九年级数学期末复习压轴题
【玩转压轴题】必考3:相似三角形的综合(原卷版)-浙教版2022年初三数学期末压轴题精选汇编
【玩转压轴题】必考3:相似三角形的综合(原卷版)一、单选题1.如图,C 是线段AB 上的任一点,分别以,,AB AC BC 为直径在线段AB 同侧作半圆,则这三个半圆周围成的图形被阿基米德称为“鞋匠刀形”(即图中阴影部分).当“鞋匠刀形”的面积等于以BC 为直径的半圆的面积时,过C 作CD AB ⊥,交圆周于点D ,连结BD ,则CD 与BC 的比值为( )A .12B C .13D 2.如图,在△ABC 中,∠CAB =45°,以其三边为边向外作正方形,连接GC 并延长交BH 于点L ,过点C 作CK ⊥DE 于点K .若L 为BH 中点,则GL CK 的值为( )A .1B .98C D3.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .CD 4.如图,在ABC 中,AE 和BD 是高,45ABE ∠=︒,点F 是AB 的中点,BD 与FE AE、分别交于点,G H ,CAE ABD ∠=∠.有下列结论:①FD FE =;②2BH CD =;③22BD BH BE ⋅=;④43ABC BCDFS S =△四边形.其中正确的有( )A .①③B .②④C .①②③D .①②④5.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是( )A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差6.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形ACDE ,正方形BCFG 与正方形ABMN ,AN 与FG 相交于点H ,连结NF 并延长交AE 于点P ,且2NF FP =.记ABC 的面积为1S ,FNH △的面积为2S ,若1221S S -=,则BC 的长为( )A .6B .C .8D .97.如图,将边长为6的正六边形ABCDEF 沿HG 折叠,点B 恰好落在边AF 的中点上,延长B C ''交EF 于点M ,则C M '的长为( )A .1B .65C .56D .958.如图,等腰Rt ABC 中,90BAC AD BC ∠=︒⊥,于D ,ABC ∠的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM MC 、下列结论:①DF DN =;②ABE MBN ≌;③ CMN 是等腰三角形;④AE CN =,其中正确的是( )A .①②B .①④C .①③D .②③9.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在Rt ABC 中,()90,,BAC AC a AB b a b ∠=︒==<.如图所示作矩形HFPQ ,延长CB 交HF 于点G .若正方形BCDE 的面积等于矩形BEFG 面积的3倍,则ab的值为( )A B C D 35210.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E 在DC 边上,且2CE DE =,连接AE 交BD 于点G ,过点D 作DF AE ⊥,连接OF 并延长,交DC 于点P ,过点O 作⊥OQ OP 分别交AE ,AD 于点N ,H ,交BA 的延长线于点Q ,现给出下列结论:①45AFO ∠=︒;②2N P O D H H =⋅;③Q OAG ∠=∠;④OG DG =.其中正确的结论有( )A .①③B .②④C .①②③D .①②③④二、填空题11.如图,在矩形ABCD 中,6AB =,8AD =.连接BD ,DBC ∠的角平分线BE 交DC 于点E ,现把BCE 绕点B 逆时针旋转,记旋转后的BCE 为BC E ''△.当射线BE '和射线BC '都与线段AD 相交时,设交点分别为F ,G .若BFD △为等腰三角形,则线段DG 长为______.12.如图,点D 是等边ABC 边BC 上一点,将等边ABC 折叠,使点A 与点D 重合,折痕为EF (点E 在边AB 上).(1)当点D 为BC 的中点时,:AE EB =__; (2)当点D 为BC 的三等分点时,:AE EB =__.13.小明想设计一款如图1所示的喷水壶,于是他绘制了如图2所示的设计图,壶身的主视图呈矩形ABCD ,壶把手呈圆弧状,圆心O 落在AD 上,圆弧交CD 于点E .支撑架HF 所在直线恰好经过O .壶嘴GI 的端点I 恰好在AD 所在直线上.已知258cm,4cm,cm, 6.5cm 12AD DE AF HF FG =====,则半径AO 的长为________cm ,壶嘴GI 的长度为________cm .14.如图,AB 是半圆O 的直径.点C 在半径OA 上,过点C 做CD AB ⊥交半圆O 于点D .以,CD CA 为边分别向左、下作正方形,CDEF CAGH .过点B 作GH 的垂线与GH 的延长线交于点I ,M 为HI 的中点.记正方形,CDEF CAGH ,四边形BCHI 的面积分别为123,,S S S .(1)若:2:3AC BC =,则12S S 的值为_______;(2)若D ,O ,M 在同一条直线上,则123S S S +的值为______.15.四个全等的直角三角形如图摆放成一个风车的形状,形成正方形ABCD 和正方形IJKL .若BF 平分∠ABK ,AF :FK =5:3,风车周长为面积和是___.16.用一张正方形纸片折成一个“小蝌蚪”图案(如图1).如图2,正方形ABCD 的边长为2,等腰直角ACE 的斜边AE 过点D .点F 为CE 边上一点,连结AF 交CD 于点G ,将AEF 沿AF 对称得AE F ',AE '与BC 交于点H .当//FE CD '时,E FA '∠=______︒;当点G 为CD 的中点时,则CF 的长为______.17.如图,点A C 、分别是x 轴、y 轴正半轴上的点,矩形ABCO 的边,AB BC 分别交函数ky x=(0,0,x k k >≠为常数)的图象于点,P Q ,连接PQ . (1)若P 为AB 中点,则BQBC=___. (2)若把BPQ ∆沿PQ 翻折,点B 恰好落在x 轴上的点E ,且6,2OE EA ==,则k =___.18.如图,在ABCD 中,E 是BC 边上的中点,AP CD ⊥于点P ,将ABE △沿AE 翻折,点B 的对称点B '落在AP 上,延长EB '恰好经过点D ,若4AB =,则折痕AE 的长为________.19.如图,点A ,B 分别是反比例函数(0,0)a y a x x =>>和(0,0)by b x x=<<图象上的点,且//AB x 轴,点C 在x 轴的正半轴上,连接AC 交反比例函数(0,0)ay a x x=>>的图象于点D ,已知20BOD S =△,8COD S =△,2AD CD =,则-a b 的值为______.20.如图1是护眼台灯,该台灯的活动示意图如图2所示.灯柱6cm BC ,灯臂AC 绕着支点C 可以旋转,灯罩呈圆弧形(即弧AD 和弧EF ).在转动过程中,AD (EF )总是与桌面BH 平行.当AC BH ⊥时,51cm AB =.DM MH ⊥,测得42cm DM =(点M 在墙壁MH 上,且MH BH ⊥);当灯臂AC 转到CE 位置时,FN MH ⊥,测得15cm FN =,则点E 到桌面的距离为______cm .若此时点C ,F ,M 在同一条直线上,弧EF 的最低点到桌面BH 的距离为31cm ,则弧EF 所在圆的半径为_____cm (保留一位小数).三、解答题 21.特例感知(1)如图,已知在Rt ABC 中,90BAC ∠=︒,AB AC =,取BC 边上中点D ,连结AD ,点E 为AB 边上一点,连结DE ,作DF DE ⊥交AC 于点F ,求证BE AF =;探索发现(2)如图,已知在Rt ABC 中,90BAC ∠=︒,3AB AC ==,取BC 边上中点D ,连结AD ,点E 为BA 延长线上一点,1AE =,连结DE ,作DF DE ⊥交AC 延长线于点F ,求AF 的长;类比迁移(3)如图,已知在ABC 中,120BAC ∠=︒,4AB AC ==,取BC 边上中点D ,连结AD ,点E 为射线BA 上一点(不与点A 、点B 重合),连结DE ,将射线DE 绕点D 顺时针旋转30°交射线CA 于点F ,当4AE AF =时,求AF 的长.22.(证明体验)(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.(思考探究)(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.(拓展延伸)(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC上,EDC ABC ∠=∠.若5,2BC CD AD AE ===,求AC 的长. 23.(推理)如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌. (运用)(2)如图2,在(推理)条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长. (拓展)(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DEEC的值(用含k 的代数式表示).24.在Rt ABC 中,90ACB ∠=︒,点D 在直线AC 上,连结BD ,以BD 为边作等腰直角BDE (点E 在直线BD 右侧),连结CE .(1)如图1,若45A ∠=︒,且点D 在AC 边上,求证:ABD CBE ∽△△; (2)如图2,若045A ︒<∠<︒,且12BC =,5CD =,求CE 的长;(3)如图3,若点D 在AC 的延长线上,BD ,CE 相交于点F ,设CDF 的面积为1S ,BEF 的面积为2S ,BCF △的面积为3S ,则2123122BC S S S =-+,请说明理由.25.如图,四边形ABCD 是矩形,20AB =,10BC =,以CD 为一边向矩形外部作等腰直角CDG ,90G ∠=︒.点M 在线段AB 上,且AM a =,点P 沿折线AD DG -运动,点Q 沿折线BC CG -运动(P ,Q 与点G 不重合),在运动过程中终保持//PQ AB .设PQ 与AB 之间的距离为x ,四边形AMQP 的面积为y .(1)若12a =,回答下列问题:①当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x =______. ②求整个运动过程中,y 关于x 的函数解析式,并求出y 的最大值;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.26.如图1,在矩形ABCD 中,动点P 沿着边AB 从点A 运动到点B ,同时动点Q 沿着边BC ,CD 从点B 运动到点D .它们同时到达终点,若点Q 的运动路程x 与线段BP 的长,满足487y x =-+,BD 与PQ 交于点E . (1)求AB ,BC 的长.(2)如图2.当Q 在CD 上时,求BEDE. (3)将矩形沿着PQ 折叠,点B 的对应点为点F ,连结EF ,当EF 所在直线与BCD △的一边垂直时,求BP 的长.27.如图1,在ABC 中,90A ∠=︒,当点P 从点A 出发,沿着AB 方向匀速运动到点B 时,点Q 恰好从点B 出发,沿着BC 方向匀速运动到点C ,连结PQ ,记,AP x CQ y ==,已知554y x =-+.(1)求AB和BC的长.(2)当BPQ是以PQ为腰的等腰三角形时,求x的值.(3)如图2,直线l是线段PQ的垂直平分线.①若直线l过点B,交AC于点D,请判断四边形BQDP的形状,并说明理由;②A'是点A关于直线l的对称点,若点A'落在ABC的内部,请直接写出x的取值范围.28.如图,四边形ABCD为边长等于7的菱形,其中∠B=60°,点E在对角线AC上,且AE=1,点F在射线CB上运动,连接EF,作∠FEG=60°,交DC延长线于点G.(1)当点F与B点重合时,试判断△EFG的形状,并说明理由;(2)以点B为原点,BC所在的直线为x轴建立平面直角坐标系,当CF=10时,平面内是否存在一点M,使得以点M、E、F、G为顶点的四边形与菱形ABCD相似?若存在,求M的坐标,若不存在,说明理由;(3)记点F关于直线AB的轴对称点为点N,若点N落在∠EDC的内部(不含边界),求CF的取值范围.29.如图,在△ABC中,AC=BC=tan∠CAB=12,P为AC上一点,PD⊥AB交AB于点E,AD⊥AC交PD于点D,连结BD,CD,CD交AB于点Q.(1)若CD⊥BC,求证:△AED∽△QCB;(2)若AB平分∠CBD,求BQ的长;(3)连结PQ并延长交BD于点M.①当点P是AC的中点时,求tan∠BQM的值②当PM平行于四边形ADBC中的某一边时,求BMDM的值.30.如图,已知AB是⊙O的弦,OB=1,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.设∠B=α,∠ADC=β.(1)求∠BOD的度数(用含α,β的代数式表示);(2)若α=30°,当AC的长度为多少时,以点A、C、D为顶点的三角形与B、C、O 为顶点的三角形相似?请写出解答过程.(3)若α=β,连接AO,记△AOD、△AOC、△COB的面积分别为S1,S2,S3,如果S2是S1和S3的比例中项,求OC的长.。
【期末专项复习】人教版数学九年级(上)第24章:圆 压轴题专项训练(附详细解答)
【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(含解析)
人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(1)求三个点,,的坐标;(2)当点运动至抛物线的顶点时,求此时(3)设点的横坐标为,的长度为范围;是否存在最值,如有写出最值.(1)求二次函数的解析式;(2)当x 为何值时,函数有最大值还是最小值?并求出最值;(3)在抛物线上是否存在点,若存在,请求出点A B C N N t MN L 8AOP S =△(1)求抛物线的表达式和点D 的坐标.(2)连接AD ,交y 轴于点E ,P 是抛物线上的一个动点.Q 是抛物线对称轴上一个点,是否存在以B ,E ,P ,Q 为顶点的四边形为平行四边形,若存在,求出存在,请说明理由.(3)如图,点P 在第四象限的抛物线上,连接AP 、BE 交于点G ,设(1)求二次函数解析式;(2)设的面积为,试判断PCD ∆S S请说明理由;(3)在上是否存在点,使为直角三角形?若存在,请写出点的坐标若不存在,请说明理由.5.如图,抛物线与轴相交于两点(点位于点的左侧),与轴相交于点,是抛物线的顶点,直线是抛物线的对称轴,且点的坐标为.(1)求抛物线的解析式.(2)已知为线段上一个动点,过点作轴于点.若的面积为.①求与之间的函数关系式,并写出自变量的取值范围;②当取得最值时,求点的坐标.(3)在(2)的条件下,在线段上是否存在点,使为等腰三角形?如果存在,请求出点的坐标;如果不存在,请说明理由.6.如图,已知二次函数,回答下列问题:(1)求出此抛物线的对称轴和顶点坐标;MB P PCD ∆P 2y x bx c =-++x ,A B A B y C M 1x =C (0,3)P MB P PD x ⊥D ,PD m PCD =∆S S m m S P MB P PCD ∆P 243y x x =++(2)写出抛物线与轴交点、的坐标,与轴的交点的坐标;(3)写出函数的最值和增减性;(4)取何值时,①,②.7.如图,抛物线y =﹣x 2+bx +c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0),C (0,3),点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D .若OD =m ,△PCD 的面积为S ,①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标;(3)在MB 上是否存在点P ,使△PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.8.已知抛物线y =x 2﹣2ax+m .(1)当a =2,m =﹣5时,求抛物线的最值;(2)当a =2时,若该抛物线与坐标轴有两个交点,把它沿y 轴向上平移k 个单位长度后,得到新的抛物线与x 轴没有交点,请判断k 的取值情况,并说明理由;(3)当m =0时,平行于y 轴的直线l 分别与直线y =x ﹣(a ﹣1)和该抛物线交于P ,Q 两点.若平移直线l ,可以使点P ,Q 都在x 轴的下方,求a 的取值范围.9.如图,Rt △OAB 如图所示放置在平面直角坐标系中,直角边OA 与x 轴重合,∠OAB=90°,OA=4,AB=2,把Rt △OAB 绕点O 逆时针旋转90°,点B 旋转到点C 的位置,一条抛物线正好经过点O ,C ,A 三点.x A B y C x 0y <0y >(1)填空:点B 的坐标为 ,点D 的坐标为 .(2)如图1,连结,P 为x 轴上的动点,当以O ,D ,P 为顶点的三角形是等腰三角形时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,m ,连结,,与直线交于点E .