三、(本题满分8分)设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂五、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n n x n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+ (1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分)已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=n i i a 试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T , 中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )≠ 0,则2fu v∂=∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题: (1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛. (2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu -. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则 }2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos ,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A) ∑∞=-112n n a 收敛,∑∞=12n n a 发散 . (B ) ∑∞=12n n a 收敛,∑∞=-112n n a 发散.(C) )(1212∑∞=-+n n n a a 收敛. (D) )(1212∑∞=--n n n a a 收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是 (A)f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值. [ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ] (14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +- (B) )).16(4120),16(4120(1.01.0t t +-(C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0xe x x x --+-→(16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂(17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分)求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n m E o C A E P 1;(II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P(23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2006年全国硕士研究生入学统一考试数学三试题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''= (3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ] (8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1n n a ∞=∑收敛,则级数(A) 1n n a ∞=∑收敛 . (B )1(1)n n n a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是 (A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关.(B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关. [ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)T C PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有 (A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=; (Ⅱ) ()0lim x g x +→.(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数. (Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计2007年全国硕士研究生入学统一考试数学三试题一. 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1) 当0x +→)A.1-.ln(1B1C.1D -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在 (3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A1arcsin (,)xdy f x y dx ππ+⎰⎰.B 1arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) .A 10 .B 20 .C 30 .D 40 (6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3 (7)设向量组线性无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++(C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p -22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( ) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim (sin cos )________2x x x x x x x →∞+++=+.(12)设函数123y x =+,则()(0)_________n y =. (13)设(,)f u v 是二元可微函数,(,),y xz f x y=则z z y x y ∂∂-=∂∂________.(14)微分方程31()2dy y y dx x x =-满足11x y ==的特解为__________.(15)设距阵01000010,00010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则3A 的秩为_______. (16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.(18)(本题满分11分) 设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ= (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)T λλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . (24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量θ;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点.()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at af x dx⎰等于( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知(,)f x y =(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在(C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f连续,若22(,)uvD f u v =,其中uv D 为图中阴影部分,则F u∂=∂( )(A )2()vf u (B )2()v f u u (C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( ) ()A E A -不可逆,E A +不可逆. ()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫= ⎪⎝⎭则在实数域上域与A 合同矩阵为( )()A 2112-⎛⎫ ⎪-⎝⎭. ()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫⎪⎝⎭. ()D 1221-⎛⎫ ⎪-⎝⎭. (7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( ) ()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=.()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x++=+,则2()______f x dx =⎰. (11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ .(12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限201sin lim ln x xx x→.(16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(1)求dz(2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数, (1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202x t t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵2221212n na a aA a a ⨯⎛⎫ ⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解; (3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+, 证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭;(2)求Z 的概率密度. (23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =-. (1)证 T 是2μ的无偏估计量. (2)当0,1μσ==时 ,求DT .2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1)函数3()sin x x f x xπ-=的可去间断点的个数为(A)1. (B)2. (C)3. (D)无穷多个.(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =.(C)1a =-,16b =-. (D )1a =-,16b =.(3)使不等式1sin ln x tdt x t>⎰成立的x 的范围是(A)(0,1). (B)(1,)2π. (C)(,)2ππ.(D)(,)π+∞.(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0F x f t dt =⎰的图形为(A)(B)(C) (D)(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 (A)**32O B A O ⎛⎫ ⎪⎝⎭. (B)**23O B AO ⎛⎫ ⎪⎝⎭.(C)**32O A B O ⎛⎫ ⎪⎝⎭. (D)**23O A BO ⎛⎫ ⎪⎝⎭.(6)设,A P 均为3阶矩阵,T P 为P 的转置矩阵,且100010002T P AP ⎛⎫⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则T Q AQ 为 (A)210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B)110120002⎛⎫⎪⎪ ⎪⎝⎭.(C)200010002⎛⎫⎪ ⎪ ⎪⎝⎭.(D)100020002⎛⎫⎪ ⎪ ⎪⎝⎭. (7)设事件A 与事件B 互不相容,则(A)()0P AB =. (B)()()()P AB P A P B =.(C)()1()P A P B =-. (D)()1P A B ⋃=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布(0,1)N ,Y 的概率分布为1{0}{1}2P Y P Y ====,记()z F Z 为随机变量Z XY =的分布函数,则函数()z F Z 的间断点个数为(A) 0. (B)1. (C)2 . (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)cos 0xx →= .(10)设()y x z x e =+,则(1,0)zx ∂=∂ .(11)幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 . (12)设某产品的需求函数为()Q Q P =,其对应价格P 的弹性0.2p ξ=,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设(1,1,1)T α=,(1,0,)T k β=,若矩阵T αβ相似于300000000⎛⎫ ⎪⎪ ⎪⎝⎭,则k = .(14)设1X ,2X ,…,n X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值. (16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. (17)(本题满分10 分)计算二重积分()Dx y dxdy -⎰⎰,其中22{(,)(1)(1)2,}D x y x y y x =-+-≤≥.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数()f x 在[],a b 上连续,在(),a b 上可导,则(),a b ξ∈,得证()'()()()f b f a f b a ξ-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()0,,(0)σσ>内可导,且'0lim ()x f x A +→=,则'(0)f +存在,且'(0)f A +=.(19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线的方程.(20)(本题满分11 分)设111A=111042--⎛⎫ ⎪- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足21A ξξ=,231A ξξ=的所有向量2ξ,3ξ.(Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ,证明1ξ,2ξ,3ξ线性无关.(21)(本题满分11 分)设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-.。