设别为和,设己,试求t 关于m 的函数解析式并求出OD (05)m <<MQ BQ MQ OB 1S 2S 12S t S =(1)求抛物线的解析式;(2)如图1,点P为直线CB上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若存在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.13.如图1,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,-2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E交x轴于B、C两点,点M 为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.14.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y 轴交于C点,D为抛物线顶点.连接AD,交y轴于点E,P是抛物线上的一个动点.参考答案:∴β=1,∴A(-1,0),B (3,0),∴,解得:,∴抛物线的表达式为,当x =1时,y =1-2-3=-4,∴点D 的坐标为(1,4);(2)解:∵A (-1,0),B (3,0),D (1,4),设直线AD 的表达式为y =kx +c ,∴,解得,∴直线AD 的表达式为y =-2x -2,当x =0时,y =-2,∴点E 的坐标为(0,-2),∵P 是抛物线上的一个动点,Q 是抛物线对称轴上一个点,∴设P (m ,),Q (1,t ),①当BE 为边时,PQ BE 且PQ =BE ,当E 对应Q ,由(0,-2)变为(1,t ),要向右平移1个单位,则当B (3,0)对应P (m ,),也要向右平移1个单位,即m =3+1=4,∴=5,∴P (4,5);309330a b a b --=⎧⎨+-=⎩12a b =⎧⎨=-⎩2=23y x x --04k c k c -+=⎧⎨+=⎩22k c =-⎧⎨=-⎩223m m --∥223m m --223m m --∵∠OBC=45°,∵轴∴时,轴∴,即,解得:,∴此时;②时,如图②,PD x ⊥90CDP ∠=︒//CP x 3c p y y ==263m -+=32m =3,32P ⎛⎫ ⎪⎝⎭90P CD ''∠=︒∵轴,∴,∴,又∵,∴,即,∵,,,P D x ''⊥//P D OC ''12∠=∠90P CD D OC '''∠=∠=︒P CD D OC '''∆∆∽OC CD CD P D '='''(0,3)C (,0)D m (,26)P m m -+【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.8.(1)-9;(2)当m=0时,k>4或当m=4时,k>0时,得到新的抛物线与x轴没有交点;(3)a>1或a<﹣1【分析】(1)把a=2,m=﹣5代入抛物线解析式即可求抛物线的最值;(2)把a=2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于0和a小于0两种情况讨论即可得a的取值范围.【详解】解:(1)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9所以抛物线的最小值为﹣9.(2)当a=2时,y=x2﹣4x+m因为该抛物线与坐标轴有两个交点,①该抛物线与x轴、y轴分别有一个交点∴△=16-4m=0,∴m=4,∴y=x2﹣4x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k>0;②该抛物线与x轴、y轴交于原点,即m=0,∴y=x2﹣4x∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+k此时△<0,即16﹣4k<0解得k>4;综上,当m=0时,k>4或当m=4时,k>0时,得到新的抛物线与x轴没有交点;(3)当m=0时,y=x2﹣2ax抛物线开口向上,与x轴交点坐标为(0,0)(2a,0),a≠0.直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,①当a>0时,如图1所示,此时,当x=0时,0﹣a+1<0,解得a>1;②当a<0时,如图2所示,此时,当x=2a时,2a﹣a+1<0,解得a<﹣1.综上:a>1或a<﹣1.【点睛】本题主要考查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.9.(1)、y=﹣x2+4x;(2)、10;(3)、N1(2+2,﹣4),N2(2﹣2,﹣4)【详解】试题分析:(1)、根据旋转的性质可求出C的坐标和A的坐标,又因为抛物线经过原点,故设y=ax2+bx把(2,4),(4,0)代入,求出a和b的值即可求出该抛物线的解析式;(2)、四边形PEFM的周长有最大值,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,所以EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,利用函数的性质即可求出四边形PEFM的周长的最大值;(3)、在抛物线上存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形,由(1)可求出抛物线的顶点坐标,过点C作x轴的平行线,与x轴没有其它交点,过y=﹣4作x轴的平行线,与抛物线有两个交点,这两个交点为所求的N点坐标所以有﹣x2+4x=﹣4,解方程即可求出交点坐标.试题解析:(1)、因为OA=4,AB=2,把△AOB绕点O逆时针旋转90°,可以确定点C的坐标为(2,4);由图可知点A的坐标为(4,0),又因为抛物线经过原点,故设y=ax2+bx把(2,4),(4,0)代入,得,解得所以抛物线的解析式为y=﹣x2+4x;(2)、四边形PEFM的周长有最大值,理由如下:由题意,如图所示,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,∴EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,∴当a=1时,矩形PEFM的周长有最大值,L max=10;=2+,﹣2+,﹣,,点Q 的横坐标为m ()1,16N MN ∴--=, (,Q m m ∴,()2245KQ m m m m m ∴=--=-+()121122B E S QK x x S MN =-= ,()21S 115QK m m ∴==--=-【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质,最值,是解题的关键.13.(1);(2)①m=2或4+2和.【分析】(1)用抛物线顶点式表达式得:y=a 2122y x x =-50.5-50.5+(2)∵点P在第四象限的抛物线上,设直线AP的解析式为代入,∵,∴,y=(1,0)A-2(,2P m m-03m<<10m+≠∵点C 与点关于对称轴对称∴设直线的解析式为解得:∴直线的解析式为:C '1x =()2,3C '-AC 'y kx b =+13432k b ⎧=-⎪⎪⎨⎪=-⎪⎩AC '3y =-设点在中,当时,在中,由勾股定理知:即:化简得:解得:(舍),233,384R k k k ⎛⎫-- ⎪⎝⎭Rt OBC 222BC OC OB =+190BCR ∠= 1Rt BCR ()222334384k k k k ⎛⎫-+--= ⎪⎝⎭29+140k k =()9+14=0k k 0k =14k =-。
初三数学压轴题
初三数学压轴题一、题目示例在平面直角坐标系中,抛物线y = ax^2+bx + c(a≠0)经过A(-1,0),B(3,0),C(0, - 3)三点。
(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作MN∥ y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△ BNC的面积最大?若存在,求m的值;若不存在,说明理由。
二、题目解析1. 求抛物线的解析式- 已知抛物线y = ax^2+bx + c(a≠0)经过A(-1,0),B(3,0),C(0, - 3)三点。
- 把A(-1,0),B(3,0),C(0, - 3)分别代入y = ax^2+bx + c中,得到方程组:- a - b + c = 0 9a+3b + c = 0 c=-3- 将c = - 3代入前两个方程,得到a - b-3 = 0 9a + 3b-3 = 0- 由a - b-3 = 0可得a=b + 3,将其代入9a + 3b-3 = 0中:- 9(b + 3)+3b-3 = 0- 9b+27 + 3b-3 = 0- 12b=-24,解得b=-2- 把b = - 2代入a=b + 3,得a = 1- 所以抛物线的解析式为y=x^2-2x - 3。
2. 求MN的长(用含m的代数式表示)- 设直线BC的解析式为y=kx + d,把B(3,0),C(0, - 3)代入可得3k + d = 0 d=-3- 解得k = 1,所以直线BC的解析式为y=x - 3。
- 因为点M在直线BC上,且横坐标为m,所以M(m,m - 3)。
- 又因为N在抛物线上,且N的横坐标为m,所以N(m,m^2-2m - 3)。
- 则MN=(m^2-2m - 3)-(m - 3)=m^2-3m。
3. 判断是否存在点m使△ BNC的面积最大并求m的值- 过N作NH⊥ x轴交BC于H。
初三压轴题数学
初三数学压轴题举例一、如图1,已知四边形ABCD 是菱形,AB =4,点E 在射线CB 上,点F 在射线CD 上,且∠EAF =∠BAD .(1)如图2,如果∠BAD =90°,求证:AE =AF ;(2)如图3,当点E 在CB 的延长线上时,如果∠ABC =60°,设DF =x , AF y AE,试建立y 与x 的函数关系式,并写出x 的取值范围;(3)联结AC ,BE =2,当△ACE 是等腰三角形时,请直接写出DF 的长.图1 图2 图3二、已知△ABC ,过点A 作BC 的平行线l ,点D 、E 分别在边AB 、AC 上,且DE //BC ,过点E 作AB 的平行线分别交直线l 、BC 于点G 、F .(1)如图1,已知S △ADE =4,S △EFC =9,求△ABC 的面积;(2)已知BC =8,过点D 作AC 的平行线分别交直线l 、BC 于点P 、Q ,直线FG 、PQ 交于点M ,FQ =2,求S △ABC ∶S △PGM 的值;(3)如图2,已知∠ABC =30°,∠ACB =90°,点N 在直线BC 上,△DEN 是以30°为 底角的等腰三角形,求AD ∶BD 的值.图1 图2 备用图三、如图1,已知△ABC ,点D 在边BC 的延长线上,过点D 作DE ∥AC ,且点A 、E 在BD 同侧,联结CE .已知BC=2,CD =1,∠ABC =∠ACE .(1)求AC ·ED 的值;(2)当点E 在BA 延长线上时,求ABC DCEC C △△的值; (3)联结AE ,如果△ABC 与△ACE 相似,求ABC ACE S S △△的值. 图1四、如图1,在△ABC 中,边BC 上的高AD =2,tan B =2.直线l 平行于BC ,分别交线段AB 、AC 、AD 于点E 、F 、G ,直线l 与直线BC 之间的距离为m .(1)当EF =CD =3时,求m 的值;(2)将△AEF 沿着EF 翻折,点A 落在两平行直线l 和BC 之间的点P 处,延长EP 交线段CD 于点Q .①当点P 恰好为△ABC 的重心时,求此时CQ 的长;②联结BP ,在∠CBP >∠BAD 的条件下,如果△BPQ 与△AEF 相似,试用m 的代数式表示线段CD 的长.图1五、如图1,在四边形ABCD 中,AD //BC ,AB 5,AD =2,DC =25tan ∠ABC =2.点E 是射线AD 上一点,点F 是边BC 上一点,联结BE 、EF ,且∠BEF =∠DCB .(1)求线段BC 的长;(2)当FB =FE 时,求线段BF 的长;(3)当点E 在线段AD 的延长线上时,设DE =x ,BF =y ,求y 关于x 的函数关系式,并写出x 的取值范围.图1 备用图六、如图1,已知△ABC中,∠ACB=90°,AB=6,BC=4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.图1七、如图1,在△ABC中,∠C=90°,cot A=2,点D为边AC上的一个动点,以点D为顶点作∠BDE=∠A,射线DE交边AB于点E,过点B作射线DE的垂线,垂足为点F.(1)当点D是边AC中点时,求tan∠ABD的值;(2)求证:AD∙BF=BC∙DE;(3)当DE∶EF=3∶1时,求AE∶EB.图1 备用图八、已知在△ABC 中,AB =AC =5,BC =8,点E 是射线CA 上的动点,点O 是边BC 上的动点,且OC =OE ,射线OE 交射线BA 于点D .(1)如图1,如果OC =2,求ADE ODBS S △△的值; (2)联结AO ,如果△AEO 是以AE 为腰的等腰三角形,求线段OC 的长;(3)当点E 在边AC 上时,联结BE 、CD ,∠DBE =∠CDO ,求线段OC 的长.图1备用图 备用图希望大家挑战成功!。
2020年秋浙教版九年级数学上册期末压轴题训练(30道题 含答案)
2020年秋浙教版九年级数学上册期末压轴题训练(30道题含答案)一、解答题(共30题)1.已知:如图,在△ABC中,AB=AC ,点D、E分别在边BC、DC上,AB2 =BE ·DC ,DE:EC=3:1 ,F是边AC上的一点,DF与AE交于点G .(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.2.已知在平面直角坐标系xOy中,抛物线y=mx2−2mx+4(m≠0)与x轴交于点A、B(点A在点B的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y轴上取点E(0,2),点F为第一象限内抛物线上一点,联结BF、EF ,如果S四边形OEFB=10,求点F的坐标;(3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P在x轴上且在点B左侧,如果直线PF 与y轴的夹角等于∠EBF ,求点P的坐标.3.已知:如图,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(点A、B分别在直线CD的左右两侧),射线CD交边AB于点E,点G是Rt△ABC的重心,射线CG交边AB 于点F,AD=x,CE=y.(1)求证:∠DAB=∠DCF.(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围.(3)如果△CDG是以CG为腰的等腰三角形,试求AD的长.4.如图,已知四边形ABCD中,AB∥DC ,AB=DC ,且AB=4cm,BC=8cm,对角线AC=4√5cm.(1)求证:四边形ABCD是矩形;(2)如图,点Q是AC上一点,点P是BC上一点,点P不与点B重合,√5BP=2CQ,连接BQ、AP ,若AP⊥BQ ,求BP的值;(3)如图,若动点Q从点C出发,以每秒√5cm的速度在对角线AC上运动至点A止,过点Q作BC 垂线于点P ,连接PQ ,将△PQC沿PQ折叠,使点C落在直线BC上的点E处,得△PQE ,是否存在某一时刻t,使得△EAQ为直角三角形?请求出所有可能的结果.5.我们知道:如图①,点B把线段AC分成两部分,如果BCAB =ABAC.那么称点B为线段AC的黄金分割点.它们的比值为√5−12.(1)在图①中,若AC=20cm,则AB的长为________ cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B对应点H,得折痕CG .试说明G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E(AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P .他发现当PB与BC满足某种关系时E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.6.如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG .(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD−FD=√2BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为原点的四边形的面积为S3,当S2S1=1325时,请直接写出S3S1的值.7.已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′;(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P;①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数;②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数;③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.8.如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN 分别与x轴相交于A、B两点.(1)当a=﹣1时,求点N的坐标及AC的值;BC的值是否发生变化?