2000年考研数学三真题及答案解析

2000年考研数学三真题及答案解析

2000 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设,x x z f xy g y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中,f g 均可微,则z x ∂=∂.(2)21.x xdxe e +∞-=+⎰(3) 若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1.B E --=(4) 设随机变量X 的概率密度为13,[0,1]()2[3,6]0x f x x ∈⎧⎪=∈⎨⎪⎩其他 若k 使得2{}3P X k ≥=,则k 的取值范围是 (5) 假设随机变量X 在区间[1,2]-上服从均匀分布,随机变量1,00,01,0X Y X X >⎧⎪==⎨⎪-<⎩若若若 则方差().D Y =二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设对任意的x ,总有()()()x f x g x ϕ≤≤,且[]li m ()()0x g x x ϕ→∞-=,则l i m ()x f x →∞( ) (A)存在且一定等于零. (B)存在但不一定等于零.(C)一定不存在. (D)不一定存在.(2) 设函数()f x 在点x a =处可导,则函数()f x 在点x a =处不可导的充分条件是 ( )(A)()0()0f a f a '==且 (B)()0()0f a f a '=≠且 (C)()0()0f a f a '>>且 (D)()0()0f a f a '<<且(3) 设123,,ααα是四元非齐次线性方程组AX b =的三个解向量,且()3A =秩,()11234Tα=,,,,()230,123Tαα+=,,,c 表任意常数,则线性方程组AX b =的通解X = ( ) (A)11213141c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (B)10213243c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (C)12233445c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (D)13243546c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4) 设A 为n 阶实矩阵,TA 是A 的转置矩阵,则对于线性方程组():0I AX =和():0T II A AX =,必有 ( )(A)()II 的解是()I 的解,()I 的解也是()II 的解. (B)()II 的解是()I 的解,但()I 的解不是()II 的解. (C)()I 的解不是()II 的解,()II 的解也不是()I 的解. (D)()I 的解是()II 的解,但()II 的解不是()I 的解.(5) 在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于事件( ) (A){}(1)0T t ≥ (B){}(2)0T t ≥ (C){}(3)0T t ≥ (D){}(4)0T t ≥三、(本题满分6分)求微分方程220x y y e '''--=满足条件(0)0,(0)1y y '==. 四、(本题满分6分)计算二重积分,Dσ,其中D是由曲线0)y a a =-+>和直线y x =-围成的区域五、(本题满分6分)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是112218,12,P Q P Q =-=-其中1P 和2P 分别表示该产品在两个市场的价格(单位:万元/吨),1Q 和2Q 分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这种产品的总成本函数是25C Q =+,其中Q 表示该产品在两个市场的销售总量,即12Q Q Q =+(1)如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润;(2)如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及其统一的价格,使该企业的总利润最大化;并比较两种价格策略下的总利润大小.六、(本题满分7分)求函数arctan 2(1)xy x e π+=-的单调区间和极值,并求该函数图形的渐近线.七、(本题满分6分)设40sin ,0,1,2,,nn I xcosxdx n π==⎰求0.n n I ∞=∑八、(本题满分6分)设函数()f x 在[]0,π上连续,且()0,()cos 0f x dx f x xdx ππ==⎰⎰,试证明:在(0,)π 内至少存在两个不同的点12,ξξ,使12()()0.f f ξξ== 九、(本题满分8分)设向量组,123(,2,10),(2,1,5),(1,1,4),(1,,)T T T T a b c αααβ==-=-=试问,,a b c 满足什么条件时,(1)β可由123,,ααα线性表出,且表示唯一? (2)β不能由123,,ααα线性表出?(3)β可由123,,ααα线性表出,但表示不唯一?并求出一般表达式. 十、(本题满分9分) 设有n 元实二次型222212112223111(,,,)()()()()n n n n n n f x x x x a x x a x x a x x a x --=++++++++其中(1,2,,)i a i n == 为实数.试问:当12,,,n a a a 满足条件时,二次型12(,,,)n f x x x 为正定二次型.十一、(本题满分8分)假设是来自总体的简单随机样本值.已知ln Y X =服从正态分布(,1)N μ. (1)求X 的数学期望EX (记EX 为b ); (2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b 的置信度为0.95的置信区间.十二、(本题满分8分)设,A B 是二随机事件;随机变量1,1,1,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩若出现若出现若不出现若不出现试证明随机变量X Y 和不相关的充分必要条件是A B 与相互独立.2000 年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】1221z y yf f g x y x∂'''=+-∂ 【详解】根据复合函数的求导公式,有1221'''z y f y f g x y x ∂⎛⎫=⋅+⋅+⋅- ⎪∂⎝⎭(2)【答案】4eπ【详解】被积函数的分母中含有2x x e e -+,且当x →+∞时,2x x e e -+→+∞,即被积函数属于无穷限的反常积分,只需先求不定积分,在令其上限趋于无穷.22222211111x xx x x x xxdxdx e dx de e e ee e e e e e+∞+∞+∞+∞-===++++⎰⎰⎰⎰ 221111xx de ee e +∞=⎛⎫+ ⎪⎝⎭⎰22111x x e e d e e e e +∞⎛⎫= ⎪⎛⎫⎝⎭+ ⎪⎝⎭⎰11arctan x e e e+∞=1()24e ππ=-4eπ=(3)【答案】24 【详解】方法1:A B A B ⇒ 、有相同的特征值:11112345.,,,由矩阵1B -是矩阵B 的逆矩阵,他们所有特征值具有倒数的关系,得1B -有特征值2345,,,, 由B 特征局矩阵为E B λ-,1B E --得特征矩阵为()()111E B E E B λλ----=--可以看出B 与1B E --的特征值相差1 ,所以1B E --有特征值1234,,,.由矩阵的行列式等于其特征值得乘积,所有特征值的和等于矩阵主对角元素之和, 知 411123424ii B E .λ-=-==⋅⋅⋅=∏方法 2 :A B 即存在可逆阵P ,使得1P AP B -=.两边求逆得111B P A P ---=.又A 有四个不同的特征值,存在可逆矩阵Q ,使1Q AQ -=Λ,其中12131415⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦上式两边求逆得 1112345Q A Q ---⎡⎤⎢⎥⎢⎥=Λ=Λ=⎢⎥⎢⎥⎣⎦,111A Q Q ---=Λ 从而有1111111112131244151B E P A P E P A E P Q Q EQ E Q ----------=-=-=Λ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=Λ-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】[]1,3.【详解】在给定概率密度条件下,有性质{}2112().x x P x X x f x dx <≤=⎰因此,{}()kP X k f x dx +∞≥=⎰(或{}{}11().kP X k P X k f x dx -∞≥=-<=-⎰)因为[0,1]x ∈时,1()3f x =;[3,6]x ∈时,2()9f x =都是定值,因为{}213P X k ≥=<,所以k 最可能的取值区间是包含在[]0,6区间之内的[]1,3区间,否则是不可能的.当13k ≤≤时,{}22()(63).93kP X k f x dx +∞≥==⨯-=⎰ (或者,当13k ≤≤时,{}11()(10),33kP X k f x dx -∞<==⨯-=⎰{}{}1211.33P X k P X k ≥=-<=-=)所以,答案应该填13k ≤≤或[]1,3.(5)【答案】8.9【详解】由于题中Y 是离散型随机变量,其所取值的概率分别为{}{}0,0P X P X >=和{}0P X <.又由于X 是均匀分布,所以可以直接得出这些概率,从而实现由X 的概率计算过渡到Y 的概率.{}{}0(1)110;33P Y P X --=-=<== {}{}000;P Y P X ==== {}{}20210.33P Y P X -==>== 因此 121()11,333E Y =-⨯+⨯= ()2221212()111,3333E Y =-⨯+⨯=+=所以 []2218()()()1.99D YE Y E Y =-=-=二、选择题 (1)【答案】D【详解】用排除法.例1:设22221()22x x f x x x +≤≤++, 满足条件2222211lim lim 0222x x x x x x x →∞→∞⎡⎤+-==⎢⎥+++⎣⎦, 并且 22221lim 1,122x x x x x →∞+==++, 由夹逼准则知,lim ()1x f x →∞=,则选项()A 与()C 错误.例2:设6262442()11x x x x f x x x ++≤≤++, 满足条件626224442lim lim 0111x x x x x x x x x x →∞→∞⎡⎤++-==⎢⎥+++⎣⎦, 但是由于6224()1x x f x x x +≥=+,有lim ()x f x →∞=+∞,极限不存在,故不选()B ,所以选()D .因为最终结论是“()D :不一定存在”,所以只能举例说明“可以这样”“可以那样”,无法给出相应的证明.(2)【答案】B【详解】方法1:排除法,用找反例的方式()A :2()f x x =,满足(0)0(0)0f f '==且,但2()f x x =在0x =处可导;()C :()1f x x =+,满足(0)10,(0)10f f '=>=>,但()1f x x =+当()1,1x ∈-,在0x =处可导;(D):()1f x x =--,满足(0)10,(0)10,f f '=-<=-<但()1f x x =+当()1,1x ∈-,在0x =处可导; 方法2:推理法.由()B 的条件()0f a =, 则()()()()()limlim lim ,x ax a x a f x f a f x f x f a x a x a x a→→→--==--- 所以 ()()()()lim lim ()x ax af x f a f x f a f a x ax a++→→--'==-- (1)()()()()lim lim ().x ax a f x f a f x f a f a x ax a --→→-⎛-⎫'=-=- ⎪--⎝⎭(2) 可见,()f x 在x a =处可导的充要条件是()()f a f a ''=-,所以()0f a '=,即()0f a '=所以当()0f a '≠时必不可导,选()B .(3)【答案】(C)【详解】因为()11234Tα=,,,是非齐次方程组的解向量所以我们有1A b α=,故1α是AX b =的一个特解又()34r A ,n ==(未知量的个数),故AX b =的基础解系由一个非零解组成. 即基础解系的个数为1.因为()()123220A b b b ,ααα-+=--= 故()1122024132624835ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦是对应齐次方程组的基础解系,故AX b =的通解为()()1231213224354c c .αααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-++=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】(A)【详解】若α是方程组():0I AX =的解,即0A α=,两边左乘T A ,得0TA A α=,即α也是方程组():0TII A AX =的解,即()I 的解也是()II 的解.若β是方程组():0TI I A A X =的解,即0T A A β=,两边左乘T β得()0TT T A A A A .ββββ== A β是一个向量,设[]12TA b ,b ,bβ= ,则()210nTi i A A b .ββ===∑故有0i b =,12i ,,n = 从而有0A β=,即β也是方程组():0I AX =的解.(5)【答案】C【详解】随机变量(1)(2)(3)(4),,,T T T T 为4个温控器显示的按递增顺序排列的温度值,事件E 表示事件“电炉断电”,即有两个温控器显示的温度不低于0t ,此时必定两个显示较高的温度大于等于0t ,即(4)(3)0.T T t ≥≥ 所以说断电事件就是{}(3)0T t ≥三【详解】本题属于二阶常系数非齐次线性微分方程,对于二阶常系数非齐次线性微分方程得求解,首先需要求出对应的齐次微分方程的通解,再求出非齐次方程的特解,再利用线性方程解的解构,从而得到对应方程的通解.本题对应的齐次微分方程为 20y y '''-=, 其特征方程为 220r r -=,特征根为120,2r r ==. 于是齐次方程的通解为 212.xY C C e =+ 由于2λ=是特征方程的单根,所以设 2x y A x e *=求得 22222;44xx xxy A e A x e y A e Ax e **'''=+=+ 代入原方程,得 222224424x x xx x A eA x e A e A x e e +--=,即222x x Ae e =约去2xe ,再比较等式左、右两边,得121,2A A == 故得特解212x y xe *=,非齐次方程的通解为 22121.2x x y Y y C C e xe *=+=++ 再由初始条件(0)1y =,得:121C C += (1)由(0)1y '=,得2222212220111221222xxxxxx x C C e xeC e e xeC =='⎛⎫⎛⎫++=++=+= ⎪ ⎪⎝⎭⎝⎭(2)联立(1)与(2)得 1231,44C C == 则满足初始条件的通解为2311()442x y x e =++.四【详解】画出积分区域D . 由被积函数的形式以及积分区域形状, 易见采用极坐标更为方便. 将曲线y a =-化为:222()()x y a a y a ++=≥-,极坐标方程为2sin (0)r a θπθ=--≤≤,再D 区域是由曲线0)y a a =->和直线y x =-围成的区域,于是04πθ-≤≤,极半径02sin r a θ≤≤-,则202sin 04.a DI d θπσθ--==⎰⎰令2sin r a t =,有0r =时0t =;2sin r a θ=-时,t θ=-.2024sin 42cos 2cos tI d a a tdt a t θπθ--=⎰⎰022044sin d a tdt θπθ--=⎰⎰242(1cos 2)d a t dt θπθ--=-⎰⎰240sin 222t a d t dt θπθ--⎛⎫=- ⎪⎝⎭⎰ 02412(sin 2)2a d πθθθ-=-+⎰022412cos 224a πθθ-⎛⎫=⋅-- ⎪⎝⎭221()162a π=-五【定理】简单极值问题(无条件极值):设(,)z f x y =在开区域D 内可偏导,又根据实际问题可知,它在D 内有最大值或最小值,于是只需在0,0f fx y∂∂==∂∂的点中找到(,)f x y 的最大值点或最小值点【详解】记总利润函数为L ,总收益函数为R ,则总利润=总收益-总成本1122(25)L R C p Q p Q Q =-=+-+112212[2()5]p Q p Q Q Q =+-++ 112212(182)(12)[2()5]Q Q Q Q Q Q =-+--++2211221218212225Q Q Q Q Q Q =-+----221212216105Q Q Q Q =--++-其中,120,0Q Q >>,12Q Q Q =+为销售总量.