请说明理由;(2)随着a的变化,ACBC(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.9.如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,G是BC 延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.10.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点物线对称轴为直线x=12F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.11.如图,抛物线y=−1x2+bx+c与x轴交于点A(−1,0)和点B(4,0),与y轴交于点C,连接2BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,PQ是否存在最大值?若存在,求出最大值;若不存在,请说明理由.AP12.如图(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=________°.(2)(问题解决)如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.(3)(拓展延伸)如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).13.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将ΔBCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B 到直线AD的距离为BE.①求BE的长.②若M、N分别是AB、AD边上的动点,求ΔMNC周长的最小值.14.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是________;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.15.如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0< t<4),过点P作PN/x轴,分别交AO,AB于点M,N.(1)填空:AO的长为________,AB的长为________(2)当t=1时,求点N的坐标:(3)请直接写出MN的长为________(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=43时,请直接写出S1⋅S2(即S1与S2的积)的最大值为________.16.如图(1)(感知)如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AE EB = DECB.(2)(探究)如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且EFEG = AEEB,连接BG交CD于点H.求证:BH=GH.(3)(拓展)如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且AEEB = DEEC,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.17.矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求APDE的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.18.如图,在平面直角坐标系中,抛物线y=−x2+bx+c与x轴交于点A,B,与y轴交于点C ,且直线y=x−6过点B ,与y轴交于点D ,点C与点D关于x轴对称.点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M ,交直线BD于点N .(1)求抛物线的函数解析式;(2)当△MDB的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q ,使得以Q,M,N三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.19.如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN;(2)请判断△OMN的形状,并说明理由;(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系,请直接写出AK长.式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为11020.阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断ODOA 、S△OBCS△ABC是否都为定值?如果是,分别求出这两个定值:如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME=1,求正方形ABCD的面积.21.如图所示,抛物线y=x2−2x−3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN求△BCN面积的最大值及此时点N的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.22.如图,已知抛物线y=ax2过点A(﹣3,94).(1)求抛物线的解析式;(2)已知直线l过点A ,M(3,0)且与抛物线交于另一点B ,与y轴交于点C ,求证:MC22=MA•MB;(3)若点P ,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O ,C ,P ,D的四边形是平行四边形,求所有符合条件的P点坐标.23.如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A,C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD,AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC 的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.25.[探索规律]如图①,在△ABC中,点D、E、F分别在AB、BC、AC上,且DF//BC,EF//AB.设△ADF的边DF上的高为h1,△EFC的边CE上的高为h2.=________;(1)若△ADF、△EFC的面积分别为4和1,则h1h2(2)某校数学兴趣小组的同学对△ADF、△EFC、四边形BDEF的面积关系进行了研究设△ADF、△EFC、四边形BDEF的面积分别为S1、S2、S,EC的长为a,则S2=________ (用含a和h2的式子表示);S1=________ (用含a、h1和h2的式子表示);S=________(用含a、h1的式子表示);从而得出S=2 √s1s2 .(3)[解决问题]如图②,在△ABC中,点D、E分别在AB、AC上,点F、G在BC上,且DE//BC,DF//EG.若△ADE、△DBF.△EGC的面积分别为2、3、5,求△ABC的面积.26.如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG//BC,连接AE交BC于点D.(1)求证:AE平分∠BAC;(2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.27.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在⊙O上,AC平分∠BAD,过点C的切线交直径AB的延长线于点E ,连接AD、BC.(1)求证:∠BCE=∠CAD;(2)若AB=10,AD=6,求CE的长.28.如图,AB为⊙O的直径,D是BC的中点,BC与AD,OD分别交于点E,F.(1)求证:OD∥AC;(2)求证:DC2=DE•DA;(3)若⊙O的直径AB=10,AC=6,求BF的长.29.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC.BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=√5PD,AB+CD=2(√5+1)①求证:△DHC为等腰直角三角形;②求CH的长度.30.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C 的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF。
北师大版九年级数学上期末备考压轴题专项培优:特殊的平行四边形(解析版)
期末备考压轴题专项培优:特殊的平行四边形1.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N 的坐标为(m,n).(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为(1,0),点C的坐标为(0,﹣1);请直接写出点N纵坐标n的取值范围是0<n≤;(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连结MN:=+1,=﹣1)解:(1)如图1,以直线BD为x轴,直线AC为y轴,建立平面直角坐标系,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵点B(﹣1,0),A(0,1),∴D(1,0),C(0,﹣1);过N作NH⊥BD于h,∴∠NHB=90°,∵将BM绕点B逆时针旋转60°得到BN,∴∠NBH=60°,BM=BN,∴NH=BN=t,∵0<t≤2,∴点N纵坐标n的取值范围是0<n≤;故答案为:(1,0),(0,﹣1);0<n≤;(2)如图所示,连接MN,过E作EH⊥BC,交CB的延长线于H,由旋转可得,BM=BN,∠NBM=60°,∴△BMN是等边三角形,∴MN=BM,∵△ABE是等边三角形,∴BE=BA,∠ABE=60°,∴∠ABM=∠EBN,∴△ABM≌△EBN(SAS),∴AM=EN,∴AM+BM+CM=EN+MN+CM,∴当E,N,M,C在同一直线上时,AM+BM+CN的最小值是CE的长,又∵∠ABE=60°,∠ABH=90°,∴∠EBH=30°,∴Rt△EBH中,EH=EB=×2=1,∴BH===,∴CH=2+,∴Rt△CEH中,CE====;∴AM+BM+CM的最小值为+.2.如图,在▱ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作▱ECFG.(1)证明▱ECFG是菱形;(2)若∠ABC=120°,连结BD、CG,求∠BDG的度数;(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.解:(1)证明:,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=6,AD=8,∴BD=10,∴DM=BD=5.3.如图,在正方形ABCD中,对角线AC、BD相交于点O,以AD为边向外作等边△ADE,连接CE,交BD于F.(1)如图1,若AE=,求DF的长;(2)如图2,点M为AB的延长线上一点,连接CM,连接FM且FM平分∠AMC,求证:CM=MF﹣AM.解:(1)如图1,连接OE,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,OA=OD=OB=OC∵△ADE是等边三角形∴AD=DE=AE=,∠ADE=60°∴CD=AD=,OD=OB=∵AE=DE,OD=OA∴OE垂直平分AD即OE⊥AD,DH=AH∴OE=OH+EH=+=,∵∠ADC=∠DHE=90°∴CD∥OE∴△CDF∽△EOF∴=,即DF=OF∵DF+OF=OD=∴OF=﹣DF∴DF=(﹣DF),解得:DF=﹣1.(2)如图2,连接EO,过点F作PQ⊥CD交EO于N,在MA上截取MT=MC,连接FT,设正方形边长为a,∵四边形ABCD是正方形,△ADE是等边三角形∴AD=AB=CD=DE=a,∠ADC=∠DAB=90°∠ADE=60°易证OE⊥AD∴OE=a,OD=a,由(1)知△CDF∽△EOF∴=,即a•DF=a•OF∵DF+OF=a∴OF=a﹣DF∴a•DF=a(a﹣DF)∴DF=a,∵△DPF是等腰直角三角形∴DP=PF=DF=a,∴FQ=a﹣a=a=CP,∵FM平分∠AMC,∴∠CMF=∠AMF在△MCF和△MTF中∴△MCF≌△MTF(SAS)∴CF=FT∴Rt△CFP≌Rt△FTQ(HL)∴QT=PF=a,∵AQ=DP∴AQ=QT∵BM+AB﹣AT=MT=CM∴CM﹣BM=AB﹣AT=a﹣2×a=a,CM+BM=MT+BM=BT+2BM=a﹣2×a+2BM=a+2BM∴CM2﹣BM2=(CM﹣BM)(CM+BM)=a(a+2BM)∵CM2﹣BM2=BC2=a2,∴a(a+2BM)=a2,∴BM=a在Rt△BCM中,tan∠BMC===,∴∠BMC=60°∴∠AMF=30°∴=cos∠AMF=cos30°=∴2MQ=MF∵2MQ=2BM+2BQ=2BM+2BT+2QT=(BM+BT)+(BM+BT+AT)=CM+AM ∴CM+AM=MF即CM=MF﹣AM.4.在菱形ABCD中,∠ABC=60°,BD为菱形的一条对角线.(1)如图1,过A作AE⊥BC于点E,交BD于点F,若EF=2,求菱形ABCD的面积;(2)如图2,M为菱形ABCD外一点,过A作AN⊥BM交BM的延长线于点N,连接AM,DM,AG⊥DM于点G,且∠AMN=∠AMD,求证:DM=BM+AM.(1)解:如图1中,∵四边形ABC都是菱形,∠ABC=60°,∴∠ABD=∠DBC=30°,∵AE⊥BC,∴∠BEF=90°,∵EF=2,∴BF=2EF=4,∠BFE=60°,∵∠BFE=∠ABF+∠F AB,∴∠ABF=∠F AB=30°,∴BF=AF=4,∴AE=AF+EF=6,∴AB==4,∴BC=AB=4,∴S=BC•AE=24.菱形ABCD(2)证明:如图2中,∵∠AMN=∠AMG,AN⊥MN,AG⊥DM,∴AN=AG,∵∠MNA=∠MGA=90°,AM=AM,AN=AG,∴Rt△MAN≌Rt△MAG(HL),∴NM=MG,∵∠ANB=∠AGD=90°,AN=AG,AB=AD,∴Rt△ANB≌Rt△AGD(HL),∴∠ABN=∠ADG,BN=DG,∴∠BMD=△BAD=120°,∴∠NMG=60°,∴∠AMN=∠AMG=30°,∴DM﹣BM=MG+DG﹣(BN﹣MN)=2MN=AM,∴DM=BM+AM.5.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=12,DC=3,∠EBD=60°,则BE=6时,四边形BFCE是菱形.(只需完成填空,不需写出具体过程.)(1)证明:∵在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴BE=FC,∠ABE=∠DCF,∴∠EBC=∠FCB,∴BE∥FC,∴四边形BFCE是平行四边形;(2)解:当四边形BFCE是菱形,则BE=EC,∵AD=12,DC=3,AB=DC,∴BC=6,∵∠EBD=60°,EB=EC,∴△EBC是等边三角形,∴BE=6.故答案为:6.6.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;(3)若BD=2AB,①探究四边形GEHF的形状,并说明理由;②当AB=2,∠ABD=120°时,直接写出四边形GEHF的面积.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:①四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形;②作AM⊥BD于M,GN⊥BD于N,如图3所示:则AM∥GN,∵G是AD的中点,∴GN是△ADM的中位线,∴GN=AM,∵∠ABD=120°,∴∠ABM=60°,∴∠BAM=30°,∴BM=AB=1,AM=BM=,∴GN=,∵BD=2AB=4,∴EF=BD=2,∴△EFG的面积=EF×GN=×2×=,∴四边形GEHF的面积=2△EFG的面积=.7.如图,边长为6的正方形ABCD中,E,F分别是AD,AB上的点,AP⊥BE,P为垂足.(1)如图1,AF=BF,AE=2,点T是射线PF上的一个动点,当△ABT为直角三角形时,求AT的长;(2)如图2,若AE=AF,连接CP,求证:CP⊥FP.(1)解:在正方形ABCD中,可得∠DAB=90°.∵在Rt△BAE中,tan∠ABE===,∴∠ABE=30°.点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:①当点T在AB的上方,∠ATB=90°,显然此时点T和点P重合,即AT=AP=AB=3;②当点T在AB的下方,∠ATB =90°,如图①所示.在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,∴∠BPF=∠FBP=30°,∴∠BFT=60°.在Rt△ATB中,TF=BF=AF=3,∴△FTB是等边三角形,∴TB=3,AT==3;③当点T在AB的下方,∠ABT=90°时,如图②所示.在Rt△FBT中,∠BFT=60°,BF=3,BT=BF•tan60°=3.在Rt△ATB中:AT==3.综上所述:当△ABT为直角三角形时,AT的长为3或3或3;(2)证明:如图③所示,∵四边形ABCD是正方形,∴AB=AD=BC,AD∥BC,∠DAB=90°,∴∠3=∠4.∵在Rt△EAB中,AP⊥BE,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4,∵tan∠1=,tan∠3=,∴=,∵AE=AF,AB=BC,∴=,∴△PBC∽△P AF,∴∠5=∠6.∵∠6+∠7=90°,∴∠5+∠7=90°,即∠CPF=90°,∴CP⊥FP.8.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF是矩形时BD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠GDE=∠FBH,∵G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,∴在Rt△AED和Rt△CFB中,EG=AD=GD,FH=BC=HB,∴EG=FH,∠GED=∠GDE,∠FBH=∠BFH,∴∠GED=∠BFH,∴EG∥FH,∴四边形GEHF是平行四边形;(2)解:连接GH,当四边形GEHF是矩形时,∠EHF=∠BFC=90°,∵∠FBH=∠BFH,∴△EFH∽△CBF,∴=,由(1)可得:GA∥HB,GA=HB,∴四边形GABH是平行四边形,∴GH=AB=5,∵在矩形GEHF中,EF=GH,且AB=5,AD=8,∴=,解得:BF=,∴BE=BF﹣EF=﹣5=,在△ABE和△CDF中∴△ABE≌△CDF(AAS),∴BE=DF=,∴BD=BF+DF=+=.9.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG= S 正方形ABCD ;【拓展】如图②,若四边形ABCD 是矩形,且S 四边形AEOG =S 矩形ABCD ,设AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);【探究】如图③,若四边形ABCD 是平行四边形,且AB =3,AD =5,BE =1,试确定F 、G 、H 的位置,使直线EF 、GH 把四边形ABCD 的面积四等分.解:【感知】如图①,∵四边形ABCD 是正方形,∴∠OAG =∠OBE =45°,OA =OB ,在△AOG 与△BOE 中,, ∴△AOG ≌△BOE ,∴S 四边形AEOG =S △AOB =S 正方形ABCD ;故答案为:;【拓展】如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,∵S △AOB =S 矩形ABCD ,S 四边形AEOG =S 矩形ABCD ,∴S △AOB =S 四边形AEOG ,∵S △AOB =S △BOE +S △AOE ,S 四边形AEOG =S △AOG +S △AOE , ∴S △BOE =S △AOG , ∵S △BOE =BE •OM =mb =mb ,S △AOG =AG •ON =AG •a =AG •a , ∴mb =AG •a ,∴AG =;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB =S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB =S四边形AEOG,∴S△BOE =S△AOG,∵S△BOE =BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.11.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q 的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.12.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.13.如图,在△ABC中,点O是边AC上一个点,过点O作直线MN∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?证明你的结论.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.14.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.15.如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足什么条件时,四边形ADEG是矩形?②当△ABC满足什么条件时,四边形ADEG是正方形?(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
人教版数学九年级上学期期末备考压轴题专项习题:二次函数的实际应用(含答案)
期末备考压轴题专项习题:二次函数的实际应用1.某经销商以每千克30元的价格购进一批原材料加工后出售,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y=55;x=42时,y=48.(1)求一次函数y=kx+b的表达式;(2)设该商户每天获得的销售利润为W(元),求出利润W(元)与销售单价x(元/千克)之间的关系式;(3)销售单价每千克定为多少元时,商户每天可获得最大利润?最大利润是多少元?(销售利润=销售额﹣成本)2.某商店购进一批成本为每件30元的商品,商店按单价不低于成本价,且不高于50元销售.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)销售单价定为多少元时,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润高于800元,请直接写出每天的销售量y(件)的取值范围.3.如图一个五边形的空地ABCDE,AB∥CD,BC∥DE,∠C=90°,已知AB=4(m),BC=10(m),CD=14(m),DE=5(m),准备在五边形中设计一个矩形的休闲亭MNPQ,剩下部分设计绿植.设计要求NP∥CD,PQ∥BC,矩形MNPQ到五边形ABCDE 三边AB,BC,CD的距离相等,都等于x(m),延长QM交AE与H,MH=1(m).(1)五边形ABCDE的面积为(m2);(2)设矩形MNPQ的面积为y(m2),求y关于x的函数关系式;(3)若矩形MNPQ休闲亭的造价为每平方米0.5万元,剩下部分绿植的造价为每平方米0.1万元,求总造价的最大值.4.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是400元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?5.某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式;(2)每件文具的售价定为多少元时,月销售利润为2520元?(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?6.某商场销售一批衬衫,平均每天可售出20件,每件可盈利40元,为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每件衬衫每降价1元,则商场平均每天可多销售2件.(1)若现在设每件衬衫降价x元,平均每天盈利为y元,求出y与x的函数关系式(不要求写出x的取值范围)(2)当x为何值时,平均每天盈利最大,最大盈利是多少元?(3)若商场每天平均需盈利1200元,每件衬衫应降价多少元?7.某土特产专卖店销售甲种干果,其进价为每千克40元,(物价局规定:出售时不得低于进价,又不得高于进价的1.5倍销售).试销后发现:售价x(元/千克)与日销售量y(千克)存在一次函数关系:y=﹣10x+700.若现在以每千克x元销售时,每天销售甲种干果可盈利w元.(盈利=售价﹣进价).(1)w与x的函数关系式(写出x的取值范围);(2)单价为每千克多少元时,日销售利润最高,最高为多少元;(3)专卖店销售甲种干果想要平均每天获利2240元的情况下,为尽可能让利于顾客,赢得市场,则售价应定为每千克多少元.8.某公司在甲乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x(单位:辆)之间满足y=﹣x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润,若该公司在甲乙两地共销售30辆该品牌的汽车,甲乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式;(2)甲乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?9.如图,某中学准备用长为20m的篱笆围成一个长方形生物园ABCD饲养小兔,生物园的一面靠墙(围墙MN最长可利用15m),设AB长度为x(m),矩形ABCD面积为y(m2).(1)求出y与x的函数关系式,直接写出x的取值范围;(2)当x为何值时,矩形ABCD的面积最大?最大面积为多少?10.李老汉家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,他记录了15天的销售数量和销售单价.其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示:日销售量p(千克)与时间x天(x为整数)的部分对应值如表所示:时间第x(天)135710111215日销售量p(千克)2302903504105004003000(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画p随x的变化规律,求出p与x的函数关系式及自变量的取值范围;(3)在这15天中,哪一天销售额达到最大,最大销售额是多少元?11.赣县田村素称“灯彩之乡”,田村花灯源于唐代,盛于宋朝,迄今已有1300多年历史了,某公司生产了一种田村花灯,每件田村花灯制造成本为20元.设销售单价x(元),每日销售量y(件)、每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w (元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:销售单价x(元)30313240销售量y(件)40383620(1)根据表中数据的规律、分別写出每日销售量y(件)、每日利润w(元)关于销售单价x(元)之间的函数表达式(利润=(销售单价﹣成本单价)×销售件数).(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?12.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,S有最大值?并求出最大值.13.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销意将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?14.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?15.心理学家研究发现,一般情况下,学生的注意力随着老师讲课时间的变化而变化.讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t(分钟)的变化规律有如下关系式:y=(y值越大表示接受能力越强)(1)讲课开始后第6分钟时与讲课开始后第26分钟时比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解23分钟,为了效果较好,要求学生的注意力最低达到175,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案1.解:(1)将x=35、y=55和x=42、y=48代入y=kx+b,得:,解得:,∴y=﹣x+90;(2)根据题意得:W=(x﹣30)(﹣x+90)=﹣x2+120x﹣2700;(3)由W=﹣x2+120x﹣2700=﹣(x﹣60)2+900,∴销售单价每千克定为60元时,商户每天可获得最大利润,最大利润是900元.2.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w有最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:40≤x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.3.解:(1)五边形ABCDE的面积为=5×14+(4+14)(10﹣5)=70+45=115(m2);故答案为:115;(2)由题意可以得:PQ=(10﹣2x),MQ=(3+x),∴y=(10﹣2x)(x+3)=﹣2x2+4x+30,(3)设总造价为w(万元),由题意得,w=115×0.1+0.4(﹣2x2+4x+30)w=﹣0.8x2+1.6x+23.5,当x=1时,w=24.3,最大值答:总造价的最大值为24.3万元.4.解:(1)设每件商品涨价x元,根据题意得,(60﹣40+x)(300﹣10x)=400,解得:x1=20,x2=﹣10,(不合题意,舍去),答:每件商品涨价20元时,每星期该商品的利润是400元;(2)设每件商品涨价x元,每星期该商品的利润为y,∴y=(60﹣40+x)(300﹣10x)=﹣10x2+100x+6000=﹣10(x﹣5)2+6250∴当x=5时,y有最大值.∴60+5=65元答:每件定价为65元时利润最大,最大利润为6250元.5.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件文具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.6.解:(1)设每套降价x元,商场平均每天赢利y元,则y=(40﹣x)(20+2x)=﹣2x2+60x+800,(2)y=﹣2x2+60x+800,=﹣2(x﹣15)2+1250,当x=15时,y有最大值为1250元,当每件降价15元时,商场平均每天盈利最多;(3)当y=1200,1200=﹣2(x﹣15)2+1250,解得x1=10,x2=20,若商场每天平均需盈利1200元,每件衬衫应降价20元或10元.7.解:(1)根据题意得,w=(x﹣40)•y=(x﹣40)•(﹣10x+700)w=﹣10x2+1100x﹣28000,(40≤x≤60);(2)由(1)可知w=﹣10x2+1100x﹣28000配方得:w=﹣10(x﹣55)2+2250∴每千克55元时,日销售利润最高,最高为2250元;(3)由(1)可知w=﹣10x2+1100x﹣28000∴2240=﹣10x2+1100x﹣28000解得x1=54,x2=56由题意可知x2=56(舍去)∴x=54∴∴该专卖店应按原售价的九折出售.8.解:(1),=;(2),∵,∴当x=8时,W取最大值92,此时30﹣x=22,∴在甲地销售8辆,在乙地销售22辆时W最大,W的最大值是92.(3)甲地每辆车的平均销售利润为(x2+10 x)÷x=x+10,∴x+10≤2,解得x≥16,∵,,∴当x≥16时,W随x的增大而减小,∴当x=16时,W最大,此时,∴可获得的最大销售利润为60万元.9.解:(1)当长方形的宽AB=x时,其长BC=20﹣2x,故长方形的面积y=x(20﹣2x)=﹣2x2+20x,即y=﹣2x2+20x(0<x≤);(2)y=﹣2x2+20x=﹣2(x﹣5)2+50,∵﹣2<0,0<x≤,∴当x=时,y取得最大值,最大值为36.5,答:当x=时,面积最大为36.5m2.10.解:(1)当0<x≤5时,设AB的解析式为:y=kx+b(k≠0)把A(0,14)和B(5,9)代入得:,解得:,∴AB的解析式为:y=﹣x+14(k≠0);综上,y与x(x为整数)的函数关系式为:;(2)由表格规律可知:p与x的函数关系是一次函数,∴当1≤x≤10时,设解析式为:p=kx+b,把(1,320)和(3,360)代入得:,∴,∴p=20x+300,同理得10<x≤15时的解析式为:p=﹣100x+1500,综上,p与x的函数关系式为:;(3)设销售额为w元,当0<x≤5时,w=py=(﹣x+14)(20x+300)=﹣20x2﹣20x+4200=﹣20(x+)2+4205,∵x是整数,∴当x=1时,w有最大值为:﹣20(1+)2+4205=4160,当5<x≤10时,w=py=9(20x+300)=180x+2700,∵x是整数,180>0,∴当5<x≤10时,w随x的增大而增大,∴当x=10时,w有最大值为:180×10+2700=4500,当10<x≤15时,w=9(﹣100x+1500)=﹣900x+13500,∵﹣900<0,∴w随x的增大而减小,∴x=10时,w有最大值为:500×9=4500,11.解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b 则解得:∴每日销售量y(件关于销售单价x(元)之间的函数表达式为y=﹣2x+100;∴w=(x﹣20)•y=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000∴每日利润w(元)关于销售单价x(元)之间的函数表达式为w=﹣2x2+140x﹣2000;(2)∵w=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450∴当销售单价为35元时,每日能获得最大利润450元.12.解:(1)由题意可得,S=x(32﹣2x)=﹣2x2+32x,∵,解得,6≤x<16,即S与x之间的函数关系式是S=﹣2x2+32x(6≤x<16);(2)∵S=﹣2x2+32x=﹣2(x﹣8)2+128,∴当x=8时,S有最大值,最大值是128平方米.13.解:(1)由题意得:y=60+10x∵36﹣x≥24∴x≤12∵x为正整数∴1≤x≤12,且x为正整数;(2)设每月销售牛奶的利润为w,则w=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810令w=800得:﹣10(x﹣3)2+810=800解得:x1=2,x2=4∵要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量∴x=4∴36﹣4=32>24(元)∴每箱牛奶的定价应是32元钱.14.解:(1)由题意:w=(﹣2x+240)•x﹣2200=﹣2x2+240x﹣2200(50≤x≤80).(2)w=﹣2x2+240x﹣2200=﹣2(x2﹣120x)﹣2200=﹣2(x﹣60)2+5000.∵x是整数,50≤x≤80,∴当x=60时,w取得最大值,最大值为5000.答:影院将电影票售价定为60元/张时,每天获利最大,最大利润是5000元.15.解:(1)当t=6时,y=194,当t=26时,y=196∴讲课开始后第26分钟时学生的注意力比讲课开始后第6分钟时更集中.(2)当0<t⩽10时,y=﹣t2+30t+50=﹣(t﹣15)2+275,该图的对称轴为t=15,在对称轴左侧,y随x的增大而增大,所以,当t=10时,y有最大值250,当10<t⩽20时,y=250当20<t⩽40时,y=﹣9t+430,y随t的增大而减小,故此时y<250∴当t=10时,y有最大值250.∴讲课开始后10分钟时,学生的注意力最集中,能持续10分钟.(3)当0<t⩽10,令y=﹣t2+30t+50=175解得t1=5,t2=25(舍);当20<t⩽40时,令y=﹣9t+430=175,∴t=因为﹣5=>23∴老师可以经过适当安排,能在学生注意力达到所需的状态下讲解完这道题目.。