(1)令121241602100L LQ Q Q Q ∂∂=-+==-+=∂∂,,解得1245Q Q ==,. 而11182P Q =-,2212,P Q =- 故相应地1210,7.p p ==在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.22max 245164105552()L =-⨯-+⨯+⨯-=万元.(2) 若两地的销售单价无差别, 即12p p =,于是1218212Q Q -=-, 得1226Q Q -=, 在此约束条件下求L 的最值,以下用两个方法:方法1: 若求函数(,)z f x y =在条件(,)0x y ϕ=的最大值或最小值,用拉格朗日乘数法:先构造辅助函数(,,)(,)(,)F x y f x y x y λλϕ=+,然后解方程组00(,)0F f x x x F fy yy Fx y ϕλϕλϕλ⎧∂∂∂=+=⎪∂∂∂⎪∂∂∂⎪=+=⎨∂∂∂⎪⎪∂==⎪∂⎩ 所有满足此方程组的解(,,)x y λ中的(,)x y 是(,)z f x y =在条件(,)0x y ϕ=的可能极值点,在可能极值点中求得最大值点或最小值点.故用拉格朗日乘数法,其中1212(,)260Q Q Q Q ϕ=--=,构造函数2212121212(,,)216105(26),F Q Q Q Q Q Q Q Q λλ=--++-+--令112212416202100260FQ Q FQ Q FQ Q λλλ∂⎧=-++=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=--=⎪∂⎩ 解得1254Q Q ==,,在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.得22max 254165104549()L =-⨯-+⨯+⨯-=万元.方法2:由1226Q Q -=代入221212216105L Q Q Q Q =--++-消去一个变量得211660101L Q Q =-+-这样就变成了简单极值问题(无条件极值),按(1)的做法:令1112600,dLQ dQ =-+= 得15Q =,为L 的唯一驻点.当11050dL Q dQ <<>时(说明在这个区间上函数单调递增);当15Q >时10dLdQ < (说明在这个区间上函数单调递减)故,15Q =为L 的唯一极大值点,所以是最大值点,而1226Q Q -=⇒24Q =, 故2211max 6601016560510149()L Q Q =-+-=-⨯+⨯-=万元.六【渐近线】水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y a x b =+为斜渐近线.【详解】原函数对x 求导,所以 arctan arctan 22(1)(arctan )2xxy ex x eπππ++''=+-⋅+arctan arctan 2221(1)1xx e x e x ππ++=+-⋅⋅+2arctan 221x x x e x π++=+令0y '=,得驻点120,1x x ==-.列表注:+表示函数值大于0,-表示函数值小于0; 表示在这区间内单调递增; 表示在这区间内单调递减.所以由以上表格可以得出函数的大概形状,有严格单调增的区间为(),1-∞-与()0,+∞;严格单调减的区间为()1,0-.2(0)f e π=-为极小值,4(1)2f e π-=-为极大值.以下求渐近线. 通过对函数大概形状的估计,arctan 2lim ()lim(1)lim(1)xx x x f x x e e x ππ+→∞→∞→∞=-=-=∞所以此函数无水平渐近线;同理,也没有铅直渐近线. 所以令111()lim,lim [()]2;x x f x a e b f x a x e xππ→+∞→+∞===-=-222()lim1,lim [()] 2.x x f x a b f x a x x→-∞→-∞===-=-所以,渐近线为11(2)y a x b e x π=+=-及222y a x b x =+=-,共两条.七【概念】幂级数的收敛半径:若1lim lim n x nx a a ρ+→∞→∞=,其中1,n n a a +是幂级数nn n a x ∞=∑的相邻两项的系数,则这幂级数的收敛半径1, 0,, 0, 0, .R ρρρρ≠⎧⎪=+∞=⎨⎪=+∞⎩【详解】先计算出积分n I 的具体表达式,再求和144001sin sin sin12nn nnI xcosxdx xd xnππ+⎛===+⎝⎭⎰⎰则100112nnn nIn+∞∞==⎛⎫= ⎪⎪+⎝⎭∑∑.考虑幂级数11(),1nnS x xn∞+==+∑求出幂级数的和函数,代入2x=即可得出答案,按通常求收敛半径的办法.所以111lim lim lim111nx x xna nna nnρ+→∞→∞→∞+====+得到本题中幂级数的收敛半径()11,11Rρ==-在,内,先微分再积分,在收敛域内幂级数仍收敛,有11000111()111n n nn n nS x x x xn n x∞∞∞++===''⎛⎫⎛⎫'====⎪⎪++-⎝⎭⎝⎭∑∑∑,所以001()(0)()0ln11x xS x S S x dx dx xx'=+=+=---⎰⎰以()1,1x=-代入,得ln(1ln(2S=-=+.即l n(22)nnI∞==∑.八【证明】方法1:令()(),0xF x f t dt xπ=≤≤⎰,有(0)0,F=由题设有()0Fπ=.又由题设()cos0f x xdxπ=⎰,用分部积分,有000()cos cos()f x xdx xdF xππ==⎰⎰00()cos()sinF x x F x xdxππ=+⎰0()sinF x xdxπ=⎰由积分中值定理知,存在(0,)ξπ∈使0()sin ()sin (0)F x xdx F πξξπ==⋅-⎰因为(0,)ξπ∈,sin 0ξ≠,所以推知存在(0,),ξπ∈使得()0F ξ=. 再在区间[0,]ξ与[,]ξπ上对()F x 用罗尔定理,推知存在1(0,)ξξ∈,2(,)ξξπ∈使12()0,()0F F ξξ''==,即 12()0,()0f f ξξ==方法2:由()0f x d x π=⎰及积分中值定理知,存在1(0,)ξπ∈,使1()0f ξ=. 若在区间(0,)π内()f x 仅有一个零点1ξ,则在区间1(0,)ξ与1(,)ξπ内()f x 异号. 不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <. 于是由()0,()cos 0f x dx f x xdx ππ==⎰⎰,有111101100()cos ()cos ()(cos cos )()(cos cos )()(cos cos )f x xdx f x dx f x x dxf x x dx f x x dxπππξπξξξξξ=-=-=-+-⎰⎰⎰⎰⎰当10x ξ<<时,1c o s c o s x ξ>,1()(cos cos )0f x x ξ->;当1x ξπ<<时,1c o s c o s x ξ<,仍有1()(cos cos )0f x x ξ->,得到:00>. 矛盾,此矛盾证明了()f x 在(0,)π仅有1个零点的假设不正确,故在(0,)π内()f x 至少有2个不同的零点.九【详解】方法1:设方程组112233x x x αααβ++= ①对方程组的增广矩阵作初等行变换,化成阶梯形矩阵,有[]123211211,,21121011054104304a ab a bc a c αααβ----⎡⎤⎡⎤⎢⎥⎢⎥=→+-+⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦211210140031aa b a c b -⎡⎤⎢⎥→+-+⎢⎥⎢⎥+-+⎣⎦(1) 当4a ≠-时,[][]1231233r ,,r ,,,ααααααβ==. 方程组①唯一解,即β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-,但310c b -+≠时,[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解,β不可由123,,ααα线性表出(3) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,此时有[]1234211,,21010000b αααβ--⎡⎤⎢⎥→--+⎢⎥⎢⎥⎣⎦得对应齐次方程组的基础解系为:()120T,,ξ=-(取自由未知量11x =,回代得2320x ,x =-=),非齐次方程的一个特解是()()0121T*,b ,b η=-++⎡⎤⎣⎦,故通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数. 方法2:设方程组112233x x x αααβ++= ①因为①是三个方程的三个未知量的线性非齐次方程组,故也可由系数行列式讨论,()1232121211211141054001a a A ,,a ααα----⎡⎤⎡⎤⎢⎥⎢⎥====-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此知道:(1) 当4a ≠-时,0A ≠,方程组有唯一解,β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-时,(有可能无解或无穷多解)对增广矩阵作初等行变换,得[]12342112111,,2110012110540015b b c c b αααβ--⎡⎤⎡⎤⎢⎥⎢⎥=→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦21110012100031b c b ⎡⎤⎢⎥→+⎢⎥⎢⎥-+⎣⎦(i) 当4a =-时,且但310c b -+≠时,有[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解.(ii) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,其通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数.十【详解】方法1:用正定性的定义判别.已知对任意的12n x ,x ,x 均有()120n f x ,x ,x ≥ ,其中等号成立当且仅当 1122231110000n n n n n x a x x a x x a x x a x --+=⎧⎪+=⎪⎪⎨⎪+=⎪+=⎪⎩ ①方程组①仅有零解的充分必要条件是其系数行列式()12112110000100001001100001001n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠- 时,方程组①只有零解,此时()120n f x ,x ,x = . 若对任意的非零向量()120n X x ,x ,x ,=≠ ①中总有一个方程不为零,则有()222212112223111()()()()0n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++>所以,根据正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x ≥ ,则二次型正定. 由以上证明题中12(,,,)n f x x x 是正定二次型. 方法2: 将二次型表示成矩阵形式,有()222212112223111()()()()n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++[]112223112223111111n n n n n n n n n n x a x x a x x a x ,x a x ,,x a x ,x a x x a x x a x ----+⎡⎤⎢⎥+⎢⎥⎢⎥=++++⎢⎥+⎢⎥⎢⎥+⎣⎦[]111222121110001000100001000100001000001000010001001n n n n n n a a x a a x a x ,x ,x a a a x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦记 1122110000100001000001001n n n a x a x B ,X a a x -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则 ()()120TT Tn f x ,x ,x X B BX BX BX ==≥当()12112110000100001001100001001n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠- 时,0BX =只有零解,故当任意的0X ≠时,均有()()120Tn f x ,x ,x BX BX => ,从而由正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x > ,则()12n f x ,x ,x 是正定二次型.十一【详解】ln Y X =⇒YX e =. 题设条件Y 为正态,故()()Y E X E e =可用函数的期望的公式求得. 将X 的样本可以转化成Y 的样本,从而对正态(,1)Y N μ 中的μ求得置信区间. 最后,再从μ的置信区间转得b 的置信区间.(1) 由正态分布密度函数的定义知,Y 的概率密度为2()2(),,y f y y μ--=-∞<<+∞于是 2()2()()y Y y b E X E e e edy μ--+∞-∞===⋅⎰令t y μ=-,有 ()221111222t t t b ee dt ee dt μμ+∞+∞-+--+-∞-∞=⋅=⎰12eμ+=.(2) 当置信度10.95α-=时,0.05α=.查表可知标准正态分布的双侧分位数等于1.96.故由1(,)4Y N μ ,其中Y 表示总体Y 的样本均值,11(ln 0.50ln 0.80ln1.25ln 2.00)ln10.44Y =+++== Y 是μ的无偏估计,且2σ(0,1).N所以,按标准正态分布的α分位点的定义,有 /21,P Z αα⎫⎪<=-⎬⎪⎭即/2/21.P Y Y Z ααμα⎧⎫<<=-⎨⎬⎩⎭这样,我们就得到了μ的一个置信水平为1α-的置信区间/2/2,Y Y Z αα⎛⎫⎪⎝⎭在此题中,1,4σμ==,0Y =,所以参数μ的置信度为0.95的置信区间为( 1.96 1.96(0.98,0.98).Y Y -+=- (3) 由指数函数xe 的严格单调递增性,有{}10.980.980.48 1.482P P μμ⎧⎫-<<=-<+<⎨⎬⎩⎭10.48 1.482P e e e μ+-⎧⎫=<<⎨⎬⎩⎭{}0.48 1.48P e b e -=<<0.95=因此b 的置信度为0.95的置信区间为()0.481.48,.ee -十二【分析】随机变量X Y 和不相关(,)0Cov X Y ⇔=.事件A B 与相互独立()()()P AB P A P B ⇔=.要找出这二者之间的联系就应从(,)()()()Cov X Y E XY E X E Y =-入手.【详解】{}(){}{}()1121E X P A P A P A =⋅+-⋅=-,同理,{}()2 1.E Y P B =- 现在求()E XY ,由于XY 只有两个可能值1和1-,所以{}(){}()1111,E XY P XY P XY =⋅=+-⋅=-其中 {}{}{}{}{}11,11,1P XY P X Y P X Y P AB P AB ====+=-=-=+{}{}{}{}{}121P AB P A B P AB P A P B =+-=--+和 {}{}{}{}{}11,11,1P X Y P X Y P X Y P A B P A B=-===-+=-==+{}{}{}2P A P B P AB =+-( 或者 {}{}{}{}{}1112P X Y P X Y P A P B P A B =-=-==+- )所以 {}{}()11E XY P XY P XY ==-=-{}{}{}4221P AB P A P B =--+ 由协方差公式,()()()()Cov XY E XY E X E Y =-{}{}{}{}{}42212121P AB P A P B P A P B =--+--⋅-⎡⎤⎡⎤⎣⎦⎣⎦ {}{}{}4P AB P A P B =-⎡⎤⎣⎦因此,()0Cov XY =当且仅当{}{}{}P AB P A P B =,即X Y 和不相关的充分必要条件是A B 与相互独立.。