初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)
数学九年级(北师大版)上学期期末备考压轴题专项习题:反比例函数1.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA=10,sin∠AOB=,反比例函数y=kx﹣1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.2.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.4.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.5.如图,直线y=x与反比例函数y=(x>0)的图象相交于点D,点A为直线y=x上一点,过点A作AC⊥x轴于点C,交反比例函数y=(x>0)的图象于点B,连接BD.(1)若点B的坐标为(8,2),则k=,点D的坐标为;(2)若AB=2BC,且△OAC的面积为18,求k的值及△ABD的面积.6.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求△AOB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y于点D,A(﹣6,0),C(6,0),tan∠ACB =2,∠BAC=45°(1)则AC=;(2)反比例函数y=的图象经过点B,求k的值;(3)在线段OD上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出满足条件的点P的坐标(不用写过程);若不存在,请说明理由.8.“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“(function)函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y=kx+b与反比例函数相交于A(1,6),B(n,2)两点,求这两个函数的解析式及由坐标系原点O,A,B围成的三角形的面积;(2)已知实数m,n(m<n)在二次函数y=x2+3x﹣4对称轴的同一侧,当m≤x≤n时,y的取值范围为,求出m,n的值;(3)已知直线y=2tx﹣2和抛物线y=(t2﹣1)x2﹣1在y轴左边相交于A,B两点,点C是线段AB的中点,经过C,D(﹣2,0)的直线交y轴于点H(0,h),求h取值范围.9.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.10.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△P AC的面积是;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.11.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.12.已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S=.△OAB(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.13.如图,双曲线y=(x>0)经过△AOB的点顶A(2,3),AB∥x轴,OB交双曲线于点C,且OB=3OC(1)求k的值;(2)连接AC,求点C的坐标和△ABC的面积.14.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.15.如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.参考答案1.解:(1)如图,过点A 作AH ⊥OB 于H , ∵sin ∠AOB =,OA =10, ∴AH =8,OH =6, ∴A 点坐标为(6,8),代入反比例函数y =kx ﹣1(k >0)可得:k =6×8=48, ∴反比例函数解析式:y =;(2)如图,过点F 作FM ⊥x 轴于M , ∵四边形AOBC 是平行四边形, ∴AO ∥BC ,AO =CB =10, ∴∠AOB =∠FBM , ∵sin ∠AOB =, ∴sin ∠FBM =, ∵点F 为BC 的中点, ∴BF =5,∵AH =8,OH =6, ∴FM =4,BM =3, ∴S △BFM =6,∵F 在反比例函数图象上, ∴S △OFM =24,∴S △OBF =S △OFM ﹣S △BFM =18.2.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.3.解:(1)将点A(4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);设OB所在直线解析式为y=mx(m≠0),将点B(9,3)代入得m=,∴OB所在直线解析式为y=x;(3)联立解析式:解得:,可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,连接AP,则点E坐标为(6,3),∴AE=2,PE=1,PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.4.解:(1)如图,过点B、D分别作BH⊥x轴、DG⊥x轴交于点H、G,∵点A(﹣6,0)、D(﹣7,3),∴OA=6,OG=7,DG=3,∴AG=OG﹣OA=1,∵∠DAG+∠BAH=90°,∠DAG+∠GDA=90°,∴∠GDA=∠BAH,又∠DGA=∠AHB=90°,AD=AB,∴△DGA≌△AHB(AAS),∴DG=AH=3,BH=AG=1,∴点B坐标为(﹣3,1);(2)由(1)知,B(﹣3,1),∵D(﹣7,3)∴运动t秒时,点D'(﹣7+2t,3)、B'(﹣3+2t,1),设反比例函数解析式为y=,∵点B',D'在反比例函数图象上,∴k=(﹣7+2t)×3=(﹣3+2t)×1,∴,k=6,∴反比例函数解析式为;(3)存在,理由:由(2)知,点D'(﹣7+2t,3)、B'(﹣3+2t,1),t=,∴D'(2,3)、B'(6,1),由(2)知,反比例函数解析式为y=,设点Q(m,),点P(0,s),以P、Q、B'、D'四个点为顶点的四边形是平行四边形,∴①当PQ与B'D'是对角线时,∴(0+m)=(2+6),(s+)=(3+1),∴m=8,s=,∴Q(8,),P(0,),②当PB'与QD'是对角线时,∴(0+6)=(2+m),(s+1)=(+3),∴m=4,s=,∴Q(4,),P(0,).③当PD'与QB'是对角线时,∴(0+2)=(m+6),(s+3)=(+1),∴m=﹣4,s=﹣,∴Q(﹣4,﹣),P(0,﹣),综上:Q(8,),P(0,)或Q(4,),P(0,)或Q(﹣4,﹣),P(0,﹣).5.解:(1)把B(8,2)代入y=得:k=2×8=16,∴反比例函数的关系式为y=,由题意得:解得:,(舍去)∴点D的坐标为(4,4)故答案为:16,(4,4)(2)过点D作DE⊥OC,DF⊥AC,垂足为E、F,如图所示:∵点A在第一象限y=x上,∴AC=OC,又∵△OAC的面积为18,∴AC=OC=6,∵AB=2BC,∴AB=4,BC=2,∴点B(6,2),代入y=得,k=12;设点D(a,a)代入y=得,a=(a>0)∴D (,),即OE =DE =,∴DF =EC =OC ﹣OE =6﹣,∴△ABD 的面积=AB •DF =×4×(6﹣)=12﹣;因此k 的值为12,∴△ABD 的面积为12﹣.6.解:(1)∵已知反比例函数y =与一次函数y =x +b 的图象在第一象限相交于点A (1,﹣k +4), ∴﹣k +4=k , 解得k =2,故反比例函数的解析式为y =,又知A (1,2)在一次函数y =x +b 的图象上, 故2=1+b , 解得b =1,故一次函数的解析式为y =x +1; (2)由题意得:,解得x =﹣2或1, ∴B (﹣2,﹣1),令y =0,得x +1=0,解得x =﹣1, ∴C (﹣1,0), ∴S △AOB =S △AOC +S △COB =×1×2+×1×1 =1+ =1.5;(3)由图象可知,当一次函数的值大于反比例函数值时,x的取值范围是x>1或﹣2<x <0.7.解:(1)6﹣(﹣6)=12.故答案为:12.(2)过点B作BE⊥x轴,如图1所示.设BE=m,则CE==m,AE==m.∵AE+CE=12,∴m+m=12,∴m=8,∴OE=OC﹣CE=6﹣×8=2.∴点B的坐标为(2,8).(3)∵点B的坐标为(2,8),BD⊥y于点D,∴点D的坐标为(0,8),∴BD=2.∵点A的坐标为(﹣6,0),∴OA=6.设点P的坐标为(0,n)(0<n<8),则OP=n,DP=8﹣n.∵∠AOP=∠BDP=90°,以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似,∴=或=,即=或=,解得:n=2或n=6,∴在线段OD上存在点P(0,2)或(0,6),使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似.8.解:(1)∵A(1,6),B(n,2)在反比例函数的图象上,∴m=6,∴反比例函数的解析式是y=,∴2n=6,解得n=3,∴B(3,2),∵一次函数y=kx+b与反比例函数y=的图象交于A、B两点.∴,解得,∴一次函数解析式为y=﹣2x+8;设直线y=﹣2x+8与x轴相交于点C,C的坐标是(4,0).S△AOB =S△AOC﹣S△BOC=OC|y A|﹣OC|y B)=8;(2)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵,∴方程组中的第一个方程×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由方程组中的第二个方程×m得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当﹣<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵,,方程①×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,m=﹣,将m=﹣代入方程②得,n2+3n﹣4=﹣3n,∴n=﹣3±∵n>﹣n=﹣3+∴m=﹣3﹣<﹣,与上述﹣<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为,此时m=﹣3,n=﹣2;(3)设点A(x1,y1)、B(x2,y2),则x1、x2是方程2tx﹣2=(t2﹣1)x2﹣1即(t2﹣1)x2﹣2tx+1=0,解得x1=,x2=,∴x1+x2=,y1+y2=2tx1﹣2+2tx2﹣2=2t(x1+x2)﹣4=.∵点C是AB的中点,∴点C的坐标为(,)即(,).设直线DC的解析式为y=mx+n,则有,解得.∴直线与y轴的交点纵坐标h=n=.∵点A、B在y轴的左侧,∴x1=<0且x2=<0,解得t<﹣1.设k=2t2+t﹣1,则有h=,k=2(t+)2﹣,∵2>0,∴当t<﹣1时k随着t的增大而减小,∴k>2(﹣1+)2﹣即k>﹣1,对于h=,①当﹣1<k<0时,h<﹣4;②当k>0时,h>0,∴直线与y轴的交点纵坐标h的取值范围是h<﹣4或h>0.9.解:(1)将A(,1)代入y=,得:1=,解得:k=,∴反比例函数的表达式为y=.(2)∵点A的坐标为(,1),AB⊥x轴于点C,∴OC=,AC=1,∴OA==2=2AC,∴∠AOC=30°.∵OA⊥OB,∴∠AOB=90°,∴∠B=∠AOC=30°,∴AB=2OA=4,=AB•OC=×4×=2.∴S△AOB(3)在Rt△AOB中,OA=2,∠AOB=90°,∠ABO=30°,∴OB==2.分三种情况考虑:①当OP=OB时,如图2所示,∵OB=2,∴OP=2,∴点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP=BO时,如图3,过点B做BD⊥y轴于点D,则OD=BC=AB﹣AC=3,∵BP=BO,∴OP=2OC=2或OP=2OD=6,∴点P的坐标为(2,0),(0,﹣6);③当PO=PB时,如图4所示.若点P在x轴上,∵PO=PB,∠BOP=60°,∴△BOP为等边三角形,∴OP=OB=2,∴点P的坐标为(2,0);若点P在y轴上,设OP=a,则PD=3﹣a,∵PO=PB,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).10.解:(1)∵点A(a,b)是双曲线y=(x>0)上,∴ab=8,∵AC⊥y轴于C点,AD⊥x轴于D点,∴AC=a,AD=b,∴△P AC的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A(2,4),设直线AP的解析式为y=kx+b,∴,∴,∴直线AP的解析式为y=x+2,∴B(0,2),∴S=AC•BC==2;△ABC(3)同理直线AP的解析式为y=﹣,∴B(0,﹣),∴BC=4+=∴S=×2×=.11.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a 由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.12.解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S=,△OAB∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).13.解:(1)把A (2,3)代入y =得:k =2×3=6, 答:k 的值为:6.(2)过点A 、C 、B 分别作AF ⊥x 轴,CD ⊥x 轴,BE ⊥x 轴,垂足为F 、D 、E , ∵A (2,3) ∴OF =2,AF =3, 由△OCD ∽△OBE 得:,∴CD =1,把y =1代入y =得:x =6, ∴C (6,1), ∴OE =18,∴S △OAB =S 梯形OABE ﹣S △OBE =(18+16)×3﹣×18×3=24, ∵OB =3OC , ∴S △ABC =S △AOB ==16.答:点C 的坐标为(6,1),△ABC 的面积为16.14.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.15.解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).。
北师大版九年级数学上学期期末备考压轴题专项习题:特殊的平行四边形(含答案)