2000-2013考研数学三真题无水印可打印

2000-2013考研数学三真题无水印可打印

Q =(+ αααα ) 2 1 , 2 3
1 2 (A) 1 2 1 (C) 2
1 1 (B) 2
捷 迅
) (A)
(7)设随机变量 X 与 Y 相互独立,且都服从区间(0,1)上的均匀分布,则
n =1 ∞
A.若 an
C.若
D.若存在常数 P

(5)设矩阵 A.B.C 均为 n 阶矩阵,若 AB=C,则 B 可逆,则( A.矩阵 C 的行向量组与矩阵 A 的行向量组等价 B.矩阵 C 的列向量组与矩阵 A 的列向量组等价 C.矩阵 C 的行向量组与矩阵 B 的行向量组等价 D.矩阵 C 的列向量组与矩阵 B 的列向量组等价
X
B. P2 > P 1> P 3
C. P 1> P 2 3> P
(8)设随机变量
X P 0
1 2
和 Y 相互独立,则
1
1 4
X
和 Y 的概率分布分别为:
2
1 8
3
1 8
X P
-1
1 3
0
1 3
1
1 3
则P A.
{X + Y = 2} = (
B.
)
C.
二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答题纸 指定位置上. ...
2
1 12
1 8
1 6
D.
1 2
n (9)设曲线 y = f ( x ) 和 y = x − x 在点(0,1)处有公共的切线,则 lim nf ( ) =______. n →∞ n+2
(10)设函数 z

考研数学三(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2000年)在电炉上安装了4个温控器,其显示温度的误差是随机的。

在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于事件( )A.{T(1)≥t0}。

B.{T(2)≥t0}。

C.{T(3)≥t0}。

D.{T(4)≥t0}。

正确答案:C解析:随机变量T(1),T(2),T(3),T(4)为4个温控器显示的按递增顺序排列的温度值,事件E表示事件“电炉断电”,即有两个温控器显示的温度不低于t0,此时必定两个显示较高的温度大于等于t0,即T(4)≥T(3)≥t0。

所以说断电事件就是{T(3)≥t0}。

2.(2009年)设事件A与事件B互不相容,则( )A.B.P(AB)=P(A)P(B)。

C.P(A)=1-P(B)。

D.正确答案:D解析:因为A,B互不相容,所以P(AB)=0。

选项A:=1-P(A∪B),因为P(A ∪B)不一定等于1,所以A不正确;选项B:当P(A),P(B)不为0时,选项B 不成立,故排除B;选项C:只有当A、B互为对立事件的时候才成立,故排除C;选项D:=1-P(AB)-1,故D正确。

3.(2014年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=( )A.0.1。

B.0.2。

C.0.3。

D.0.4。

正确答案:B解析:P(A-B)=0.3,则P(A)-P(AB)=0.3,又随机事件A与B相互独立,则有P(AB)=P(A)P(B)。

因此有P(A)-P(A)P(B)=0.3,又P(B)=0.5,故P(A)=0.6,且P(AB)=P(A)P(B)=0.3。

2000考研数三试题及解析

2000考研数三试题及解析

x = 0 处不可导,排除(A) f (x) = x 2 在点 x = 1处, f (1) > 0 , f ' (1) > 0 ,但 f (x) = x 2 在点 x = 1处可导,
排除(C);
同样, f (x) = −x 2 在点 x = 1处, f (1) < 0 , f ' (1) < 0 ,但 f (x) = x 2 ,在点 x = 1
p1 = 18 − 2Q1 , p3 = 12 − 2Q2 ,其中 p1, p2 分别表示该产品在两个市场的价格(单位:万 元/顿),Q1和Q2 分别表示改产品在两个市场的销售量(即需求量,单位:顿),并且该企业生 产这种产品的总成本函数是 C = 2Q + 5 ,其中 Q 表示该产品在两个市场的销售总量,即
x→a+
x−a
x→a+ x − a
可见当 f '(a) ≠ 0 时, f (x) 在点 x = a 处的左、右导数不相等,因此导数不存在.
故 f (a) = 0 且 f '(a) ≠ 0 是 f (x) 在点 x = a 处不可导的充分条件.
(3)设 a1, a2 , a3 是四元非齐次线形方程组 AX = b 的三个解向量,且秩 (A)=3, a1 = (1, 2,3, 4)T , a2 + a3 = (0,1, 2, 3)T ,c 表示任意常数,则线形方程组
3
3
故 D(Y ) = E(Y 2 ) − [E(Y )]2 = 1 − 1 = 8 99
二、 选择题
(1)设对任意的 x ,总有ϕ(x) ≤ f (x) ≤ g(x), 且 lim[g(x) − ϕ(x)] = 0 ,则 lim f (x)

考研真题【【数学三】试题版--1989-2019】数学三考研真题(2000-2017打印版)

考研真题【【数学三】试题版--1989-2019】数学三考研真题(2000-2017打印版)

2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万.若以t W 表示第t 年的工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (4) 设随机变量X ,Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式{}-6P X Y ≥≤ .(5) 设总体X 服从正态分布2(0,0.2),N 而1215,,X X X 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++服从___分布,参数为_______ 二、选择题(1) 设函数f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点. (C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点.(2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( )(A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若秩0TA αα⎛⎫=⎪⎝⎭秩(A),则线性方程组( )(A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00TA X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00TAX y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解.(5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x zxt e dt t -=⎰求dudx四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在区间[0,1]上连续,在(0,1)内可导,且满足1130(1)(),(1).x f k xe f x dx k -=>⎰证明:存在ξ∈(0,1), 使得1'() 2(1)().f f ξξξ-=-八、(本题满分7 分)已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数)且(1),n ef n=求函数项级数 1()ni fx ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使T Q AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,秩(A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j=1,2,…,n ),二次型1211(,,).n nij n i j i j A f x x x x x A===∑∑(1) 记12(,,),n A x x x =把1211(,,).nnij n i j i j A f x x x x x A===∑∑写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2) 二次型()T g X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,p u试求随机变量U={X−Y} 的概率密度().2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则a =.(4) 设随机变量X 和Y 的联合概率分布为X 和Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若 而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=.(B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑的收敛半径分别为3与13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TPα-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布 三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin x f x x =求()x dx .六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若 试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是_____.(2)已知曲线与x 轴相切,则可以通过a 表示为________.(3)设a>0,而D 表示全平面,则=_______.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0. (C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ ]λb x a x y +-=2332b =2b ,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(0,),0,,0,(<=a a a T αT E A αα-=T aE B αα1+=4.0-=X Z n X X X ,,,21 ∞→n ∑==ni i n X n Y 121)0(f 'xx f x g )()(=),(00y x ),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ ](4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ ] (5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立. (C) 两两独立. (D) 两两独立. [ ] 三、(本题满分8分) 设 2nn n a a p +=2nn n a a q -=,2,1=n ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 s ααα,,,21 1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求五、(本题满分8分) 计算二重积分其中积分区域D=六、(本题满分9分)求幂级数的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,,且f(0)=0, (1) 求F(x)所满足的一阶微分方程;(2) 求出F(x)的表达式.]1,21[12222=∂∂+∂∂vfu f )](21,[),(22y x xy f y x g -=.2222yg x g ∂∂+∂∂.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π}.),{(22π≤+y x y x ∑∞=<-+12)1(2)1(1n nnx n x ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使九、(本题满分13分) 已知齐次线性方程组其中 试讨论和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.)3,0(∈ξ.0)(='ξf ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a .01≠∑=ni i a n a a a ,,,21 )0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T十一、(本题满分13分) 设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f ⎪⎪⎭⎫ ⎝⎛7.03.021~X2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则. (3) 设,则.(4) 二次型的秩为 . (5) 设随机变量服从参数为的指数分布, 则_______.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(-∞ , +∞)内有定义,且, ,则(A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.[ ]5)(cos sin lim 0=--→b x a e xx x 2f u v∂=∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 212(1)f x dx -=⎰213232221321)()()(),,(x x x x x x x x x f ++-++=X λ=>}{DX X P X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑2)2)(1()2sin(||)(---=x x x x x x f a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ ](11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得. (D) 至少存在一点,使得= 0.[ D ](12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, . (C) 当时, . (D) 当时, . [ ](13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim 1>+∞→nn n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求.(16) (本题满分8分) 求,其中D 是由圆和所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足 ,x ∈ [a , b ),.证明:.X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1)cos sin 1(lim 2220xxx x -→⎰⎰++Dd y y x σ)(22422=+y x 1)1(22=++y x ⎰⎰≥xaxadt t g dt t f )()(⎰⎰=babadt t g dt t f )()(⎰⎰≤babadx x xg dx x xf )()(设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0); (II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设, , , , 试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式.d E d E )1(d E Q dPdR-=d E )(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=T β)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,ααα设阶矩阵. (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.(22) (本题满分13分)设,为两个随机事件,且, , , 令 求(Ⅰ) 二维随机变量的概率分布; (Ⅱ) 与的相关系数 ; (Ⅲ) 的概率分布.n ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A A P AP P 1-A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量; (Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= . (2) 微分方程满足初始条件的特解为______. (3)设二元函数,则________.(4)设行向量组,,,线性相关,且,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设,,,其中,则(A) . (B ).(C) . (D) . [ ]12sinlim 2+∞→x xx x 0=+'y y x 2)1(=y )1ln()1(y x xe z y x +++=+=)0,1(dz)1,1,1,2(),,1,2(a a ),1,2,3(a )1,2,3,4(1≠a X ,,2,1 }2{=Y P }0{=X }1{=+Y X a x x x x f -+-=1292)(23σd y x I D ⎰⎰+=221cos σd y x I D⎰⎰+=)cos(222σd y x I D⎰⎰+=2223)cos(}1),{(22≤+=y x y x D 123I I I >>321I I I >>312I I I >>213I I I >>(9)设若发散,收敛,则下列结论正确的是(A) 收敛,发散 . (B ) 收敛,发散.(C) 收敛. (D) 收敛. [ ](10)设,下列命题中正确的是(A) f(0)是极大值,是极小值. (B ) f(0)是极小值,是极大值.(C ) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值.[ ](11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B )若在(0,1)内连续,则f(x)在(0,1)内有界. (C )若在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若在(0,1)内有界,则在(0,1)内有界. [ ] (12)设矩阵A= 满足,其中是A 的伴随矩阵,为A 的转置矩阵. 若为三个相等的正数,则为(A). (B) 3. (C) . (D) . [ ](13)设是矩阵A 的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . [ ](14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) [ ] ,,2,1,0 =>n a n ∑∞=1n n a ∑∞=--11)1(n n n a ∑∞=-112n n a ∑∞=12n n a ∑∞=12n n a ∑∞=-112n n a )(1212∑∞=-+n n n a a )(1212∑∞=--n n n a a x x x x f cos sin )(+=)2(πf )2(πf )2(πf )2(πf )(x f ')(x f )(x f ')(x f )(x f '33)(⨯ij a T A A =**A T A 131211,,a a a 11a 3331321,λλ21,αα1α)(21αα+A 01=λ02=λ01≠λ02≠λ),(2σμN 2,σμ)(20cm x =)(1cm s =μ)).16(4120),16(4120(05.005.0t t +-)).16(4120),16(4120(1.01.0t t +-)).15(4120),15(4120(05.005.0t t +-)).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求(16)(本题满分8分)设f(u)具有二阶连续导数,且,求(17)(本题满分9分)计算二重积分,其中.(18)(本题满分9分) 求幂级数在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,,.证明:对任何a ,有).111(lim 0xe x x x --+-→)()(),(y x yf x y f y xg +=.222222yg y x g x ∂∂-∂∂σd y x D⎰⎰-+122}10,10),{(≤≤≤≤=y x y x D ∑∞=-+12)1121(n n x n 0)(≥'x f 0)(≥'x g ]1,0[∈⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i )和(ii ) 同解,求a,b, c 的值.(21)(本题满分13分)设为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为矩阵.(I) 计算,其中; (II )利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22)(本题满分13分) 设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度; (II ) 的概率密度⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x ⎥⎦⎤⎢⎣⎡=B CC AD Tn m ⨯DP P T⎥⎦⎤⎢⎣⎡-=-n mE o C A EP 1C A C B T 1--.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=)(),(y f x f Y X Y X Z -=2).(z f Z考研资料( III )(23)(本题满分13分)设为来自总体N(0,)的简单随机样本,为样本均值,记求:(I ) 的方差; (II )与的协方差(III )若是的无偏估计量,求常数c.}.2121{≤≤X Y P )2(,,,21>n X X X n 2σX .,,2,1,n i X X Y i i =-=i Y n i DY i ,,2,1, =1Y n Y ).,(1n Y Y Cov 21)(n Y Y c +2σ2006年全国硕士研究生入学统一考试数学三试题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)(2)设函数在的某邻域内可导,且,,则(3)设函数可微,且,则在点(1,2)处的全微分(4)设矩阵,为2阶单位矩阵,矩阵满足,则 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则_______.(6)设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . [ ] (8)设函数在处连续,且,则(A) 存在 (B) 存在 (C) 存在 (D)存在 [ ] (9)若级数收敛,则级数()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭()f x 2x =()()e f x f x '=()21f =()2____.f '''=()f u ()102f '=()224z f x y =-()1,2d _____.z=2112A ⎛⎫= ⎪-⎝⎭E B 2BA B E =+=B X Y 与[]0,3{}{}max ,1P X Y ≤=X ()()121,,,,2xn f x e x X X X -=-∞<<+∞X 2S 2____.ES =()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =()22lim1h f h h →=()()000f f -'=且()()010f f -'=且()()000f f +'=且()()010f f +'=且1n n a ∞=∑(A) 收敛 . (B )收敛.(C) 收敛. (D) 收敛. [ ] (10)设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是(A). (B). (C). (D) [ ](11)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则.(D) 若,则. [ ] (12)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关.(B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关. [ ](13)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ](14)设随机变量服从正态分布,服从正态分布,且则必有1n n a ∞=∑1(1)n n n a ∞=-∑11n n n a a ∞+=∑112n n n a a ∞+=+∑()()y P x y Q x '+=12(),(),y x y x C []12()()C y x y x -[]112()()()y x C y x y x +-[]12()()C y x y x +[]112()()()y x C y x y x ++(,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααn A m n ⨯12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A αααA A B B 1-C 110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =T C PAP =X 211(,)N μσY 222(,)N μσ{}{}1211P X P Y μμ-<>-<(A) (B)(C) (D) [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设,求 (Ⅰ) ; (Ⅱ) .(16)(本题满分7分) 计算二重积分,其中是由直线所围成的平面区域.(17)(本题满分10分) 证明:当时,.(18)(本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于(常数).(Ⅰ) 求的方程;(Ⅱ) 当与直线所围成平面图形的面积为时,确定的值. 12σσ<12σσ>12μμ<12μμ>()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+()()lim ,y g x f x y →+∞=()0lim x g x +→d Dx y D ,1,0y x y x ===0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++xOy L ()1,0M ()(),0P x y x ≠OP ax >0a L L y ax =83a求幂级数的收敛域及和函数.(20)(本题满分13分)设4维向量组,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解. (Ⅰ)求的特征值与特征向量;(Ⅱ)求正交矩阵和对角矩阵,使得;(Ⅲ)求及,其中为3阶单位矩阵.()()1211121n n n x n n -+∞=--∑()s x ()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+a 1234,,,αααα1234,,,ααααA ()()TT121,2,1,0,1,1αα=--=-0Ax =A Q ΛT Q AQ =ΛA 632A E ⎛⎫- ⎪⎝⎭E设随机变量的概率密度为,令为二维随机变量的分布函数. (Ⅰ)求的概率密度; (Ⅱ);(Ⅲ).(23)(本题满分13分)设总体的概率密度为其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数. (Ⅰ)求的矩估计; (Ⅱ)求的最大似然估计X ()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他()2,,Y X F x y =(,)X Y Y ()Y f y Cov(,)X Y 1,42F ⎛⎫- ⎪⎝⎭X (),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,θ()01θ<<12n ,...,X X X X N 12,...,n x x x θθ2007年全国硕士研究生入学统一考试数学三试题一. 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1) 当等价的无穷小量是( ).(2)设函数在处连续,下列命题错误的是: ( ).若存在,则 若存在,则.若存在,则存在 若存在,则存在(3) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:( ).(4) 设函数连续,则二次积分等于( )(5) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) 10 20 30 40 (6) 曲线渐近线的条数为( ) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是( )(A ) (B) (C ) (D)0x +→A 1-.ln(1B +1C -.1D -()f x 0x =A 0()limx f x x →(0)0f =.B 0()()lim x f x f x x →+-(0)0f =.C 0()limx f x x →'(0)f .D 0()()lim x f x f x x→--'(0)f ()y f x =[][]3,2,2,3--[][]2,0,0,2-0()(),xF x f t dt =⎰.A (3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(,)f x y 1sin 2(,)xdx f x y dy ππ⎰⎰.A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰.D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰1602Q ρ=-Q ρ.A .B .C .D 1ln(1),x y e x=++.A .B .C .D 12αα-2131,,αααα--21αα-2331,,αααα++1223312,2,2αααααα---1223312,2,2αααααα+++(8)设矩阵,则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y 的概率密度,则在条件下,的条件概率密度为( ) (A ) (B) (C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则. (13)设是二元可微函数,则________. (14)微分方程满足的特解为__________.(15)设距阵则的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(,)X Y X Y (),()x y f x f y Y y =X ()X Y x y f ()X f x ()y f y ()()x y f x f y ()()x y f x f y 3231lim (sin cos )________2x x x x x x x →∞+++=+123y x =+()(0)_________n y =(,)f u v (,),y x z f x y =z zy x y∂∂-=∂∂31()2dy y y dx x x=-11x y ==01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A 12设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性.(18)(本题满分11分) 设二元函数计算二重积分其中(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又=,=,证明:(Ⅰ)存在使得; (Ⅱ)存在使得 (20)(本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(22)(本题满分11分)设3阶实对称矩阵A 的特征值是A 的属于的一个特征向量.记,其中E 为3阶单位矩阵.(Ⅰ)验证是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量的概率密度为()y y x =ln 0y y x y -+=()y y x=2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤(,).Df x y d σ⎰⎰{}(,)2D x y x y =+≤()f x ()g x [],a b ()f a ()g a ()f b ()g b (,),a b η∈()()f g ηη=(,),a b ξ∈''()''().f g ξξ=21()34f x x x =--1x -1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解12311,2,2,(1,1,1)T λλλα===-=-1λ534B A A E =-+1α(,)X Y(Ⅰ)求;(Ⅱ)求的概率密度. (24)(本题满分11分)设总体的概率密度为.其中参数未知,是来自总体的简单随机样本,是样本均值.(Ⅰ)求参数的矩估计量;(Ⅱ)判断是否为的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他{}2P X Y >Z X Y =+()Z f z X 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他(01)θθ<<12,,...n X X X X X θθ24X 2θ(1)设函数在区间上连续,则是函数的( )跳跃间断点. 可去间断点.无穷间断点.振荡间断点.(2)曲线段方程为,函数在区间上有连续的导数,则定积分等于( )曲边梯形面积. 梯形面积.曲边三角形面积.三角形面积.(3)已知(A ),都存在 (B )不存在,存在 (C )不存在,不存在 (D ),都不存在 (4)设函数连续,若,其中为图中阴影部分,则( ) (A ) (B)(C ) (D ) (5)设为阶非0矩阵为阶单位矩阵若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆.(6)设则在实数域上域与合同矩阵为( ).... ()f x [1,1]-0x =0()()xf t dtg x x=⎰()A ()B ()C ()D ()y f x =()f x [0,]a 0()at af x dx ⎰()A ABCD ()B ABCD ()C ACD ()D ACD (,)f x y =(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f 'f 22(,)uvD f u v =uv D Fu∂=∂2()vf u 2()v f u u ()vf u ()vf u uA E 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +1221A ⎛⎫= ⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫⎪-⎝⎭()C 2112⎛⎫⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭(7)随机变量独立同分布且分布函数为,则分布函数为( )....(8)随机变量,且相关系数,则( ). . ..二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数在内连续,则 .(10)设,则.(11)设,则.(12)微分方程满足条件的解.(13)设3阶矩阵的特征值为1,2,2,E 为3阶单位矩阵,则. (14)设随机变量服从参数为1的泊松分布,则. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限. (16) (本题满分10分)设是由方程所确定的函数,其中具有2阶导数且时.(1)求 (2)记,求. ,X Y X ()F x {}max ,Z X Y =()A ()2F x ()B ()()F x F y ()C ()211F x --⎡⎤⎣⎦()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦()~0,1X N ()~1,4Y N 1XY ρ=()A {}211P Y X =--=()B {}211P Y X =-=()C {}211P Y X =-+=()D {}211P Y X =+=21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩(,)-∞+∞c =341()1x x f x x x ++=+2()______f x dx =⎰22{(,)1}D x y x y =+≤2()Dx y dxdy -=⎰⎰ 0xy y '+=(1)1y =y = A 14_____A E --=X {}2P X EX == 201sin limlnx xx x→(,)z z x y =()22x y z x y z ϕ+-=++ϕ1ϕ'≠-dz ()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭u x ∂∂(17) (本题满分11分)计算其中.(18) (本题满分10分)设是周期为2的连续函数, (1)证明对任意实数,有;(2)证明是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵,现矩阵满足方程,其中,,(1)求证; (2)为何值,方程组有唯一解; (3)为何值,方程组有无穷多解. (21)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,证明(1)线性无关;(2)令,求. (22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x t ()()22t tf x dx f x dx +=⎰⎰()()()202x t t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰0.05r =2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭A AX B =()1,,Tn X x x =()1,0,,0B =()1n A n a =+a a A 12,a a A 1,1-3a 323Aa a a =+123,,a a a ()123,,P a a a =1P AP -X Y X {}()11,0,13P X i i ===-Y ()1010Y y f y ≤≤⎧=⎨⎩其它Z X Y =+(1)求;(2)求的概率密度. (23) (本题满分11分)是总体为的简单随机样本.记,,. (1)证 是的无偏估计量. (2)当时 ,求.2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.102P Z X ⎧⎫≤=⎨⎬⎩⎭Z 12,,,n X X X 2(,)N μσ11ni i X X n ==∑2211()1n ii S X X n ==--∑221T X S n=-T 2μ0,1μσ==DT(1)函数的可去间断点的个数为(A)1.(B)2.(C)3.(D)无穷多个.(2)当时,与是等价无穷小,则(A),. (B ),. (C),. (D ),. (3)使不等式成立的的范围是 (A).(B). (C).(D).(4)设函数在区间上的图形为则函数的图形为(A)(B)3()sin x x f x xπ-=0x →()sin f x x ax =-2()ln(1)g x x bx =-1a =16b =-1a =16b =1a =-16b =-1a =-16b =1sin ln xtdt x t>⎰x (0,1)(1,)2π(,)2ππ(,)π+∞()y f x =[]1,3-()()0xF x f t dt =⎰(C)(D)(5)设均为2阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为 (A). (B). (C).(D). (6)设均为3阶矩阵,为的转置矩阵,且,若,则为(A).(B).(C).(D).(7)设事件与事件B 互不相容,则(A). (B).(C).(D).(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为 ,A B *,A B *,A B ||2,||3A B ==O A B O ⎛⎫⎪⎝⎭**32O B A O ⎛⎫⎪⎝⎭**23O B AO ⎛⎫⎪⎝⎭**32O A BO ⎛⎫⎪⎝⎭**23O A BO ⎛⎫⎪⎝⎭,A P T P P 100010002TP AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭1231223(,,),(,,)P Q ααααααα==+T Q AQ 210110002⎛⎫⎪ ⎪ ⎪⎝⎭110120002⎛⎫⎪ ⎪ ⎪⎝⎭200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭A ()0P AB =()()()P AB P A P B =()1()P A P B =-()1P A B ⋃=X Y X (0,1)N Y 1{0}{1}2P Y P Y ====()z F Z Z XY =()z F Z(A) 0. (B)1. (C)2 . (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) .(10)设,则. (11)幂级数的收敛半径为 . (12)设某产品的需求函数为,其对应价格的弹性,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设,,若矩阵相似于,则 .(14)设,,…,为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则 .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数的极值. (16)(本题满分10 分) 计算不定积分 . (17)(本题满分10 分)计算二重积分,其中.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数在上连续,在上可导,则,得证.(Ⅱ)证明:若函数在处连续,在内可导,且,则存在,且. cos 0x x →=()y x z x e =+(1,0)zx ∂=∂21(1)n n nn e x n ∞=--∑()Q Q P =P 0.2p ξ=(1,1,1)T α=(1,0,)T k β=T αβ300000000⎛⎫⎪⎪ ⎪⎝⎭k =1X 2X n X (,)B n p X 2S 2T X S =-ET =()22(,)2ln f x y x y y y =++ln(1dx +⎰(0)x >()Dx y dxdy -⎰⎰22{(,)(1)(1)2,}D x y x y y x =-+-≤≥()f x [],a b (),a b (),a b ξ∈()'()()()f b f a f b a ξ-=-()f x 0x =()0,,(0)σσ>'0lim ()x f x A +→='(0)f +'(0)f A +=。

2000-2014年考研数学三历年真题

2000-2014年考研数学三历年真题

2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a TΛα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni ia试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若()0sin limcos 5x x xx b e a→-=-,则a =______,b =______.(2) 函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂______. (3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____.(4) 二次型()()()()222123122331,,f x x x x x x x x x =++-++的秩为______. (5) 设随机变量X 服从参数为λ的指数分布,则{P X >=______.(6) 设总体X 服从正态分布()21,N μσ,总体Y 服从正态分布()22,N μσ,112,,,n X X X L 和212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本,则()()122211122n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑______. 二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界.(A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,fx g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则(A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点 (C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关.(9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点 (B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点 (10) 设有以下命题: ① 若()2121n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛② 若1nn u∞=∑收敛,则10001n n u∞+=∑收敛③ 若1lim1n n nu u +→∞>,则1n n u ∞=∑发散 ④ 若()1nn n uv ∞=+∑收敛,则1n n a ∞=∑,1n n v ∞=∑都收敛则以上命题中正确的是(A )①② (B )②③ (C )③④ (D )①④(11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是 (A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x = (12) 设n 阶矩阵A 与B 等价,则必有(A )当()0A a a =≠时,B a = (B )当()0A a a =≠时,B a =- (C )当0A ≠时,0B = (D )当0A =时,0B =(13) 设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系(A )不存在 (B )仅含一个非零解向量 (C )含有两个线性无关的解向量 (D )含有三个线性无关的解向量(14) 设随机变量X 服从正态分布()0,1N ,对给定的()0,1α∈,数n u 满足{}P X u αα>=,若{}P X x α<=,则x 等于(A )2u α (B )12uα-(C )12u α- (D )1u α-三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求22201cos lim sin x x x x →⎛⎫-⎪⎝⎭. (16)(本题满分8分) 求()22Dx y y d σ++⎰⎰,其中D 是由圆224x y +=和()2211x y ++=所围成的平面区域(如图).(17)(本题满分8分)设()(),f x g x 在[],a b 上连续,且满足()()x xaaf t dtg t dt ≥⎰⎰,[),x a b ∈,()()b baaf t dtg t dt =⎰⎰证明:()()bbaaxf x dx xg x dx ≤⎰⎰.(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格()0,20P ∈,Q 为需求量. (Ⅰ)求需求量对价格的弹性()0d d E E >; (Ⅱ)推导()1d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数()468242462468x x x x +++-∞<<+∞⋅⋅⋅⋅⋅⋅L 的和函数为()S x .求: (Ⅰ)()S x 所满足的一阶微分方程; (Ⅱ)()S x 的表达式.(20)(本题满分13分)设()()()1231,2,0,1,2,3,1,2,2TTTa ab a b ααα==+-=---+,()1,3,3Tβ=-. 试讨论当,a b 为何值时,(Ⅰ)β不能由123,,ααα线性表示;(Ⅱ)β可由123,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由123,,ααα线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)设n 阶矩阵111b b bb A bb ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M L. (Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得1P AP -为对角矩阵.(22)(本题满分13分)设,A B 为两个随机事件,且()()()111,,432P A P B A P A B ===,令 1,0,.A X A ⎧=⎨⎩发生,不发生 1,0,.B Y B ⎧=⎨⎩发生,不发生 求:(Ⅰ)二维随机变量(),X Y 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Z X Y =+的概率分布.(23)(本题满分13分) 设随机变量X 的分布函数为()1,,;,0,.x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1αβ>>. 设12,,,n X X X L 为来自总体X 的简单随机样本. (Ⅰ)当1α=时,求未知参数β的矩估计量; (Ⅱ)当1α=时,求未知参数β的最大似然估计量; (Ⅲ)当2β=时,求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限22lim sin1x xx x →∞=+______. (2) 微分方程0xy y '+=满足初始条件()12y =的特解为______. (3) 设二元函数()()1ln 1x yz xex y +=+++,则()1,0dz =______.(4) 设行向量组()()()()2,1,1,1,2,1,,,3,2,1,,4,3,2,1a a a 线性相关,且1a ≠,则a =______.(5) 从数1,2,3,4中任取一个数,记为X ,再从1,,X L 中任取一个数,记为Y ,则{}2P Y ==______.(6) 设二维随机变量(),X Y 的概率分布为若随机事件{}0X =与{}1X Y +=相互独立,则a =______,b =______.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8(8) 设()()22222123,cos ,cos DDDI I x y d I x y d σσσ==+=+⎰⎰⎰⎰⎰⎰,其中(){}22,1D x y xy =+≤,则(A )321I I I >> (B )123I I I >> (C )213I I I >> (D )312I I I >> (9) 设0,1,2,,n a n >=L 若1nn a∞=∑发散,()111n n n a ∞-=-∑收敛,则下列结论正确的是(A )211n n a∞-=∑收敛,21nn a∞=∑发散 (B )21nn a∞=∑收敛,211n n a∞-=∑发散(C )()2121n n n aa ∞-=+∑收敛 (D )()2121n n n a a ∞-=-∑收敛(10) 设()sin cos f x x x x =+,下列命题中正确的是 (A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值 (B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值 (C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值 (D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值 (11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界 (B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界 (12) 设矩阵()33ijA a ⨯=满足*T A A =,其中*A 为A 的伴随矩阵,TA 为A 的转置矩阵.若111213,,a a a 为三个相等的正数,则11a 为(A (B )3 (C )13(D (13) 设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则()112,A ααα+线性无关的充分必要条件是(A )10λ= (B )20λ= (C )10λ≠ (D )20λ≠ (14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分) 求011lim 1x x x e x -→+⎛⎫- ⎪-⎝⎭.(16)(本题满分8分)设()f u 具有二阶连续导数,且(),y x g x y f yfx y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求222222g g x y x y ∂∂-∂∂.(17)(本题满分9分) 计算二重积分221Dxy d σ+-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤.(18)(本题满分9分) 求幂级数211121nn x n ∞=⎛⎫-⎪+⎝⎭∑在区间()1,1-内的和函数()S x .(19)(本题满分8分)设()(),f x g x 在[]0,1上的导数连续,且()()()00,0,0f f x g x ''=≥≥.证明:对任何[]0,1α∈,有()()()()()()11ag x f x dx f x g x dx f a g ''+≥⎰⎰(20)(本题满分13分) 已知齐次线性方程组(ⅰ)123123123230,2350,0,x x x x x x x x ax ++=⎧⎪++=⎨⎪++=⎩ 和 (ⅱ)()12321230,210,x bx cx x b x c x ++=⎧⎪⎨+++=⎪⎩ 同解,求,,a b c 的值.(21)(本题满分13分) 设T AC D C B ⎛⎫= ⎪⎝⎭为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为m n ⨯阶矩阵.(Ⅰ)计算T P DP ,其中1mn E A C P OE -⎛⎫-=⎪⎝⎭; (Ⅱ)利用(Ⅰ)的结果判断矩阵1T B C A C --是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(),X Y 的概率密度为()0,01,02,,1,x y x f x y <<<<⎧=⎨⎩其它. 求:(Ⅰ)(),X Y 的边缘概率密度()(),X Y f x f y ; (Ⅱ)2Z X Y =-的概率密度()Z f z ; (Ⅲ)1122P Y X ⎧⎫≤≤⎨⎬⎩⎭.(23)(本题满分13分)设()12,,,2n X X X n >L 为来自总体()20,N σ的简单随机样本,其样本均值为X ,记,1,2,,i i Y X X i n =-=L .(Ⅰ)求i Y 的方差,1,2,,i DY i n =L ; (Ⅱ)求1Y 与n Y 的协方差()1,n Cov Y Y ;(Ⅲ)若()21n c Y Y +是2σ的无偏估计量,求常数c .2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1) ()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2) 设函数()f x 在2x =的某邻域内可导,且()()ef x f x '=,()21f =,则()2____.f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4) 设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B . (5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6) 设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 (9) 若级数1nn a∞=∑收敛,则级数()(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. (10) 设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是()(A) []12()()C y x y x -. (B) []112()()()y x C y x y x +-. (C) []12()()C y x y x +. (D) []112()()()y x C y x y x ++ (11) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (12) 设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是() (A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关.(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A) 1C P AP -=. (B) 1C PAP -=.(C) T C P AP =. (D) T C PAP =.(14) 设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有()(A) 12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求: (Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。