期末备考压轴题专项习题:特殊的平行四边形1.已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.2.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)判断四边形ACDF的形状;(2)当BC=2CD时,求证:CF平分∠BCD.3.在菱形A BCD中,∠ABC=60°,延长BA至点F,延长CB至点E,使BE=AF,连结CF,EA,AC,延长EA交CF于点G.(1)求证:△ACE≌△CBF;(2)求∠CGE的度数.4.如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)试判断四边形AEDF的形状.(2)当△ABC满足条件时,EF∥BC;当△ABC满足条件时,EF=AD.5.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.6.一个六边形的花坛被分割成7个部分,其中四边形PRBA,RQDC,QPFE为正方形.记正方形PRBA,RQDC,QPFE的面积分别为S1,S2,S3,RH⊥PQ,垂足为H.(友情提示:正方形的四个内角都等于90度,四边都相等)(1)若PR⊥QR,S1=16,S2=9,则S3=,RH=;(2)若四边形PRBA,RQDC,QPFE的面积分别为25m2、13m2、36m2①求△PRQ的面积;②请判断△PRQ和△DEQ的面积的数量关系,并证明你的结论;③六边形花坛ABCDEF的面积是m2.7.已知,如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D 不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.(1)求证:①△BCG≌△DCE.②BH⊥DE.(2)当BH平分DE时,求GC的长.8.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.9.已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当平行四边形ABCD满足条件时,四边形GEHF是菱形;(3)若BD=2AB,探究四边形GEHF的形状,并说明理由.10.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结C E,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.11.如图,在四边形ABCD中,AD∥BC,AB=8,AD=16,BC=22,∠ABC=90°,点P 从点A出发,以每秒1单位的速度向点D运动,点Q从点C同时出发,以每秒v单位的速度向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当v=3时,若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为平行四边形,且线段PQ为平行四边形的一边,求t的值;(2)若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为菱形,且线段PQ为菱形的一条对角线,请直接写出t的值.12.如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.(1)求证:四边形ABCD是菱形.(2)填空:①当∠ADC=°时,四边形ACEB为菱形;②当∠ADC=90°,BE=4时,则DE=.13.如图,在矩形ABCD中,M是BC上一点,EF垂直平分AM,分别交BC,AM,AD于点E,O,F,连接AE,MF.(1)求证:四边形AEMF是菱形;(2)若AB=6,H为AB的中点,连接OH交AE于点P,OH+OA=9,求△OPE的周长.14.在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ.(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ、AC,在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.15.如图,四边形ABCD为菱形,∠BCD=60°,E为对角线AC上一点,且AE=AB,F 为CE的中点,接DF、BF,BG⊥BF与AC交于点G;(1)若AB=2,求EF的长;(2)求证:CG﹣EF=BG.参考答案1.(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°=∠ECF,∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.2.(1)解:四边形ACDF是平行四边形,理由如下:∵四边形ABCD是矩形,∴AB∥CD,∠BCD=∠B=90°,∴∠F AE=∠CDE,∵E是AD的中点,∴AE=DE,在△F AE和△CDE中,,∴△F AE≌△CDE(ASA),∴CD=F A,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)证明:∵BC=2CD,AB=CD,四边形ACDF是平行四边形,∴AF=CD,BF=BC,∴△BCF是等腰直角三角形,∴∠BCF=45°,∴∠DCF=45°,∴CF平分∠BCD.3.(1)证明:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AF,∴BE+BC=AF+AB,即CE=BF,在△ACE和△CBF中,,∴△ACE≌△CBF(SAS);(2)解:由(1)可知:△ABC是等边三角形,△ACE≌△CBF,∴∠E=∠F,∵∠BAE=∠F AG,∴∠E+∠BAE=∠F+∠F AG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.4.解:(1)四边形AEDF是菱形;理由如下:∵DE∥AC交AB于点E,DF∥AB交AC于点F,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠ADF=∠F AD,∴F A=FD,∴四边形AEDF是菱形;(2)当△ABC满足AB=AC条件时,EF∥BC;当△ABC满足∠BAC=90°条件时,EF =AD.理由如下:由(1)得:四边形AEDF是菱形,∴AD⊥EF,∵AB=AC,AD是角平分线,∴AD⊥BC,∴EF∥BC;当∠ABC=90°时,四边形AEDF是正方形,∴EF=AD;故答案为:AB=AC,∠BAC=90°.5.(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠B AE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.6.解:(1)∵PR⊥QR,∴∠PRQ=90°,∴PR2+RQ2=PQ2,∵S1=16,S2=9,∴S3=16+9=25,∴PR=4,RQ=3,PQ=5,∵RH⊥PQ,∴PR•RQ=PQ•RH,∴RH==,故答案为:25,2.4;(2)①设PH=a,则QH=6﹣a,∵RH2=PR2﹣PH2=RQ2﹣HQ2,∴25﹣a2=13﹣(6﹣a)2,解得:a=4,∴RH2=PR2﹣PH2=25﹣16=9,∴RH =3,∴S △PQR =×6×3=9;②S △PRQ =S △DQE ,证明:延长RQ 到点M ,使QM =RQ ,连结PM ,∵QD =QM ,∠DQE =∠MQP ,QE =QP∴△DQE ≌△MQP (SAS ),∴S △DQE =S △MQP ,∵RQ =QM ,∴S △PRQ =S △MQP ,∴S △PRQ =S △DQE ;③六边形花坛ABCDEF 的面积=25+13+36+4×9=74+36=110m 2. 故答案为:110.7.(1)证明:∵正方形ABCD ,∴∠BCD =90°,BC =CD ,同理:CG =CE ,∠GCE =90°,∴∠BCD =∠GCE =90°,,∴△BCG ≌△DCE (SAS ),∴∠GBC=∠CDE,在Rt△DCE中∠CDE+∠CED=90°,∴∠GBC+∠BEH=90°,∴∠BHE=180°﹣(∠GBC+∠BHE)=90°,∴BH⊥DE;(2)若BH垂直平分DE,连接BD,∴BD=BE,∵BD=,∴CG=CE=BE﹣BC=﹣1.8.解:(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2.9.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形.10.(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.11.解:(1)∵当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB为平行四边形.此时,t=22﹣3t,t=.当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD为平行四边形.此时,16﹣t=3t,t=4,∵线段PQ为平行四边形的一边,故当t=或4时,线段PQ为平行四边形的一边.(2)当PD=BQ=BP时,四边形PBQD能成为菱形.由PD=BQ,得16﹣t=22﹣3t,解得t=3,当t=3时,PD=BQ=13,AP=AD﹣PD=16﹣13=3.在Rt△ABP中,AB=8,根据勾股定理得,BP═≠13∴四边形PBQD不能成为菱形;如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,由题意得,,解得,.故点Q的速度为2cm/s时,能够使四边形PBQD在t=6时为菱形.12.(1)证明:∵AC垂直平分BD,∴AB=AD,BF=DF,∵AB∥CD,∴∠ABD=∠CD B.∵∠AFB=∠CFD,∴△AFB≌△CFD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形;(2)①当∠ADC=60°,四边形ACEB为菱形,∵∠ADC=60°,∴∠BCE=60°,∴△BCE是等边三角形,∴CE=BE,∴四边形ACEB为菱形,故答案为:60;②当∠ADC=90°,BE=4时,DE=4,故答案为:4.13.(1)证明:∵EF垂直平分AM,∴AE=EM,OA=OM.∵四边形ABCD是矩形,∴AD∥BC.∴∠AFO=∠MEO,在△OF和△MOE中,,∴△AOF≌△MOE(AAS).∴OF=OE.∴四边形AEMF是平行四边形.∵AE=EM.∴四边形AEMF是菱形;(2)解:∵O、H分别为AM、AB的中点,∴BM=2OH,AM=2OA,∴AM+BM=2OA+2OH=18.设BM=x,则AM=18﹣x,在Rt△ABM中,由勾股定理得:62+x2=(18﹣x)2,解得:x=8,∴BM=8,AM=10.∴OA=AM=5,设EM=m,则BE=8﹣m,AE=EM=m,在Rt△ABE中,由勾股定理得:62+(8﹣m)2=m2,解得:m=,∴AE=EM=在Rt△AOE中,EO===.∵OP∥EM,∴==1,∴AP=PE,∴OP=EM=,∵PE=AE=,∴△OPE的周长=EO+PE+OP=++=10.14.证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵P、Q分别是边BC、CD的中点,∴BP=CQ,在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,(2)∵AP=AQ,∴△APQ是等腰三角形,∵BC=CD,∵P、Q分别是边BC、CD的中点,∴PC=CQ,∴△PQC是等腰三角形,∵AB=BC,AD=CD,∴△ABC,△ACD是等腰三角形,∴图中所有的等腰三角形有△ABC,△APQ,△ACD,△CPQ.15.(1)解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴∠BAD=∠BCD=60°,AC⊥BD,OB=OD,OA=OC,∠OAB=∠BAD=30°,∴OB=AB=1,OA=OB=,∴AC=2OA=2,∵AE=AB=2,∴CE=AC﹣AE=2﹣2,∵F为CE的中点,∴EF=CE=﹣1;(2)证明:设AB=2a,同(1)得:OB=AB=a,OA=OB=a,∴AC=2OA=2a,∵AE=AB=2a,∴CE=AC﹣AE=(2﹣2)a,OE=AE﹣OA=(2﹣)a,∵F为CE的中点,∴EF=CE=(﹣1)a,∴OF=OE+EF=(2﹣)a+(﹣1)a=a,∴OB=OF,∵AC⊥BD,∴△BOF是等腰直角三角形,∴∠BFG=45°,∵BG⊥BF,∴△BFG是等腰直角三角形,∴GF=BG,∵GF=CG﹣CF=CG﹣EF,∴CG﹣EF=BG.。
人教版九年级数学上册期末备考训练:二次函数压轴(含答案)
期末备考训练:二次函数压轴1.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.2.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.3.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设D为抛物线的顶点,连接DA、DB,试判断△ABD的形状,并说明理由;(3)设P为对称轴上一动点,要使PC﹣PB的值最大,求出P点的坐标.4.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,对称轴为直线x=1,且OB=OC,(1)求抛物线的表达式;(2)D是直线BC上方抛物线上一点,DE⊥BC于E,若CE=3DE,求点D的坐标;(3)将抛物线向左平移,使顶点P落在y轴上,直线l与抛物线相交于M、N两点(点M,N都不与点P重合),若以MN为直径的圆恰好经过O,P两点,求直线l的表达式.5.如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y 轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.(1)求A,C两点的坐标.(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.6.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)7.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c 经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.9.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,3),过点A作AB⊥y轴,垂足为B,连结OA,抛物线y=﹣x2﹣2x+c经过点A,与x轴正半轴交于点C.(1)求c的值;(2)将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围;(3)连结BC,设点E在x轴上,点F在抛物线上,如果B、C、E、F构成平行四边形,请求出点E的坐标.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN⊥x轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.(3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.11.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2﹣9(其中a>0)上,AB∥x轴,点P是抛物线的顶点,tan∠PBA=2,∠BAC=45°(1)填空:抛物线的顶点P的坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为10,当2m﹣3≤x≤2m+5时,y的最小值为5,求m的值.12.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.13.如图,二次函数y=x2+bx﹣3的图象l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C,将图象l沿坐标轴翻折得到新的图象,与图象l开口方向相同的新的图象l1交x轴于点A1(在x轴的正半轴上)(1)求出b的值,并写出点A1的坐标以及新的图象所对应的函数解析式;(2)若P为y轴上的一个动点,E为直线A1C上的一个动点,请找出点P,使得PB+PE 最小,并求出最小值;(3)在y轴的正半轴上有一点M,使得∠MA1O=k∠OCB,直线A1M交图象l1于点D (点D在第二象限).①若k=2,试求点D的坐标;②若k=3,请直接写出OM的长.14.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO =3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.15.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.点D是直线BC上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,连接BD、CD,设点D的横坐标为m,△BCD的面积为s.试求出s与m的函数关系式,并求出s的最大值;(3)如图2,设AB的中点为E,作DF⊥BC,垂足为F,连接CD、CE,是否存在点D,使得以C、D,F三点为顶点的三角形与△CEO相似?若存在,请直接写出点D的坐标;若不存在,请说明理由.16.已知,如图在平面直角坐标系中,直线y=﹣x与抛物线y=﹣x2﹣x交于点A,抛物线与x轴的一个交点为B,以A为圆心,AB的长为半径的圆与y轴的正半轴交于点C,过点B作BD⊥x轴交圆于点D,连接CD交直线y=﹣x于点E.(1)请直接写出点A、B、C、D的坐标;(2)在抛物线上是否存在一点P,使得△AEP的面积等于△ACE的面积;若存在求出点P坐标;(3)若点M是直线y=﹣x上一个动点,点N抛物线上一个动点,若以点B、C、M、N 为顶点的四边形是平行四边形,求此时抛物线上点N的坐标.