2000考研数学三真题及答案

2000考研数学三真题及答案

2000考研数学三真题及答案一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设,x x z f xy g y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中,f g 均可微,则z x ∂=∂.(2)21.x xdxe e+∞-=+⎰(3) 若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1.B E --=(4) 设随机变量X 的概率密度为1[0,1]()29,[3,6]0x f x x ∈⎧⎪=∈⎨⎪⎩其他 若k 使得2{}3P X k ≥=,则k 的取值范围是 (5) 假设随机变量X 在区间[1,2]-上服从均匀分布,随机变量1,00,01,0X Y X X >⎧⎪==⎨⎪-<⎩若若若 则方差().D Y =二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设对任意的x ,总有()()()x f x g x ϕ≤≤,且[]lim ()()0x g x x ϕ→∞-=,则lim ()x f x →∞( )(A)存在且一定等于零. (B)存在但不一定等于零.(C)一定不存在. (D)不一定存在.(2) 设函数()f x 在点x a =处可导,则函数()f x 在点x a =处不可导的充分条件是 ( )(A)()0()0f a f a '==且 (B)()0()0f a f a '=≠且 (C)()0()0f a f a '>>且 (D)()0()0f a f a '<<且(3) 设123,,ααα是四元非齐次线性方程组AX b =的三个解向量,且()3A =秩,()11234Tα=,,,,()230,123Tαα+=,,,c 表任意常数,则线性方程组AX b =的通解X = ( )(A)11213141c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(B)10213243c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (C)12233445c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (D)13243546c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4) 设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组():0I AX =和():0T II A AX =,必有 ( )(A)()II 的解是()I 的解,()I 的解也是()II 的解. (B)()II 的解是()I 的解,但()I 的解不是()II 的解. (C)()I 的解不是()II 的解,()II 的解也不是()I 的解. (D)()I 的解是()II 的解,但()II 的解不是()I 的解.(5) 在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于事件( )(A){}(1)0T t ≥ (B){}(2)0T t ≥ (C){}(3)0T t ≥ (D){}(4)0T t ≥三、(本题满分6分)求微分方程220xy y e '''--=满足条件(0)0,(0)1y y '==.四、(本题满分6分)计算二重积分,Dσ,其中D是由曲线0)y a a =->和直线y x =-围成的区域五、(本题满分6分)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是112218,12,P Q P Q =-=-其中1P 和2P 分别表示该产品在两个市场的价格(单位:万元/吨),1Q 和2Q 分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这种产品的总成本函数是25C Q =+,其中Q 表示该产品在两个市场的销售总量,即12Q Q Q =+(1)如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润;(2)如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及其统一的价格,使该企业的总利润最大化;并比较两种价格策略下的总利润大小.六、(本题满分7分)求函数arctan 2(1)xy x e π+=-的单调区间和极值,并求该函数图形的渐近线.七、(本题满分6分)设40sin ,0,1,2,,nn I xcosxdx n π==⎰求0.n n I ∞=∑八、(本题满分6分)设函数()f x 在[]0,π上连续,且()0,()cos 0f x dx f x xdx ππ==⎰⎰,试证明:在(0,)π内至少存在两个不同的点12,ξξ,使12()()0.f f ξξ== 九、(本题满分8分)设向量组,123(,2,10),(2,1,5),(1,1,4),(1,,)T T T Ta b c αααβ==-=-=试问,,a b c 满足什么条件时,(1)β可由123,,ααα线性表出,且表示唯一? (2)β不能由123,,ααα线性表出?(3)β可由123,,ααα线性表出,但表示不唯一?并求出一般表达式. 十、(本题满分9分)设有n 元实二次型222212112223111(,,,)()()()()n n n n n n f x x x x a x x a x x a x x a x --=++++++++其中(1,2,,)i a i n ==为实数.试问:当12,,,n a a a 满足条件时,二次型12(,,,)n f x x x 为正定二次型.十一、(本题满分8分)假设是来自总体的简单随机样本值.已知ln Y X =服从正态分布(,1)N μ. (1)求X 的数学期望EX (记EX 为b ); (2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b 的置信度为0.95的置信区间.十二、(本题满分8分)设,A B 是二随机事件;随机变量1,1,1,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩若出现若出现若不出现若不出现试证明随机变量X Y 和不相关的充分必要条件是A B 与相互独立.参考答案一、填空题 (1)【答案】1221z y yf f g x y x∂'''=+-∂ 【详解】根据复合函数的求导公式,有1221'''z y f y f g x y x ∂⎛⎫=⋅+⋅+⋅- ⎪∂⎝⎭(2)【答案】4eπ【详解】被积函数的分母中含有2x x e e -+,且当x →+∞时,2x x e e -+→+∞,即被积函数属于无穷限的反常积分,只需先求不定积分,在令其上限趋于无穷.22222211111x xx x x x x xdxdx e dx de e e ee e e ee e+∞+∞+∞+∞-===++++⎰⎰⎰⎰ 221111xx de ee e +∞=⎛⎫+ ⎪⎝⎭⎰22111x x e e d e e e e +∞⎛⎫= ⎪⎛⎫⎝⎭+ ⎪⎝⎭⎰11arctan x e e e+∞=1()24e ππ=-4eπ=(3)【答案】24 【详解】 方法1:AB A B ⇒、有相同的特征值:11112345.,,,由矩阵1B -是矩阵B 的逆矩阵,他们所有特征值具有倒数的关系,得1B -有特征值2345,,,, 由B 特征局矩阵为E B λ-,1B E --得特征矩阵为()()111E B E E B λλ----=--可以看出B 与1B E --的特征值相差1 ,所以1B E --有特征值1234,,,.由矩阵的行列式等于其特征值得乘积,所有特征值的和等于矩阵主对角元素之和, 知 411123424ii B E .λ-=-==⋅⋅⋅=∏方法2 :AB 即存在可逆阵P ,使得1P AP B -=.两边求逆得111B P A P ---=.又A 有四个不同的特征值,存在可逆矩阵Q ,使1Q AQ -=Λ,其中12131415⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦上式两边求逆得 1112345Q A Q ---⎡⎤⎢⎥⎢⎥=Λ=Λ=⎢⎥⎢⎥⎣⎦,111A Q Q ---=Λ 从而有1111111112131244151B E P A P E P A E P Q Q EQ E Q ----------=-=-=Λ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=Λ-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】[]1,3.【详解】在给定概率密度条件下,有性质{}2112().x x P x X x f x dx <≤=⎰因此,{}()kP X k f x dx +∞≥=⎰(或{}{}11().kP X k P X k f x dx -∞≥=-<=-⎰)因为[0,1]x ∈时,1()3f x =;[3,6]x ∈时,2()9f x =都是定值,因为{}213P X k ≥=<,所以k 最可能的取值区间是包含在[]0,6区间之内的[]1,3区间,否则是不可能的.当13k ≤≤时,{}22()(63).93kP X k f x dx +∞≥==⨯-=⎰ (或者,当13k ≤≤时,{}11()(10),33kP X k f x dx -∞<==⨯-=⎰{}{}1211.33P X k P X k ≥=-<=-=)所以,答案应该填13k ≤≤或[]1,3.(5)【答案】8.9【详解】由于题中Y 是离散型随机变量,其所取值的概率分别为{}{}0,0P X P X >=和 {}0P X <.又由于X 是均匀分布,所以可以直接得出这些概率,从而实现由X 的概率计算过渡到Y 的概率.{}{}0(1)110;33P Y P X --=-=<== {}{}000;P Y P X ==== {}{}20210.33P Y P X -==>== 因此 121()11,333E Y =-⨯+⨯= ()2221212()111,3333E Y =-⨯+⨯=+=所以 []2218()()()1.99D YE Y E Y =-=-=二、选择题 (1)【答案】D【详解】用排除法.例1:设22221()22x x f x x x +≤≤++, 满足条件2222211lim lim 0222x x x x x x x →∞→∞⎡⎤+-==⎢⎥+++⎣⎦, 并且 22221lim 1,122x x x x x →∞+==++, 由夹逼准则知,lim ()1x f x →∞=,则选项()A 与()C 错误.例2:设6262442()11x x x x f x x x ++≤≤++, 满足条件626224442lim lim 0111x x x x x x x x x x →∞→∞⎡⎤++-==⎢⎥+++⎣⎦, 但是由于6224()1x x f x x x +≥=+,有lim ()x f x →∞=+∞,极限不存在,故不选()B ,所以选()D .因为最终结论是“()D :不一定存在”,所以只能举例说明“可以这样”“可以那样”,无法给出相应的证明.(2)【答案】B【详解】方法1:排除法,用找反例的方式()A :2()f x x =,满足(0)0(0)0f f '==且,但2()f x x =在0x =处可导;()C :()1f x x =+,满足(0)10,(0)10f f '=>=>,但()1f x x =+当()1,1x ∈-,在0x =处可导;(D):()1f x x =--,满足(0)10,(0)10,f f '=-<=-<但()1f x x =+当()1,1x ∈-,在0x =处可导; 方法2:推理法.由()B 的条件()0f a =, 则()()()()()limlim lim ,x ax a x a f x f a f x f x f a x a x a x a →→→--==--- 所以()()()()lim lim ()x ax a f x f a f x f a f a x a x a++→→--'==-- (1)()()()()lim lim ().x ax a f x f a f x f a f a x ax a --→→-⎛-⎫'=-=- ⎪--⎝⎭(2) 可见,()f x 在x a =处可导的充要条件是()()f a f a ''=-,所以()0f a '=,即()0f a '=所以当()0f a '≠时必不可导,选()B .(3)【答案】(C)【详解】因为()11234Tα=,,,是非齐次方程组的解向量所以我们有1A b α=,故1α是AX b =的一个特解又()34r A ,n ==(未知量的个数),故AX b =的基础解系由一个非零解组成. 即基础解系的个数为1.因为()()123220A b b b ,ααα-+=--= 故()1122024132624835ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦是对应齐次方程组的基础解系,故AX b =的通解为()()1231213224354c c .αααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-++=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】(A)【详解】若α是方程组():0I AX =的解,即0A α=,两边左乘TA ,得0TA A α=,即α也是方程组():0TII A AX =的解,即()I 的解也是()II 的解.若β是方程组():0TII A AX =的解,即0TA A β=,两边左乘Tβ得()0TT T A A A A .ββββ== A β是一个向量,设[]12TA b ,b ,bβ=,则()210nTi i A A b .ββ===∑故有0i b =,12i ,,n =从而有0A β=,即β也是方程组():0I AX =的解.(5)【答案】C【详解】随机变量(1)(2)(3)(4),,,T T T T 为4个温控器显示的按递增顺序排列的温度值,事件E 表示事件“电炉断电”,即有两个温控器显示的温度不低于0t ,此时必定两个显示较高的温度大于等于0t ,即(4)(3)0.T T t ≥≥ 所以说断电事件就是{}(3)0T t ≥三【详解】本题属于二阶常系数非齐次线性微分方程,对于二阶常系数非齐次线性微分方程得求解,首先需要求出对应的齐次微分方程的通解,再求出非齐次方程的特解,再利用线性方程解的解构,从而得到对应方程的通解.本题对应的齐次微分方程为 20y y '''-=, 其特征方程为 220r r -=,特征根为120,2r r ==. 于是齐次方程的通解为 212.xY C C e =+由于2λ=是特征方程的单根,所以设 2xy Axe *= 求得 22222;44x x x x y Ae Axe y Ae Axe **'''=+=+代入原方程,得 222224424x x x x x Ae Axe Ae Axe e +--=,即222x x Ae e = 约去2xe ,再比较等式左、右两边,得121,2A A == 故得特解212x y xe *=,非齐次方程的通解为 22121.2x x y Y y C C e xe *=+=++ 再由初始条件(0)1y =,得:121C C += (1)由(0)1y '=,得2222212220111221222xx x x x x x C C e xe C e e xe C =='⎛⎫⎛⎫++=++=+= ⎪⎪⎝⎭⎝⎭ (2)联立(1)与(2)得 1231,44C C == 则满足初始条件的通解为2311()442x y x e =++.四【详解】画出积分区域D . 由被积函数的形式以及积分区域形状, 易见采用极坐标更为方便. 将曲线22y a a x =--化为:222()()x y a a y a ++=≥-,极坐标方程为2sin (0)r a θπθ=--≤≤,再D 区域是由曲线22(0)y a a x a =-->和直线y x =-围成的区域,于是04πθ-≤≤,极半径02sin r a θ≤≤-,则22202sin 222224.44a Dx y I d d dr a x ya rθπσθ--+==---⎰⎰令2sin r a t =,有0r =时0t =;2sin r a θ=-时,t θ=-.2024sin 42cos 2cos tI d a a tdt a t θπθ--=⎰⎰022044sin d a tdt θπθ--=⎰⎰02042(1cos 2)d a t dt θπθ--=-⎰⎰240sin 222t a d t dt θπθ--⎛⎫=- ⎪⎝⎭⎰ 02412(sin 2)2a d πθθθ-=-+⎰022412cos 224a πθθ-⎛⎫=⋅-- ⎪⎝⎭221()162a π=-五【定理】简单极值问题(无条件极值):设(,)z f x y =在开区域D 内可偏导,又根据实际问题可知,它在D 内有最大值或最小值,于是只需在0,0f fx y∂∂==∂∂的点中找到(,)f x y 的最大值点或最小值点【详解】记总利润函数为L ,总收益函数为R ,则总利润=总收益-总成本1122(25)L R C p Q p Q Q =-=+-+112212[2()5]p Q p Q Q Q =+-++ 112212(182)(12)[2()5]Q Q Q Q Q Q =-+--++2211221218212225Q Q Q Q Q Q =-+----221212216105Q Q Q Q =--++-其中,120,0Q Q >>,12Q Q Q =+为销售总量.(1)令121241602100L LQ Q Q Q ∂∂=-+==-+=∂∂,,解得1245Q Q ==,. 而11182P Q =-,2212,P Q =- 故相应地1210,7.p p ==在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.22max 245164105552()L =-⨯-+⨯+⨯-=万元.(2) 若两地的销售单价无差别, 即12p p =,于是1218212Q Q -=-, 得1226Q Q -=, 在此约束条件下求L 的最值,以下用两个方法:方法1: 若求函数(,)z f x y =在条件(,)0x y ϕ=的最大值或最小值,用拉格朗日乘数法:先构造辅助函数(,,)(,)(,)F x y f x y x y λλϕ=+,然后解方程组00(,)0F f x x x F fy y y Fx y ϕλϕλϕλ⎧∂∂∂=+=⎪∂∂∂⎪∂∂∂⎪=+=⎨∂∂∂⎪⎪∂==⎪∂⎩ 所有满足此方程组的解(,,)x y λ中的(,)x y 是(,)z f x y =在条件(,)0x y ϕ=的可能极值点,在可能极值点中求得最大值点或最小值点.故用拉格朗日乘数法,其中1212(,)260Q Q Q Q ϕ=--=,构造函数2212121212(,,)216105(26),F Q Q Q Q Q Q Q Q λλ=--++-+--令112212416202100260FQ Q FQ Q FQ Q λλλ∂⎧=-++=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=--=⎪∂⎩ 解得1254Q Q ==,,在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.得22max 254165104549()L =-⨯-+⨯+⨯-=万元.方法2:由1226Q Q -=代入221212216105L Q Q Q Q =--++-消去一个变量得211660101L Q Q =-+-这样就变成了简单极值问题(无条件极值),按(1)的做法:令1112600,dLQ dQ =-+= 得15Q =,为L 的唯一驻点.当11050dL Q dQ <<>时(说明在这个区间上函数单调递增);当15Q >时10dLdQ < (说明在这个区间上函数单调递减)故,15Q =为L 的唯一极大值点,所以是最大值点,而1226Q Q -=⇒24Q =, 故2211max 6601016560510149()L Q Q =-+-=-⨯+⨯-=万元.六【渐近线】水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y ax b =+为斜渐近线.【详解】原函数对x 求导,所以 arctan arctan 22(1)(arctan )2xxy ex x eπππ++''=+-⋅+arctan arctan 2221(1)1xx e x e x ππ++=+-⋅⋅+2arctan 221x x x e x π++=+ 令0y '=,得驻点120,1x x ==-.列表注:+表示函数值大于0,-表示函数值小于0;表示在这区间内单调递增;表示在这区间内单调递减.所以由以上表格可以得出函数的大概形状,有严格单调增的区间为(),1-∞-与()0,+∞;严格单调减的区间为()1,0-.2(0)f eπ=-为极小值, 4(1)2f e π-=-为极大值.以下求渐近线. 通过对函数大概形状的估计,arctan 2lim ()lim(1)lim(1)xx x x f x x ee x ππ+→∞→∞→∞=-=-=∞所以此函数无水平渐近线;同理,也没有铅直渐近线. 所以令111()lim,lim[()]2;x x f x a e b f x a x e xππ→+∞→+∞===-=-222()lim1,lim[()] 2.x x f x a b f x a x x→-∞→-∞===-=-所以,渐近线为11(2)y a x b e x π=+=-及222y a x b x =+=-,共两条.七【概念】幂级数的收敛半径:若1lim lim n x nx a a ρ+→∞→∞=,其中1,n n a a +是幂级数nn n a x∞=∑的相邻两项的系数,则这幂级数的收敛半径1, 0,, 0, 0, .R ρρρρ≠⎧⎪=+∞=⎨⎪=+∞⎩【详解】先计算出积分nI的具体表达式,再求和144001sin sin sin12nn nnI xcosxdx xd xnππ+⎛⎫=== ⎪⎪+⎝⎭⎰⎰则100112nnn nIn+∞∞==⎛⎫= ⎪⎪+⎝⎭∑∑.考虑幂级数11(),1nnS x xn∞+==+∑求出幂级数的和函数,代入2x=即可得出答案,按通常求收敛半径的办法.所以111lim lim lim111nx x xna nna nnρ+→∞→∞→∞+====+得到本题中幂级数的收敛半径()11,11Rρ==-在,内,先微分再积分,在收敛域内幂级数仍收敛,有11000111()111n n nn n nS x x x xn n x∞∞∞++===''⎛⎫⎛⎫'====⎪⎪++-⎝⎭⎝⎭∑∑∑,所以001()(0)()0ln11x xS x S S x dx dx xx'=+=+=---⎰⎰以()1,12x=∈-代入,得()ln(1)ln(222S=--=+.即ln(2nnI∞==+∑.八【证明】方法1:令()(),0xF x f t dt xπ=≤≤⎰,有(0)0,F=由题设有()0Fπ=.又由题设()cos0f x xdxπ=⎰,用分部积分,有000()cos cos()f x xdx xdF xππ==⎰⎰()cos ()sin F x xF x xdx ππ=+⎰0()sin F x xdx π=⎰由积分中值定理知,存在(0,)ξπ∈使0()sin ()sin (0)F x xdx F πξξπ==⋅-⎰因为(0,)ξπ∈,sin 0ξ≠,所以推知存在(0,),ξπ∈使得()0F ξ=. 再在区间[0,]ξ与[,]ξπ上对()F x 用罗尔定理,推知存在1(0,)ξξ∈,2(,)ξξπ∈使12()0,()0F F ξξ''==,即 12()0,()0f f ξξ==方法2:由()0f x dx π=⎰及积分中值定理知,存在1(0,)ξπ∈,使1()0f ξ=. 若在区间(0,)π内()f x 仅有一个零点1ξ,则在区间1(0,)ξ与1(,)ξπ内()f x 异号. 不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <. 于是由()0,()cos 0f x dx f x xdx ππ==⎰⎰,有111101100()cos ()cos ()(cos cos )()(cos cos )()(cos cos )f x xdx f x dx f x x dxf x x dx f x x dxπππξπξξξξξ=-=-=-+-⎰⎰⎰⎰⎰当10x ξ<<时,1cos cos x ξ>,1()(cos cos )0f x x ξ->;当1x ξπ<<时,1cos cos x ξ<,仍有1()(cos cos )0f x x ξ->,得到:00>. 矛盾,此矛盾证明了()f x 在(0,)π仅有1个零点的假设不正确,故在(0,)π内()f x 至少有2个不同的零点.九【详解】方法1:设方程组112233x x x αααβ++= ①对方程组的增广矩阵作初等行变换,化成阶梯形矩阵,有[]123211211,,2112101105410434a a b a b c a c αααβ----⎡⎤⎡⎤⎢⎥⎢⎥=→+-+⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦211210140031aa b a c b -⎡⎤⎢⎥→+-+⎢⎥⎢⎥+-+⎣⎦(1) 当4a ≠-时,[][]1231233r ,,r ,,,ααααααβ==. 方程组①唯一解,即β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-,但310c b -+≠时,[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解,β不可由123,,ααα线性表出(3) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,此时有[]1234211,,21010000b αααβ--⎡⎤⎢⎥→--+⎢⎥⎢⎥⎣⎦得对应齐次方程组的基础解系为:()120T,,ξ=-(取自由未知量11x =,回代得2320x ,x =-=),非齐次方程的一个特解是()()0121T*,b ,b η=-++⎡⎤⎣⎦,故通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数. 方法2:设方程组112233x x x αααβ++= ①因为①是三个方程的三个未知量的线性非齐次方程组,故也可由系数行列式讨论,()1232121211211141054001a a A ,,a ααα----⎡⎤⎡⎤⎢⎥⎢⎥====-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此知道:(1) 当4a ≠-时,0A ≠,方程组有唯一解,β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-时,(有可能无解或无穷多解)对增广矩阵作初等行变换,得[]12342112111,,2110012110540015b b c c b αααβ--⎡⎤⎡⎤⎢⎥⎢⎥=→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦21110012100031b c b ⎡⎤⎢⎥→+⎢⎥⎢⎥-+⎣⎦ (i) 当4a =-时,且但310c b -+≠时,有[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解.(ii) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,其通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数.十【详解】方法1:用正定性的定义判别.已知对任意的12n x ,x ,x 均有()120n f x ,x ,x ≥,其中等号成立当且仅当 1122231110000n n n n n x a x x a x x a x x a x --+=⎧⎪+=⎪⎪⎨⎪+=⎪+=⎪⎩ ①方程组①仅有零解的充分必要条件是其系数行列式()1211211000010000100110000101n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠- 时,方程组①只有零解,此时()120n f x ,x ,x =. 若对任意的非零向量()120n X x ,x ,x ,=≠ ①中总有一个方程不为零,则有()222212112223111()()()()0n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++>所以,根据正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x ≥,则二次型正定. 由以上证明题中12(,,,)n f x x x 是正定二次型.方法2: 将二次型表示成矩阵形式,有()222212112223111()()()()n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++[]112223112223111111n n n n n n n n n n x a x x a x x a x ,x a x ,,x a x ,x a x x a x x a x ----+⎡⎤⎢⎥+⎢⎥⎢⎥=++++⎢⎥+⎢⎥⎢⎥+⎣⎦[]11122212111000100010000100010000100000100001000101n n n n n n a a x a a x a x ,x ,x a a a x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦记 112211000010000100000101n n n a x a x B ,X a a x -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则 ()()120TT T n f x ,x ,x X B BX BX BX ==≥当()1211211000010000100110000101n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠-时,0BX =只有零解,故当任意的0X ≠时,均有()()120Tn f x ,x ,x BX BX =>,从而由正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x >,则()12n f x ,x ,x 是正定二次型.十一【详解】ln Y X =⇒YX e =. 题设条件Y 为正态,故()()Y EX E e =可用函数的期望的公式求得. 将X 的样本可以转化成Y 的样本,从而对正态(,1)Y N μ中的μ求得置信区间. 最后,再从μ的置信区间转得b 的置信区间.(1) 由正态分布密度函数的定义知,Y 的概率密度为2()2(),,y f y e y μ--=-∞<<+∞于是 2()2()()y Y y b E X E e e edy μ--+∞-∞===⋅令t y μ=-,有 ()221111222t t t b ee dt ee dt μμ+∞+∞-+--+-∞-∞=⋅=⎰12e μ+=. (2) 当置信度10.95α-=时,0.05α=.查表可知标准正态分布的双侧分位数等于1.96.故由1(,)4YN μ,其中Y 表示总体Y 的样本均值,11(ln 0.50ln 0.80ln1.25ln 2.00)ln10.44Y =+++==Y 是μ的无偏估计,且2σ(0,1).Y N所以,按标准正态分布的α分位点的定义,有 /21,P Z αα⎫⎪<=-⎬⎪⎭即/2/21.P Y Y ααμα⎧⎫<<=-⎨⎬⎩⎭这样,我们就得到了μ的一个置信水平为1α-的置信区间/2/2,Y Z Y αα⎛⎫⎪⎝⎭在此题中,1,4σμ==,0Y =,所以参数μ的置信度为0.95的置信区间为( 1.96 1.96(0.98,0.98).Y Y -+=- (3) 由指数函数xe 的严格单调递增性,有{}10.980.980.48 1.482P P μμ⎧⎫-<<=-<+<⎨⎬⎩⎭10.48 1.482P e e e μ+-⎧⎫=<<⎨⎬⎩⎭{}0.48 1.48P e b e -=<<0.95=因此b 的置信度为0.95的置信区间为()0.48 1.48,.e e -十二【分析】随机变量X Y 和不相关(,)0Cov X Y ⇔=.事件A B 与相互独立()()()P AB P A P B ⇔=.要找出这二者之间的联系就应从(,)()()()Cov X Y E XY E X E Y =-入手.【详解】{}(){}{}()1121E X P A P A P A =⋅+-⋅=-,同理,{}()2 1.E Y P B =- 现在求()E XY ,由于XY 只有两个可能值1和1-,所以{}(){}()1111,E XY P XY P XY =⋅=+-⋅=-其中 {}{}{}{}{}11,11,1P XY P X Y P X Y P AB P AB ====+=-=-=+{}{}{}{}{}121P AB P A B P AB P A P B =+-=--+和 {}{}{}{}{}11,11,1P XY P X Y P X Y P AB P AB =-===-+=-==+{}{}{}2P A P B P AB =+-( 或者 {}{}{}{}{}1112P XY P XY P A P B P AB =-=-==+- )所以 {}{}()11E XY P XY P XY ==-=-{}{}{}4221P AB P A P B =--+ 由协方差公式,()()()()Cov XY E XY E X E Y =-{}{}{}{}{}42212121P AB P A P B P A P B =--+--⋅-⎡⎤⎡⎤⎣⎦⎣⎦ {}{}{}4P AB P A P B =-⎡⎤⎣⎦因此,()0Cov XY =当且仅当{}{}{}P AB P A P B =,即X Y 和不相关的充分必要条件是A B 与相互独立.。

2000-2013年考研数学三历年真题及真题解析(世上最全收录)

2000-2013年考研数学三历年真题及真题解析(世上最全收录)

研究生入学考试2000到2013年最新最全数学三考试试题2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a TΛα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni ia试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若()0sin limcos 5x x xx b e a→-=-,则a =______,b =______.(2) 函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂______. (3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____.(4) 二次型()()()()222123122331,,f x x x x x x x x x =++-++的秩为______. (5) 设随机变量X 服从参数为λ的指数分布,则{P X >=______.(6) 设总体X 服从正态分布()21,N μσ,总体Y 服从正态分布()22,N μσ,112,,,n X X X L 和212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本,则()()122211122n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑______. 二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界.(A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,fx g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则(A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点 (C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关.(9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点 (B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点 (10) 设有以下命题: ① 若()2121n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛② 若1nn u∞=∑收敛,则10001n n u∞+=∑收敛③ 若1lim1n n nu u +→∞>,则1n n u ∞=∑发散 ④ 若()1nn n uv ∞=+∑收敛,则1n n a ∞=∑,1n n v ∞=∑都收敛则以上命题中正确的是(A )①② (B )②③ (C )③④ (D )①④(11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是 (A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x = (12) 设n 阶矩阵A 与B 等价,则必有(A )当()0A a a =≠时,B a = (B )当()0A a a =≠时,B a =- (C )当0A ≠时,0B = (D )当0A =时,0B =(13) 设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系(A )不存在 (B )仅含一个非零解向量 (C )含有两个线性无关的解向量 (D )含有三个线性无关的解向量(14) 设随机变量X 服从正态分布()0,1N ,对给定的()0,1α∈,数n u 满足{}P X u αα>=,若{}P X x α<=,则x 等于(A )2u α (B )12uα-(C )12u α- (D )1u α-三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求22201cos lim sin x x x x →⎛⎫-⎪⎝⎭.(16)(本题满分8分)求)Dy d σ⎰⎰,其中D 是由圆224x y +=和()2211x y ++=所围成的平面区域(如图).(17)(本题满分8分)设()(),f x g x 在[],a b 上连续,且满足()()xxa a f t dt g t dt ≥⎰⎰,[),x ab ∈,()()bb aaf t dtg t dt =⎰⎰证明:()()bbaaxf x dx xg x dx ≤⎰⎰.(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格()0,20P ∈,Q 为需求量. (Ⅰ)求需求量对价格的弹性()0d d E E >;(Ⅱ)推导()1d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数()468242462468x x x x +++-∞<<+∞⋅⋅⋅⋅⋅⋅L 的和函数为()S x .求: (Ⅰ)()S x 所满足的一阶微分方程; (Ⅱ)()S x 的表达式.(20)(本题满分13分)设()()()1231,2,0,1,2,3,1,2,2TTTa ab a b ααα==+-=---+,()1,3,3Tβ=-. 试讨论当,a b 为何值时,(Ⅰ)β不能由123,,ααα线性表示;(Ⅱ)β可由123,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由123,,ααα线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)设n 阶矩阵111b b bb A bb ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M L. (Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得1P AP -为对角矩阵.(22)(本题满分13分)设,A B 为两个随机事件,且()()()111,,432P A P B A P A B ===,令 1,0,.A X A ⎧=⎨⎩发生,不发生 1,0,.B Y B ⎧=⎨⎩发生,不发生求:(Ⅰ)二维随机变量(),X Y 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Z X Y =+的概率分布.(23)(本题满分13分) 设随机变量X 的分布函数为()1,,;,0,.x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1αβ>>. 设12,,,n X X X L 为来自总体X 的简单随机样本. (Ⅰ)当1α=时,求未知参数β的矩估计量; (Ⅱ)当1α=时,求未知参数β的最大似然估计量; (Ⅲ)当2β=时,求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限22lim sin1x xx x →∞=+______. (2) 微分方程0xy y '+=满足初始条件()12y =的特解为______. (3) 设二元函数()()1ln 1x yz xex y +=+++,则()1,0dz =______.(4) 设行向量组()()()()2,1,1,1,2,1,,,3,2,1,,4,3,2,1a a a 线性相关,且1a ≠,则a =______.(5) 从数1,2,3,4中任取一个数,记为X ,再从1,,X L 中任取一个数,记为Y ,则{}2P Y ==______.(6) 设二维随机变量(),X Y 的概率分布为若随机事件{}0X =与{}1X Y +=相互独立,则a =______,b =______.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8(8) 设()()22222123,cos ,cos DDDI I x y d I x y d σσσ==+=+⎰⎰⎰⎰⎰⎰,其中(){}22,1D x y xy =+≤,则(A )321I I I >> (B )123I I I >> (C )213I I I >> (D )312I I I >> (9) 设0,1,2,,n a n >=L 若1nn a∞=∑发散,()111n n n a ∞-=-∑收敛,则下列结论正确的是(A )211n n a∞-=∑收敛,21nn a∞=∑发散 (B )21nn a∞=∑收敛,211n n a∞-=∑发散(C )()2121n n n aa ∞-=+∑收敛 (D )()2121n n n a a ∞-=-∑收敛(10) 设()sin cos f x x x x =+,下列命题中正确的是 (A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值 (B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值 (C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值 (D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值 (11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界 (B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界 (12) 设矩阵()33ijA a ⨯=满足*T A A =,其中*A 为A 的伴随矩阵,TA 为A 的转置矩阵.若111213,,a a a 为三个相等的正数,则11a 为(A )3 (B )3 (C )13(D (13) 设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则()112,A ααα+线性无关的充分必要条件是(A )10λ= (B )20λ= (C )10λ≠ (D )20λ≠ (14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求011lim 1x x x e x -→+⎛⎫- ⎪-⎝⎭.(16)(本题满分8分)设()f u 具有二阶连续导数,且(),y x g x y f yfx y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求222222g g x y x y ∂∂-∂∂.(17)(本题满分9分) 计算二重积分221Dx y d σ+-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤.(18)(本题满分9分) 求幂级数211121n n x n ∞=⎛⎫-⎪+⎝⎭∑在区间()1,1-内的和函数()S x .(19)(本题满分8分)设()(),f x g x 在[]0,1上的导数连续,且()()()00,0,0f f x g x ''=≥≥.证明:对任何[]0,1α∈,有()()()()()()11ag x f x dx f x g x dx f a g ''+≥⎰⎰(20)(本题满分13分) 已知齐次线性方程组(ⅰ)123123123230,2350,0,x x x x x x x x ax ++=⎧⎪++=⎨⎪++=⎩ 和 (ⅱ)()12321230,210,x bx cx x b x c x ++=⎧⎪⎨+++=⎪⎩ 同解,求,,a b c 的值.(21)(本题满分13分) 设T AC D C B ⎛⎫= ⎪⎝⎭为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为m n ⨯阶矩阵.(Ⅰ)计算T P DP ,其中1mn E A C P OE -⎛⎫-=⎪⎝⎭; (Ⅱ)利用(Ⅰ)的结果判断矩阵1T B C A C --是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(),X Y 的概率密度为()0,01,02,,1,x y x f x y <<<<⎧=⎨⎩其它. 求:(Ⅰ)(),X Y 的边缘概率密度()(),X Y f x f y ; (Ⅱ)2Z X Y =-的概率密度()Z f z ; (Ⅲ)1122P Y X ⎧⎫≤≤⎨⎬⎩⎭.(23)(本题满分13分)设()12,,,2n X X X n >L 为来自总体()20,N σ的简单随机样本,其样本均值为X ,记,1,2,,i i Y X X i n =-=L .(Ⅰ)求i Y 的方差,1,2,,i DY i n =L ; (Ⅱ)求1Y 与n Y 的协方差()1,n Cov Y Y ;(Ⅲ)若()21n c Y Y +是2σ的无偏估计量,求常数c .2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1) ()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2) 设函数()f x 在2x =的某邻域内可导,且()()ef x f x '=,()21f =,则()2____.f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4) 设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B . (5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6) 设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 (9) 若级数1nn a∞=∑收敛,则级数()(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. (10) 设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是()(A) []12()()C y x y x -. (B) []112()()()y x C y x y x +-. (C) []12()()C y x y x +. (D) []112()()()y x C y x y x ++ (11) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (12) 设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是() (A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关.(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A) 1C P AP -=. (B) 1C PAP -=.(C) T C P AP =. (D) T C PAP =.(14) 设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有()(A) 12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求: (Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。

2000考研数学真题讲解

2000考研数学真题讲解

2000考研数学真题讲解2000考研数学真题讲解在考研数学中,真题的讲解和分析对于考生来说是非常重要的。

通过对真题的深入解析,可以帮助考生更好地理解考点,掌握解题技巧,提高解题能力。

本文将针对2000年的考研数学真题进行讲解,希望能够帮助考生更好地备考。

第一道题是一道概率题,题目如下:已知事件A发生的概率为1/3,事件B发生的概率为1/4,事件A和B同时发生的概率为1/6。

求事件A和B至少有一个发生的概率。

解答:首先,我们可以利用概率的加法原理求解。

事件A和B至少有一个发生,等价于事件A发生或者事件B发生,即P(A或B)。

根据概率的加法原理,有P(A或B) = P(A) + P(B) - P(A和B)。

代入已知条件,可以得到P(A或B) = 1/3 +1/4 - 1/6 = 9/12 = 3/4。

第二道题是一道线性代数题,题目如下:设A为n阶方阵,满足A^2 - 2A + E = O,其中E为单位矩阵。

证明:A可逆,并求A的逆矩阵。

解答:首先,我们可以将等式A^2 - 2A + E = O两边同时乘以A的逆矩阵,得到A - 2E + A^-1 = O。

进一步整理,可以得到A^-1 = 2E - A。

由此可知,A的逆矩阵存在。

接下来,我们需要证明A的逆矩阵是唯一的。

假设存在另一个矩阵B,满足AB = BA = E,其中E为单位矩阵。

我们可以利用矩阵的乘法性质进行推导。

首先,我们有A(BA) = (AB)A = AA^-1 = E,即A(BA) = E。

进一步,我们可以得到BA = A^-1。

同理,我们可以得到AB = A^-1。

由此可知,A的逆矩阵是唯一的,即A的逆矩阵等于2E - A。

第三道题是一道微积分题,题目如下:设函数f(x)在区间[0,1]上连续,且f(0) = 0,f(1) = 1,且f'(x) > 0。

证明:对于任意的0 < a < b < 1,必存在c属于(a,b),使得f(c) = c。

考研数三2000真题难吗

考研数三2000真题难吗

考研数三2000真题难吗考研数学三2000年真题一直以来都备受考生关注,其难度深受讨论。

对于考生来说,了解真题的难度对备考至关重要。

在本文中,将对考研数学三2000年真题的难度进行评估,以帮助考生更好地备战考试。

2000年考研数学三真题的难度可谓是相对较高。

这一年的真题涵盖了概率论、数理统计、线性代数及高等数学等多个知识领域,题目设计综合性强,对考生的基础知识掌握能力和解题能力提出了较高要求。

因此,对于一些考生来说确实存在难度较大的情况。

在概率论和数理统计部分,2000年真题涉及到的知识点相对较为复杂。

例如,涉及到的随机变量的概率密度函数、条件概率、分布函数等概念需要考生具备扎实的基础。

而在概率分布部分,伽玛分布、贝塔分布等相对较少涉及的知识点更增加了考生的难度。

在线性代数部分,2000年真题涉及了矩阵的秩、特征值与特征向量、线性变换等内容。

考生需要熟练掌握线性代数的相关概念和性质,并能够运用这些知识解决实际问题。

同时,在高等数学部分,2000年真题的难度也不容小觑。

例如,涉及到的曲面积分、旋转曲面的体积、多元函数极限与连续等内容都需要考生对微积分的理论和应用有深入的理解。

然而,尽管2000年考研数学三真题的难度较大,考生仍不必过分担心。

因为考研数学三的考试范围相对较广,不可能所有考点都出现在一年的真题中。

因此,2000年真题只能作为备考的一部分参考资料,不能全面代表考试内容和难度。

除了了解真题难度外,考生还应掌握一些备考技巧和策略,以提高解题能力。

首先,要时刻保持良好的复习节奏,进行有针对性的复习,集中精力攻克重点难点。

其次,要注重学习解题方法,熟悉常见的解题技巧,通过大量的练习提高解题速度和准确度。

最后,要保持自信,合理安排时间,控制好考试的节奏。

综上所述,考研数学三2000年真题的难度相对较高,涉及的知识点较为复杂,对考生的基础知识和解题能力提出了较高要求。

但考生无需过分担忧,要有信心,并采取合适的备考策略和技巧,有针对性地进行复习,相信定能在考试中取得优异成绩。

考研数学三真题(2000-2017)(直接打印版)

考研数学三真题(2000-2017)(直接打印版)

x z
0
sin t du dt , 求 t dx
四 、(本题满分6 分)
已知f (x)在(−∞,+∞)内可导,且 lim f '( x) e, lim(
x
x
xc x ) lim[ f ( x) f ( x 1)], 求c x xc
的值. 五 、(本题满分6 分) 求二重积分 平面区域 六、(本题满分7 分) 已知抛物线 y px 2 qx (其中p<0,q>0)在第一象限与直线x+y=5相切,且此抛 物线与x轴所围成的平面图形的面积为S. (1) 问p和q为何值时,S达到最大? (2)求出此最大值.
(4) 设 A 是 n 阶实对称矩阵, P 是 n 阶可逆矩阵,已知 n 维列向量 是 A 的属于特征值

特征向量,则矩阵 P 1 AP (A) P 1 (B) PT


T
属于特征值 的特征向量是 ( (D) P 1
)
(C) P

)
T

(5) 设随机变量 X 和 Y 都服从标准正态分布,则 ( (A) X Y 服从正态分布 (C) X 2 和 Y 2 都服从 2 分布 三、(本题满分 5 分)
(B)对任何 ( a, b) ,有 lim[ f ( x) f ( )] 0 .
x
(C)当 f (a ) f (b) 时,存在 ( a, b) ,使 f ( ) 0 . (D)存在 ( a, b) ,使 f (b) f (a) f ( )(b a) . (2) 设幂级数
十一、(本题满分8 分) 生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差 为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以 装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x) 是标准正态分布 函数).

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设A是m×n矩阵,B是n×m的矩阵,则线性方程组(AB)X=0( ).A.当n>m时,仅有零解B.当n>m时,必有非零解C.当m>n时,仅有零解D.当m>n时,必有非零解正确答案:D解析:解一显然AB为m阶矩阵,因而(AB)X=0是含m个未知数的齐次方程组,而当m>n时,有秩(AB)≤秩(A)≤n<m.因而(AB)X=0有非零解.仅(D)入选.解二因秩(A)≤min(m,n),秩(B)≤min(m,n),而秩(AB)≤min(秩(A),秩(B)),于是当n>m时,有秩(A)≤m,秩(B)≤m,秩(AB)≤m,而AB为m阶矩阵.由于秩(AB)可能小于等于m,只能说当n>m时,如果秩(AB)=m,则(AB)X=0只有零解,如果秩(AB)<m,(AB)X=0必有非零解,因而(A)、(B)都不对.又当n<m时,秩(AB)≤n<m,而AB为m阶矩阵,因而矩阵AB 的秩小于未知数的个数,齐次方程(AB)X=0必有非零解,于是(C)也不对.仅(D)入选.知识模块:线性方程组2.[2004年] 设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).A.不存在B.仅含一个非零解向量C.含有两个线性无关的解向量D.含有三个线性无关的解向量正确答案:B解析:解一当A*≠O时,秩(A*)≠0.因而秩(A*)=n或秩(A*)=1.于是秩(A)=n或秩(A)=n-1.由题设知AX=b有四个互不相等的解,因而解不唯一,于是秩(A)=n-1.因而其基础解系仅含一个解向量.仅(B)入选.解二因A*≠O,故秩(A*)≥1,则秩(A)≥n-1.又因AX=0有解且不唯一,故秩(A)≤n-1.因而秩(A)=n-1.其基础解系仅含一个解向量.仅(B)入选.解三因A*≠o,故A*中至少有一个元素Aij=(-1)i+jMij≠0,即A的元素aij的余子式Mij≠0,而Mij为A的n一1阶子行列式,故秩(A)≥n一1.又由AX=b有解且不唯一,有秩(A)≤n-1<n,故秩(A)=n-1,于是AX=0的一个基础解系所含解向量的个数为n-秩(A)=n-(n-1)=1.仅(B)入选.知识模块:线性方程组3.[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).A.[1,2,3,4]T+c[1,1,1,1]TB.[1,2,3,4]T+c[0,1,2,3]TC.[1,2,3,4]T+c[2,3,4,5]TD.[1,2,3,4]T+c[3,4,5,6]T正确答案:C解析:解一仅(C)入选.AX=b为四元非齐次方程组,秩(A)=3,AX=0的一个基础解系只含n-秩(A)=4-3=1个解向量.将特解的线性组合2α1,α2+α3写成特解之差的线性组合,即2α1-(α2+α3)=(α1-α2)+(α1-α3).因2一(1+1)=0,由命题2.4.4.1知,2α1-(α2+α3)=[2,3,4,5]T≠0仍为AX=0的一个解向量,且为其一个基础解系,故AX=b的通解为X=α1+k[2α1-(α2+α3)]=[1,2,3,4]T+k[2,3,4,5]T.解二仅(C)入选.因秩(A)=3,故四元齐次方程组AX=0的基础解系所含向量的个数为4一秩(A)=1,所以AX=0的任一个非零解都是它的基础解系.由于α1及(α2+α3)/2都是AX=b的解(因1/2+1/2=1),故α1-(α2+α3)=[2α1-(α2+α3)]=[2,3,4,5]T是AX=0的一个解,从而2×[2,3,4,5]T=[2,3,4,5]T=η也是AX=0的一个解,且因η≠0,故η为Ax=0的一个基础解系,所以AX=b的通解为X=α1+cη=[1,2,3,4]T+c[2,3,4,5]T,c为任意常数.知识模块:线性方程组4.[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).A.(η2+η3)/2+k1(η2-η1)B.(η2-η3)/2+k1(η2-η1)C.(η2+η3)/2+k1(η2-η1)+k2(η3-η1)D.(η2-η3)/2+k1(η2-η1)+k2(η3-η1)正确答案:C解析:解一仅(C)入选.因n元非齐次线性方程组AX=b的线性无关的解向量最多的个数为n-秩(A)+1,故3-秩(A)+1≥3,即秩(A)≤1.又秩(A)≥1(如秩(A)=0,则A=0与AX=β≠0矛盾),故秩(A)=1,所以AX=0的一个基础解系含n-秩(A)=3=1-2个解向量,而η3-η1,η2-η1均为AX=0的非零解,因而它们为AX=0的基础解系.又(η2+η3)/2中的系数1/2+1/2=1.由命题2.4.4.1知,(η2+η3)/1为AX=β的一特解.于是AX=β的通解为(η2+η3)/2+k1(η2-η1)+k2(η3-η1).解二由非齐次线性方程组AX=B 通解的结构(该方程组的一特解加上对应齐次线性方程组AX=0的基础解系)可分别排除选项(A)、(B)、(D).事实上,(B)、(D)中的为AX=0的解,不是AX=B的特解,可排除(B)、(D).又因AX=0的解η2-η1,η3-η1线性无关,故AX=0的基础解系至少包含2个解向量,从而排除(A).仅(C)入选.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。

数学三考研真题(2000-)

数学三考研真题(2000-)