参考答案1.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).2.解:(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3;(2)①过点C作x轴的平行线交抛物线于点C′(2,﹣3),连接AC′交DE于点N,则此时△CAN的周长最小,将点A、C′的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AC′的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G,设NG=n,则NE=3﹣n,∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE=,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n=时,ME=,则m的最小值为:﹣;如下图所示,当点N与点D处时,m取得最大值,同理可得:m=5;故:﹣≤m≤5.3.解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴D(2,﹣1),∴AD2+BD2=(2﹣1)2+(﹣1)2+(2﹣3)2+(﹣1)2=4,∵AB2=22=4,∴AD2+BD2=AB2,∴△ADB是直角三角形,由对称性有AD=BD,∴△ADB是等腰直角三角形;(3)连接CA,延长CA与直线x=2交于点P,连接BP,如图2,∵A、B两点关于直线x=2对称,∴PB=P A,∴PC﹣PB=PC﹣P A=AC其值最大(∵另取一点P′,有P′C﹣P′B=P′C﹣P′A<AC),A令x=0,得y=x2﹣4x+3=3,∴C(0,3),∵A(1,0),∴易求直线AC的解析式为:y=﹣3x+3,当x=2时,y=﹣3x+3=﹣3,∴P(2,﹣3).4.解:(1)x=﹣,则b=2,设点C(0,c),则点B(c,0),将点B的坐标代入二次函数表达式并解得:c=3,故函数的表达式为:y=﹣x2+2x+3,函数的顶点为(1,4);(2)过点D作y轴的平行线交直线BC与点H,过点C作x轴的平行线交DH于点R,将点C、B的坐标代入一次函数表达式得:直线BC的表达式为:y=﹣x+3,设点D(m,﹣m2+2m+3),则点H(m,3﹣m),∵OB=OB=3,∴∠OCB=∠OBC=45°,∴CR=CH=m,DH=﹣m2+2m+3﹣3+m=﹣m2+3m,3DE=3×DH,CE=CH﹣EH=m﹣DH,∵CE=3DE,即RH=2DH,则m=2(﹣m2+3m),解得:m=,则点D(,);(3)平移前函数的顶点为(1,4),则平移后函数的表达式为:y=﹣x2+4,如图所示,以MN为直径的圆恰好经过O,P两点,则∠MON=∠MPN=90°,在点O处,过点M、N分别作x轴的垂线交于点G、H,∵∠GOM+∠NOH=90°,∠NOH+∠ONH=90°,∴∠MOG=∠ONH=α,设点M、N的坐标分别为(m,4﹣m2)、(n,4﹣n2),(m<n,m<0),则tan∠MOG=tan∠ONH=α,即:…①,在点P处,同理可得:…②,联立①②并整理得:m2+n2=4,mn=﹣1,解得:m=±,n=,将点M、N的坐标代入一次函数表达式:y=kx+b并解得:k=,b=3,故直线l的表达式:y=x+3.5.解:(1)把点B的坐标(3,0)代入抛物线解析式得,,解得:c=4,令y=0,则,解得x1=3,x2=﹣4,∴A(﹣4,0),C(0,4);(2)∵A(﹣4,0),C(0,4),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式y=x+4,点P的横坐标为a,P(a,),则点Q(a,a+4),∴PQ==,∵,∴a=﹣2时,PQ有最大值;(3)存在,理由:点A、B、C的坐标分别为(﹣4,0)、(3,0)、(0,4),则BC=5,AB=7,AC=4,∠OAC=∠OCA=45°,将点B、C的坐标代入一次函数表达式:y=mx+n并解得:,∴直线BC的解析式为y=﹣x+4,设BC的中点为H,由中点坐标公式可得H(),∴过BC的中点H且与直线BC垂直直线的表达式为:y=,①当BC=BQ时,如图1,∴BC=BQ=5,设:QM=AM=n,则BM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q1(﹣1,3);②当BC=CQ时,如图1,∴CQ=5,则AQ=AC﹣CQ=4,∴,∴,③当CQ=BQ时,联立直线AC解析式y=x+4和y=,解得x=﹣(不合题意,舍去),综合以上可得点Q的坐标为:Q(﹣1,3)或().6.解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.7.解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S 四边形ACPB =S △AOC +S △PCB ,∵S △AOC 是常数,故四边形面积最大,只需要S △PCB 最大即可,S △PCB =×OB ×PH =×2(x ﹣3﹣x 2+x +3)=﹣x 2+3x ,∵﹣<0,∴S △PCB 有最大值,此时,点P (2,﹣);(3)过点B 作∠ABC 的角平分线交y 轴于点G ,设∠MBC =∠ABC =2α,过点B 分别在x 轴之上和BC 之下作角度数为α的两个角,分别交y 轴于点N 交抛物线于点M ′,交抛物线于点M ,过点G 作GK ⊥BC 交BC 于点K ,延长GK 交BM 于点H ,则GH =GN ,BC 是GH 的中垂线,OB =4,OC =3,则BC =5,设:OG =GK =m ,则CK =CB ﹣HB =5﹣4=1,由勾股定理得:(3﹣m )2=m 2+1,解得:m =,则OG =ON =,GH =GN =2OG =,点G (0,﹣),在Rt △GCK 中,GK =OG =,GC =OC ﹣OG =3﹣=,则cos ∠CGK ==,sin ∠CGK =,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BN的表达式为:y=﹣x+…③联立①②并整理得:27x2﹣135x+100=0,解得:x=1或4(舍去4),则点M(1,﹣);联立①③并解得:x=﹣,故点M′(﹣,);故点M(1,﹣)或(﹣,).8.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD有最大值,当m=时,其最大值为;∵﹣1<0,故S△POD(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S=×AH×BC=AB×OC,解得:AH=2,△ABC则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=,故点Q1(,﹣2),Q2(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q3(,),Q4(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(,)或(﹣,2)或(,).9.解:(1)将点A的坐标代入抛物线表达式得:﹣4+4+c=3,解得:c=3;(2)则抛物线的表达式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,抛物线的对称轴是:x=﹣1,点A(﹣2,3),则直线AO的函数表达式为:y=﹣x,当x=﹣1时,y=,∵平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),∴4﹣3<m<4﹣,即1<m<;(3)设点F(m,n),n=﹣m2﹣2m+3,点E(s,0),①当BC是平行四边形的一条边时,则点B向右平移一个单位、向下平移3个单位得到C,同样:点F(E)向右平移一个单位、向下平移3个单位得到E(F),故:m+1=s,n﹣3=0,或m﹣1=s,n﹣3=0;解得:m=0或﹣2(舍去0)或m=﹣1,故点E的坐标为(﹣1,0)或(﹣2+,0)或(﹣﹣2,0);②当BC是平行四边形的对角线时,则由中点的性质得:1=m+s,3=n,解得:m=0或﹣2(舍去0),故点E(3,0);综上,点E的坐标为:(﹣1,0)或(﹣2+,0)、(﹣﹣2,0)或(3,0).10.解:(1)由题意可得:,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为:y=kx+b,则有:,解得:,∴直线BC的解析式为:y=﹣x+3.设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM =S△PMC+S△PMB=(x B﹣x C)=,∴S△BCM==,∴当x=时,△BCM的面积最大.此时P(),∴PN=ON=,∴BN=OB﹣ON=3﹣=,在Rt△BPN中,由勾股定理得:PB=,C△BCN=BN+PN+PB=3+,∴当△BCM的面积最大时,△BPN的周长为3+;(3)由(2)知P点坐标为(),∴,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为x=1,设Q(1,a),∵C(0,3),N(),∴CQ2=12+(3﹣a)2,,,若△CNQ为等腰三角形,可分三种情况:当CQ=QN时,1+,解得:a=,∴点Q的坐标为(1,),当CQ=CN时,1+,解得:a=3,∴点Q的坐标为(1,3﹣),(1,3+),当QN=CN时,,解得:a=,∴点Q的坐标为(1,),(1﹣),综合以上可得点Q的坐标为(1,)或(1,3﹣)或(1,3+)或(1,)或(1,﹣).11.解:(1)∵y=ax2﹣2amx+am2﹣9=a(x﹣m)2﹣9∴顶点P的坐标为(m,﹣9)故答案为:(m,﹣9).(2)过点P作PD⊥AB于点D,过点C作CE⊥AB于点E∵AB∥x轴,且点A、B在抛物线上∴P A=PB∴AD=BD∵tan∠PBA==2∴PD=2BD=AB设AD=BD=n(n>0),则PD=AB=2n∴A(m﹣n,﹣9+2n)把A的坐标代入抛物线解析式得:a(m﹣n﹣m)2﹣9=﹣9+2n整理得:n=∴AB=,A(m﹣,﹣9+)∵∠AE C=90°,∠BAC=45°∴AE=CE设AE=CE=t(t>0),则C(m﹣+t,﹣9++t)把C的坐标代入抛物线解析式得:a(m﹣+t﹣m)2﹣9=﹣9++t整理得:t=∴CE==AB•CE=∴S△ABC(3)∵S==10,a>0△ABC∴a=1∴抛物线解析式为:y=(x﹣m)2﹣9∴抛物线最小值y=﹣9<5∴当2m﹣3≤x≤2m+5时,不包含有对称轴x=m①若2m+5<m,即m<﹣5时,x=2m+5对应最小值y=5∴(2m+5﹣m)2﹣9=5解得:m1=﹣5+(舍去),m2=﹣5﹣②若2m﹣3>m,即m>3时,x=2m﹣3对应最小值y=5∴(2m﹣3﹣m)2﹣9=5解得:m1=3+,m2=3﹣(舍去)综上所述,m的值为﹣5﹣或3+.12.解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△P AB =S△PGA+S△PGB===﹣,∴当m=时,△P AB面积的最大值是,此时P点坐标为().13.解:(1)函数l的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=﹣3,解得:a=1,故函数l的表达式为:y=x2+2x﹣3,b=2,点A、A1关于y轴对称,故点A1(3,0);(2)点B′是点B关于y轴的对称点,过点B′作B′E⊥A1C交于点E,B′E交y轴于点P,则此时,PB+PE最小,最小值为B′E,∵OA1=OC=3,故直线A1C的表达式为:y=x﹣3…①,B′E⊥A1C,则B′E的函数表达式为:y=﹣x+s,将点B′坐标代入上式并解得:直线B′E的表达式为:y=﹣x﹣1…②,联立①②并解得:x=1,故点E(1,﹣2),则PB+PE的最小值B′E=2;(3)将图象A、B、C区域放大为图2,连接OB′,则∠BCB′=2OCB=2α,在点B右侧作∠BCB″=α,交x轴于点B″,则∠B′CB″=3α,则tan∠OCB===tanα,B′C=BC=,设∠CB′B=β,则tanβ=3,则sinβ=当k=2时,即∠MA1O=2∠OCB=2α,故点B作BH⊥CB′,BH=B′B sinβ=2×=,tan∠HCB=tan2α==,当k=3时,同理tan∠MA1O=tan3α=;①当k=2时,tan∠MA1O=tan2α=,则直线A1M的表达式为:y=﹣x+b,将点A1(3,0)的坐标代入上式并解得:直线A1M的表达式为:y=﹣x+,将A1M表达式与l的表达式联立并解得:x=﹣(正值也舍去),故点D(﹣,),②k=3时,tan∠MA1O=tan3α=;则OM=OA1tan∠MA1O=×3=.14.解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).15.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0)∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)过点D作DM∥y轴,交BC于点M∵当x=0时,y=﹣x2+2x+3=3∴C(0,3)∴直线BC解析式为y=﹣x+3∵点D的横坐标为m(0<m<3)∴D(m,﹣m2+2m+3),M(m,﹣m+3)∴DM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴s=OB•DM=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+∴s与m的函数关系式为s=﹣m2+m,s的最大值为.(3)存在点D,使得以C、D,F三点为顶点的三角形与△CEO相似如图2,连接BD∵点E为AB中点,A(﹣1,0),B(3,0),C(0,3)∴E(1,0),OE=1,OC=3,CD2=m2+(﹣m2+2m+3﹣3)2∴CE=∴sin∠OCE=,cos∠OCE=∵BC=,DF⊥BC∴s=BC•DF=﹣m2+m∴DF=∵以C、D,F三点为顶点的三角形与△CEO相似,∠CFD=∠COE=90°∴△CFD∽△COE或△CFD∽△EOC①若△CFD∽△COE,则∠FCD=∠OCE∴sin∠FCD=∴10DF2=CD2∴10()2=m2+(﹣m2+2m)2解得:m1=4(舍去),m2=∴﹣m2+2m+3=﹣+5+3=∴D(,)②若△CFD∽△EOC,则∠FDC=∠OCE∴cos∠FDC=∴10DF2=9CD2∴10()2=9[m2+(﹣m2+2m)2]解得:m1=0(舍去),m2=∴﹣m2+2m+3=﹣+3+3=∴D(,)∴点D的坐标为(,)或(,).16.解:(1)∵直线y=﹣x与抛物线y=﹣x2﹣x交于点A,∴﹣x=﹣x2﹣x,∴x1=0,x2=﹣1,∴点A(﹣1,1),令﹣x2﹣x=0,解得x1=﹣3,x2=0,∴B(﹣3,0),AB==,设点C的坐标为(0,c),∴AC==,解得c=3,∴C(0,3),设点D的坐标为(﹣3,n),∴AD==,解得n=2,∴D(﹣3,2).∴A(﹣1,1)、B(﹣3,0)、C(0,3)、D(﹣3,2).(2)过点C作OA的平行线,则解析式为y=﹣x+3,将y=﹣x+3向下平移6个单位后与抛物线的交点就是所求的点P,令﹣x﹣3=﹣x2﹣x,解得,,∴点P的坐标为(2,﹣5)或(﹣3,0).(3)①当BC为对角线时,点O即为点N,∴N1(0,0).②当BC为边时,过N作y轴的平行线交直线OA于点Q,∵OA⊥BC,BC∥MN,∴∠QMN=90°,又∵BC=OB=3,∴MN=3,∵∠MQN=45°,∴NQ=MN=6,设N(a,﹣a2﹣a),则点Q(a,﹣a),∴﹣a﹣(﹣a2﹣a)=6,解得a1=3,a2=﹣4,∴N2(3,﹣9),N3(﹣4,﹣2).综上所述,点N的坐标为(0,0)、(3,﹣9)、(﹣4,﹣2).。
初三数学压轴题100题
1.一个等腰三角形的底边长为10厘米,腰长为13厘米,求这个三角形的面积。
答案:底边上的高为12厘米,面积为60平方厘米。
2.解方程:2x^2 - 5x + 2 = 0。
答案:x1 = 1/2, x2 = 2。
3.一个圆的半径是7厘米,求这个圆的周长和面积。
答案:周长约为43.98厘米,面积约为153.94平方厘米。
4.一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,求它的体积和表面积。
答案:体积为192立方厘米,表面积为192平方厘米。
5.一个数的2/3加上15等于这个数的1/2,求这个数。
答案:这个数是60。
6.一个班级有40名学生,其中女生占全班的5/8,求男生的人数。
答案:男生有15人。
7.一个三角形的两边长分别是8厘米和6厘米,夹角为90度,求这个三角形的面积。
答案:面积为24平方厘米。
8.一个圆柱的底面半径是5厘米,高是10厘米,求这个圆柱的体积。
答案:体积约为785.4立方厘米。
9.一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个梯形的面积。
答案:面积为32平方厘米。
10.一个数的1/4减去5等于这个数的1/8,求这个数。
答案:这个数是40。
11.一个班级有50名学生,其中2/5是女生,求男生的人数。
答案:男生有30人。
12.一个三角形的两边长分别是9厘米和12厘米,夹角为60度,求这个三角形的面积。
答案:面积约为27.71平方厘米。
13.一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。