2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万.若以t W 表示第t 年的 工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (4) 设随机变量X ,Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式{}-6P X Y ≥≤ .(5) 设总体X 服从正态分布2(0,0.2),N 而1215,,X X X 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++服从___分布,参数为_______ 二、选择题(1) 设函数f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点. (C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点.(2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( )(A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若秩0TA αα⎛⎫=⎪⎝⎭秩(A),则线性方程组( )(A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00TA X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00TAX y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解.(5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x zxt e dt t -=⎰求dudx四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c 的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在区间[0,1]上连续,在(0,1)内可导,且满足1130(1)(),(1).x f k xe f x dx k -=>⎰证明:存在ξ∈(0,1), 使得1'() 2(1)().f f ξξξ-=-八、(本题满分7 分)已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数)且(1),n ef n=求函数项级数 1()ni fx ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使T Q AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,秩(A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j=1,2,…,n ),二次型1211(,,).n nij n i j i j A f x x x x x A===∑∑(1) 记12(,,),n A x x x =把1211(,,).nnij n i j i j A f x x x x x A===∑∑写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2) 二次型()T g X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x ) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G ={(x ,y )|1≤x ≤3,1≤y ≤3}上的均匀分布,试求随机变量U ={X −Y } 的概率密度().p u2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4) 设随机变量和的联合概率分布为则2X 和2Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221n n i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)3 (C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) T P α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布 (C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布 三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin xf x x =求()x dx .六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n nn ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩ 其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(= (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+ (1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=n i i a 试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为 ;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )≠ 0,则2fu v∂=∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f . (D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ] (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求)cos sin 1(lim 2220xxx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = .(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos ,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A) ∑∞=-112n n a 收敛,∑∞=12n n a 发散 . (B ) ∑∞=12n n a 收敛,∑∞=-112n n a 发散.(C) )(1212∑∞=-+n n n a a 收敛. (D) )(1212∑∞=--n n n a a 收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是 (A)f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ] (12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ] (14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分)求).111(lim 0x e x x x --+-→(16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂(17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A EP 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P(23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2006年全国硕士研究生入学统一考试数学三试题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''= (3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ] (8)设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1n n a ∞=∑收敛,则级数(A) 1n n a ∞=∑收敛 . (B )1(1)n n n a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关. [ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)T C PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有 (A)12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=; (Ⅱ) ()0lim x g x +→.(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分) 证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()T T121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数. (Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2007年全国硕士研究生入学统一考试数学三试题一. 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→等价的无穷小量是( )A .1-.ln(1B 1C - .1D -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在 (3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A1arcsin (,)xdy f x y dx ππ+⎰⎰.B 1arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( ) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim (sin cos )________2x x x x x x x →∞+++=+.(12)设函数123y x =+,则()(0)_________n y =.(13)设(,)f u v 是二元可微函数,(,),y xz f x y=则z z y x y ∂∂-=∂∂________.(14)微分方程31()2dy y y dx x x =-满足11x y ==的特解为__________. (15)设距阵01000010,00010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则3A 的秩为_______. (16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.(18)(本题满分11分) 设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ= (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间. 1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)T λλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . (24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值. (Ⅰ)求参数θ的矩估计量θ;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点.()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分0()at af x dx⎰等于( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知(,)f x y =,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f连续,若22(,)uvD f u v =⎰⎰,其中uv D 为图中阴影部分,则F u∂=∂( )(A )2()vf u (B )2()v f u u (C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫= ⎪⎝⎭则在实数域上域与A 合同矩阵为( )()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( ) ()A ()2F x . ()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=.()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ .(12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限201sin limlnx xx x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数, (1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202x t t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵2221212n na a aA a a ⨯⎛⎫ ⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解; (3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+, 证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭;(2)求Z 的概率密度. (23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n=-. (1)证 T 是2μ的无偏估计量. (2)当0,1μσ==时 ,求DT .2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1)函数3()sin x x f x xπ-=的可去间断点的个数为(A)1. (B)2. (C)3.(D)无穷多个.(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =.(C)1a =-,16b =-. (D )1a =-,16b =.(3)使不等式1sin ln x tdt x t>⎰成立的x 的范围是(A)(0,1). (B)(1,)2π. (C)(,)2ππ.(D)(,)π+∞.(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0x F x f t dt =⎰的图形为(A)(B)(C)(D)(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 (A)**32O B A O ⎛⎫⎪⎝⎭.(B)**23O B AO ⎛⎫⎪⎝⎭.(C)**32O A BO ⎛⎫⎪⎝⎭.(D)**23O A BO ⎛⎫⎪⎝⎭. (6)设,A P 均为3阶矩阵,T P 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则T Q AQ 为(A)210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B)110120002⎛⎫⎪⎪ ⎪⎝⎭.(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D)100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(7)设事件A 与事件B 互不相容,则(A)()0P AB =.(B)()()()P AB P A P B =.(C)()1()P A P B =-.(D)()1P A B ⋃=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布(0,1)N ,Y 的概率分布为1{0}{1}2P Y P Y ====,记()z F Z 为随机变量Z XY =的分布函数,则函数()z F Z 的间断点个数为 (A)0.(B)1. (C)2 .(D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)cos x x →= .(10)设()y x z x e =+,则(1,0)zx ∂=∂ . (11)幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 .(12)设某产品的需求函数为()Q Q P =,其对应价格P 的弹性0.2p ξ=,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设(1,1,1)T α=,(1,0,)T k β=,若矩阵T αβ相似于300000000⎛⎫ ⎪⎪ ⎪⎝⎭,则k = .(14)设1X ,2X ,…,n X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值. (16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. (17)(本题满分10 分)计算二重积分()Dx y dxdy -⎰⎰,其中22{(,)(1)(1)2,}D x y x y y x =-+-≤≥.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数()f x 在[],a b 上连续,在(),a b 上可导,则(),a b ξ∈,得证()'()()()f b f a f b a ξ-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()0,,(0)σσ>内可导,且'0lim ()x f x A +→=,则'(0)f +存在,且'(0)f A +=.(19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线的方程.(20)(本题满分11 分)设111A=111042--⎛⎫ ⎪- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足21A ξξ=,231A ξξ=的所有向量2ξ,3ξ.(Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ,证明1ξ,2ξ,3ξ线性无关. (21)(本题满分11 分)设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-. (Ⅰ)求二次型f 的矩阵的所有特征值.(Ⅱ)若二次型f 的规范形为2211y y +,求a 的值. (22)(本题满分11 分)设二维随机变量(,)X Y 的概率密度为0(,)0xe y xf x y -⎧<<=⎨⎩其他(Ⅰ)求条件概率密度()Y X f y x ;。

2000-数学三真题、标准答案及解析

2000-数学三真题、标准答案及解析

x→a
lim+
= − lim
x→a +
可见当 f '( a ) ≠ 0 时,
f ( x) 在点 x = a 处的左、右导数不相等,因此导数不存在.
故 f ( a ) = 0 且 f '( a ) ≠ 0 是 f ( x) 在点 x = a 处不可导的充分条件. (3)设 a1 , a2 , a3 是四元非齐次线形方程组 AX = b 的三个解向量,且秩 (A)=3, a1 = (1, 2,3, 4) , a2 + a3 = (0,1, 2,3) ,c 表示任意常数,则线形方程组
x
.
+∞ +∞ dx e x dx dt 1 t +∞ ex = t ∫ = = arctan 2 2− x 2 2 x ∫ 1 1 e +t e +e e e0 ex + (ex )

+∞
1
1⎛π π ⎞ π = ⎜ − ⎟= e ⎝ 2 4 ⎠ 4e
(3)已知四阶矩阵 A 与 B 相似;矩阵为 A 的特征值
f ( x) = x 2 在点 x = 1 处, f (1) > 0 , f ' (1) > 0 ,但 f ( x) = x 2 在点 x = 1 处可导,
排除(C) ; 同样, f ( x) = − x 在点 x = 1 处, f (1) < 0 , f (1) < 0 ,但
2 '
f ( x) = x 2 ,在点 x = 1
第 2/13页
(B)存在但不一定为零 (D) 不一定存在 【 】
−x
, g ( x) = 1 + e
−x

00年考研数学真题

00年考研数学真题

00年考研数学真题2000年考研数学真题解析一、问题描述及分析数学是考研的必考科目之一,往年的数学真题对考生的数学能力和解题思路有一定的考察。

在本文中,我们将对2000年的考研数学真题进行详细解析,帮助考生加深对数学知识的理解和应用。

二、选择题解析1. 题目描述:已知函数f(x) = x^2 + ax + b,若对于任意实数x,都有f(x) = f(1 - x),则a+b的值为()。

2. 解析:根据题目要求可以得出f(x) = x^2 + ax + b = f(1 - x) = (1 - x)^2 + a(1 - x) + b。

将这两个式子相等化简得到x^2 + ax + b = 1 - 2x + x^2 + a - ax + b,化简可得a = 1。

由于a = 1,代入任意一个式子中,可得b = -1。

因此,a + b = 1 - 1 = 0。

3. 题目描述:设f(x) = |x + 1| + ax,若对于任意实数x,f(f(x)) =f(|x|),则a的值为()。

4. 解析:首先,我们将f(f(x))展开,得到f(f(x)) = f(|x|) = ||x + 1| + a|x + 1|| + a|x + 1| = ||x| + 1 + a||x + 1| + a|x + 1||。

根据绝对值的性质,|a| = a或者|a| = -a。

若|a| = a,则||x| + 1 + a||x + 1| + a|x + 1|| = (|x| + 1 + a)(|x + 1| + a(x + 1)) = (x + 1 + a)(x + 1 + ax + a) = (x + 1 + a)(x(1 + a) + 2(1 + a)) = (x + 1 + a)(x + 2)(1 + a)。

若|a| = -a,则||x| + 1 + a||x + 1| + a|x + 1|| = (|x| + 1 + a)(|x + 1| - a(x + 1)) = (x + 1 + a)(x + 1 - ax - a) = (x + 1 + a)(x - 2ax + 1 - a) = (x + 1 + a)(1 - 2ax - a)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处可导,排除(D).
剩下(B)为正确选项.事实上,当(B)成立,即 f (a) = 0 且 f '(a) ≠ 0 时,有
lim f (x) − f (a) = − lim f (x) = − f '(a) ,
x→a−
x−a
x→a− x − a
lim f (x) − f (a) = − lim f (x) = − f '(a) .
P{X
<
k}
=
∫1 1dx
03
=
1. 3
⎧1 (5)假设随机变量 X 在区间[−1,2] 上服从均匀分布,随机变量 Y = ⎪⎨0
⎪⎩− 1
若x > 0 若X = 0 , 若x < 0
则方差 DY =________________. 【答】 8 9
【详解】因为 X 在区间[−1,2] 上服从均匀分布,所以其密度函数为
=
1 arctan e
t e
+∞ 0
=
1 e
⎛ ⎜⎝
π 2

π 4
⎞ ⎟⎠
=
π 4e
(3)已知四阶矩阵 A 与 B 相似;矩阵为 A 的特征值 1,1,1,1, 则行列式 2345
B-1 - E =______.
【答】 24
【详解】 因为 A 与 B 相似,而相似矩阵有相同的特征值,所以 B 得四个特征值 1 , 1 , 1 , 1 , 2345
x = 0 处不可导,排除(A) f (x) = x 2 在点 x = 1处, f (1) > 0 , f ' (1) > 0 ,但 f (x) = x 2 在点 x = 1处可导,
排除(C);
同样, f (x) = −x 2 在点 x = 1处, f (1) < 0 , f ' (1) < 0 ,但 f (x) = x 2 ,在点 x = 1
3
3
故 D(Y ) = E(Y 2 ) − [E(Y )]2 = 1 − 1 = 8 99
二、 选择题
(1)设对任意的 x ,总有ϕ(x) ≤ f (x) ≤ g(x), 且 lim[g(x) − ϕ(x)] = 0 ,则 lim f (x)
x→∞
x→∞
(A) 存在且等于零
(B)存在但不一定为零
(C) 一定不存在
又如
ϕ(x) = ex − e− x , g(x) = e− x + ex , f (x) = ex
显然ϕ(x), g(x), f (x) 满足题设条件,但 lim f (x) 不存在。 x→∞
因此(B)也可排除,剩下(D)为正确选项.
(2)设函数 f (x) 在点 x = a 处可导,则函数 f (x) 在点 x = a 处不可导的充分条件是
( ) 又由 Bx = λi x,λi ≠ 0, 有
B-1 - E
x
=
⎛ ⎜ ⎝
1 λi
⎞ −1⎟ x

,可见矩阵B- NhomakorabeaE
有特征值
1 λi
−1,即
1,2,
3,4.从而有行列式 B-1 - E =1×2×3×4=24
(3) 设随机变量 X 的概率密度为
⎧1 ⎪⎪ 3
,
x ∈[0,1],
f
(
x)
=
⎪2 ⎨⎪ 9
⎧1
f
(
x)
=
⎪ ⎨3
⎪⎩0
−1≤ x ≤ 2 其他
于是 P{Y = -1} = P{X < 0} = 1
3
P{Y = 0} = P{X = 0} = 0
P{Y = 1} = P{X > 0} = 2
3
因此
E(Y ) = −1× 1 + 0× 0 +1× 2 = 1
3
33
E(Y 2 ) = (−1)2 × 1 + 02 × 0 + 12 × 2 = 1
(D) 不一定存在
【】
【答】 [ D]
【详解】 若令ϕ(x) = 1 − e− x , g(x) = 1 + e− x , f (x) = 1 ,则有
ϕ(x) ≤ f (x) ≤ g(x),
且 lim[g(x) − ϕ(x)] = 0, lim f (x) = 1
x→∞
x →∞
可排除(A)(C)两个选项.
,
x ∈[3, 6], 若 k 使得 P{X ≥ k} = 2 , 则 k 的取值范围是_________
3
⎪0, 其他
⎪⎩
【答】 [1,3]
【详解】 由题设 P{X ≥ k} = 2 , 知道
3
P{X
<
k}
=1−
2 3
=
1, 3

P{X
<
k}
=
k
∫−∞
f
( x)dx.
再对照概率密度函数的定义,可见上式成立的充要条件是1 ≤ k ≤ 3. 此时
2000 年全国硕士研究生入学统一考试 经济数学三试题详解及评析
一、 填空题
(1)
设z
=
f
⎛ ⎜ xy, ⎝
x y
⎞ ⎟ ⎠
+
g
⎛ ⎜⎝
y x
⎞ ⎟⎠
,
其中
f , g 均可微,则 ∂z ∂x
= ________.
【答】
yf1′+
1 x
f2′ −
y x2
g′.
【详解】 ∂z ∂x
=
f ′⋅ y+
f
2′
x→a+
x−a
x→a+ x − a
可见当 f '(a) ≠ 0 时, f (x) 在点 x = a 处的左、右导数不相等,因此导数不存在.
故 f (a) = 0 且 f '(a) ≠ 0 是 f (x) 在点 x = a 处不可导的充分条件.
(3)设 a1, a2 , a3 是四元非齐次线形方程组 AX = b 的三个解向量,且秩 (A)=3, a1 = (1, 2,3, 4)T , a2 + a3 = (0,1, 2, 3)T ,c 表示任意常数,则线形方程组
(A) f (a) = 0且f ' (a) = 0 (B) f (a) = 0且f ' (a) ≠ 0
(C) f (a) > 0且f ' (a) > 0 (D) f (a) < 0且f ' (a) < 0
【答】 (B) 【详解】 举反例进行说明:如
【】
f (x) = x 2 在点 x = 0 处, f (0) = 0, f ' (0) = 0 ,并不能推倒出 f (x) = x 2 在点
AX = b 得通解 X =
⎜⎛ 1⎟⎞ ⎜⎛1⎟⎞
(A)
⎜ ⎜ ⎜⎜⎝
2⎟ 43 ⎟⎟⎟⎠
+
c ⎜⎜⎜⎜⎝111⎟⎟⎟⎟⎠
⎜⎛ 1⎟⎞ ⎜⎛ 0⎟⎞
(B)
⎜ ⎜ ⎜⎜⎝
2 3 4
⎟ ⎟ ⎟⎟⎠
+
c ⎜⎜ ⎜⎜⎝
1⎟

1 y
+
g′

⎛ ⎜⎝

y x2
⎞ ⎟⎠
=
yf1′+
1 x
f2′ −
y x2
g′.
∫ (2)

+∞ dx 1 ex + e2−x
= __________
【答】 π . 4e
∫ ∫ ( ) ∫ 【详解】
+∞ dx 1 ex + e2−x
=
+∞ exdx 1 ex + ex
2
ex
=t
+∞ 1
dt e2 + t2
相关文档
最新文档