答案:体积约为37.68立方厘米。
14.一个梯形的上底是5厘米,下底是7厘米,高是3厘米,求这个梯形的面积。
答案:面积为18平方厘米。
15.一个数的3/5加上10等于这个数的2/3,求这个数。
答案:这个数是75。
16.一个班级有60名学生,其中1/3是男生,求女生的人数。
答案:女生有40人。
17.一个三角形的两边长分别是7厘米和5厘米,夹角为30度,求这个三角形的面积。
答案:面积约为5.92平方厘米。
九年级数学上学期期末专题12 选择压轴题分类练(七大考点)
专题12 选择压轴题分类练(七大考点)一.新定义1.若min{a,b,c}表示a、b、c三个数中的最小值,则当x≥0且y=min{x2,x+2,7﹣x}时,y的最大值为()A .15−√292B .4C .112D .922.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:①勒洛三角形是中心对称图形;②使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动; ③图2中,等边三角形的边长为2,则勒洛三角形的周长为2π;④图3中,在△ABC 中随机取一点,则该点取自勒洛三角形DEF 部分的概率为√3π−26.上述结论中,所有正确结论的序号是( ) A .①②B .②④C .②③D .③④二.最值--相似3.如图,在平面直角坐标系中,已知A (﹣2,4)、P (﹣1,0),B 为y 轴上的动点,以AB 为边构造△ABC ,使点C 在x 轴上,∠BAC =90°,M 为BC 的中点,则PM 的最小值为( )A .√172B .√17C .4√55D .√5三.相似与三角函数的融合。
4.如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =5,BC =3,则tan α的值为( )A .310B .35C .√612D .√525.如图,矩形ABCD 中,AB =4,BC =2,以点A 为旋转中心将矩形ABCD 旋转,旋转后的矩形记为AEFG ,如图所示.CD 所在直线与AE 、GF 交于点H 、I ,CH =IH .则线段HI 的长度为( )A .3√2B .2√2C .5D .526.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 绕直角边AC 的中点O 旋转,得到△DEF ,连接AD ,若DE 恰好经过点C ,且DE 交AB 于点G ,则tan ∠DAG 的值为( )A .524B .513C .512D .724四.动点(线)轨迹。
九年级数学压轴题练习
九年级数学压轴题练习一、平行四边形类型的练习1、如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线经过点B,且对称轴是直线x=﹣(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D 都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为,2、如图,在平面直角坐标系中,已知Rt △AOB 的两条直角边OA 、OB 分别在y 轴和x 轴上,并且OA 、OB 的长分别是方程x2﹣7x+12=0的两根(OA<OB)(1)求A 、B 两点的坐标.(2)求当t 为何值时,△APQ 与△AOB 相似,并直接写出此时点Q 的坐标.(3)当t=2时,在坐标平面内,是否存在点M ,使以A 、P 、Q 、M 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.3如图,在四边形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:;A B =C D (2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.A DCB M Q 60°4已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.5抛物线y=x 2﹣2x ﹣3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.二 相似和图形面积类型的练习6如图,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.7如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,CPB y A ox请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线△的面积最大,求出点D的AC上方的抛物线上有一点D,使得DCA坐标.8如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.9如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F 为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.三特殊三角形和其它图形类型的练习10如图1,已知抛物线(b是实数且b>2)与x 轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.11在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2﹣x+n的对称轴是直线x=2.(1)求出该抛物线的解析式.(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值.②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.12已知:如图①,直线y =-3x + 3与x 轴、y 轴分别交于A 、B 两点,两动点D 、E 分别从A 、B 两点同时出发向O 点运动(运动到O 点停止);对称轴过点A 且顶点为M 的抛物线y =a (x -k )2+h (a <0) 始终经过点E ,过E 作EG ∥OA 交抛物线于点G ,交AB 于点F ,连结DE 、DF 、AG 、BG .设D 、E 的运动速度分别是1个单位 长度/秒和3个单位长度/秒,运动时间为t 秒.(1)用含t 代数式分别表示BF 、EF 、AF 的长;(2)当t 为何值时,四边形ADEF 是菱形?判断此时△AFG 与△AGB 是否相似,并说明理由;(3)当△ADF 是直角三角形,且抛物线的顶点M 恰好在BG 上时,求抛物线的解析式.xyO BA图① 图②13已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
人教版九年级数学上册期末圆动点最值问题压轴题
人教版九年级数学上册期末圆动点最值问题压轴题一、单选题1.如图,O的直径12AB=,弦CD垂直平分半径OA,动点M从点C出发在优弧CBD 上运动到点D停止,在点M整个运动过程中,线段AM的中点P的运动路径长为()A.3πB.4πC.5πD.6π2.如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最大值与最小值之差是()A.5 B.6 C.7 D.83.如图,线段AB=6,点C为线段AB外一动点,45∠=︒,连接BC,M,N分别ACB为AB,BC的中点,则线段MN的最大值为()A.3 B.4 C.2D.24.如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB上的一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A .60°B .90°C .120°D .135°5.如图,O 的半径为13,弦AB 的长为24,M 是弦AB 上的动点,则线段OM 长的最小值为( )A .8B .7C .6D .56.如图,在Rt AOB 中,OA =OB =42,⊙O 的半径为2, 点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为( )A .23B .3C .1D .27.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A 3B 33C .3D .3328.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为( ).A .3B .23C .43D .4二、填空题 9.如图所示,AB 是O 的直径,20AB =,30CAB ∠=︒,点D 为弧BC 的中点,点P 是直径AB 上的一个动点,PC PD +的最小值为__________.10.如图,⊙O 的半径是2,AB 是⊙O 的弦,P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆心角的度数是__________.11.如图,AB 是O 的弦,5AB =,点C 是O 上的一个动点,且45ACB ∠=︒,若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是______.12.如图,在扇形ABD 中,60BAD ∠=︒,AC 平分BAD ∠交弧BD 于点C ,点P 为半径AB 上一动点,若4AB =,则阴影部分周长的最小值为___________.13.在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.14.如图,在扇形AOB 中,45AOB ∠=︒,点C 是AB 的中点,点D ,E 分别为半径OA ,OB 上的动点.若2OB =,则CDE △周长的最小值为______.15.如图,矩形ABCD 中,AB =6,BC =9,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与矩形ABCD 的边CD 相切时,则BP 的长为________.三、解答题16.如图,在正方形ABCD 中,动点E ,F 分别在边DC ,CB 上移动(不与顶点重合),且满足DE CF =.连接AE 和DF ,交于点P .(1)请你写出AE 与DF 的数量关系和位置关系,并说明理由;(2)由于点E ,F 的移动,使得点P 也随之运动.①请用文字描述并且在图中画出点P 的运动路径;②若10AD =,请求出线段CP 的最小值.17.如图,O为Rt ABC的外接圆,90,43,4∠=︒==,点D是O上的ACB BC AC、分别位于AB的两侧.动点,且点C D(1)求O的半径;∠的度数;(2)当42CD=时,求ACD(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE的长为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,求出BP的长.19.如图,在平行四边行ABCD 中,AB =5,BC =8,BC 边上的高AH =3,点P 是边BC 上的动点,以CP 为半径的⊙C 与边AD 交于点E ,F (点E 在点F 的左侧). (1)当⊙C 经过点A 时,求CP 的长;(2)连接AP ,当AP ∥CE 时,求⊙C 的半径及弦EF 的长.20.如图,在Rt ABC 中,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的一个动点,以CD 为直径的O 交AD 于点E ,过点C 作//CF AB ,交O 于点F ,连接CE 、EF .(1)当45CFE ∠=︒时,求CD 的长;(2)求证:BAC CEF ∠=∠;(3)是否存在点D ,使得CFE 是以CF 为底的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.参考答案1.B解:如图,连接OC,设CD交AB于点E.∵CD垂直平分线段OA,∴CA=CO,∵OC=OA,∴AC=OC=OA,∴△AOC是等边三角形,∴∠CAE=60°,当点M与C重合时,连接PE,OP,∵P A=PM,∴OP⊥AM,∴∠APO=90°,∵AE=EO,OA=3,∴EP=12∵PE=AE=3,∠P AE=60°,∴△P AE是等边三角形,∴∠AEP=60°;在点M整个运动过程中,如下图,∵点P 是AM 的中点,点E 是AO 的中点, ∴1122PE OM OA AE EO ====, ∴线段AM 的中点P 的运动轨迹是图中IOJ ,∵260120IEJ ∠=⨯︒=︒,∴IOJ 的圆心角360120240=︒-︒=︒,∴运动路径的长=24034180ππ•=. 故选:B .2.D解:如图,设⊙O 与AC 相切于点D ,连接OD ,过点O 作OP ⊥BC 垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP ﹣OF ,∵AC =12,BC =9,∴AB 22AC BC +22129+15,∵∠OPB =90°,∴OP ∥AC ,,OPB ACB ∴∽2,3OP OB AC AB ∴== ∵点O 是AB 的三等分点,∴21510,3OB =⨯=, ∴OP =8,∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴OD ∥BC ,,AOD ABC ∴∽ ∴13OD OA BC AB ==, ∴OD =3,∴MN 最小值为OP ﹣OF =8﹣3=5,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值=OB +OE =10+3=13,∴MN 长的最大值与最小值的差是13﹣5=8.故选:D .3.C解:由题知A 、B 、C 三点共圆,M ,N 分别为AB ,BC 的中点,12MN AC ∴=, ∴当AC 过圆心即AC 是直径时(如图所示),AC 取得最大值,此时MN 取的最大值, 45ACB =︒∠,90ABC ∠=︒∴此时ABC 是等腰直角三角形,BMN △是等腰直角三角形,132BM BN AB ∴===,MN ∴=故选C .4.B解:如图,延长CD交⊙O于P,延长CE交⊙O于T,连接PT.∵OA⊥PC,OB⊥CT,∴CD=DP,CE=TE,∴DE=12 PT,∴当PT是直径时,DE的长最大,连接OC,∵OP=OC=OT,OD⊥PC,OE⊥CT,∴∠COA=∠POA,∠COB=∠BOT,∴∠AOB=∠COA+∠COB=12∠POT=90°,故选:B.5.D解:过O作OM AB'⊥于M',此时线段OM'的长最短,连接OA,OM '过点O ,OM AB '⊥, 11241222AM AB '∴==⨯=, 在Rt AMO △中,由勾股定理得:221691445OM OA AM ''=-=-=. 故选:D .6.A解:连接OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2,∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,2∴2OA=8,∴OP=4OA OB AB•=, ∴2223OP OQ =-故选:A .7.B解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB=FB′,∴FB+FE=FB′+FE=B′E,此时FB+FE的值最小,∵∠BAC=30°,∴∠B′AC=30°,∴∠BAB′=60°,∵AB=AB′,∴△ABB′为等边三角形,∵B′E⊥AB,∴AE=BE=32,∴B′E333即BF+EF33故选:B.8.D∵过点O作OC⊥AP于点C,OD⊥PB于点D,∴AC=PC,BD=PD,∴CD∥AB,且CD=12AB,∵AB=8,∴CD=12AB=4.故选择:D.9.102解:作出D 关于AB 的对称点D ′,连接OC ,OD ′,CD ′.又∵点C 在⊙O 上,∠CAB =30°,D 为弧BC 的中点,即BD BD '=,∴∠BAD ′=12∠CAB =15°.∴∠CAD ′=45°.∴∠COD ′=90°.则△COD ′是等腰直角三角形.∵OC =OD ′=12AB =10,∴CD ′=2故答案为:10210.120︒解:作OD ⊥AB ,∵P 是弦AB 上的动点,且1≤OP ≤2,∴OD=1,∵⊙O 的半径是2,∴12OD OA , ∵OA=OB ,∴30OAB OBA ==︒∠∠,∴弦AB 所对的圆心角120AOB ∠=︒,故答案为:120︒ .11.522 解:∵点M ,N 分别是AB ,AC 的中点,∴MN =12BC , ∵当BC 最大时,线段MN 长的最大,当BC 为⊙O 的直径时,BC 的长度最大,此时,∠A =90°,∠ACB =45°,∴直径BC =2AB =52,则线段MN 长的最大值为522, 故答案为:522. 12.2423π+ 解:如图,作点C 关于AB 的对称点C ',连接C D '交OB 于点P ',连接P C '、OC ',此时P C P D ''+最小,即=P C P D C D '''+,由题意得,30DAC CAB BAC '∠=∠=∠=︒,∴90DAC '∠=︒, ∴22224442C D OC OD ''=+=+=,CD 的长3042==1803l ππ⨯, ∴阴影部分周长的最小值为242+3π, 故答案为:242+3π. 13.52-如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==22112AO ∴=+=112ON OM AB ===,3BC = 221(31)5OC ∴=+-=52CO OD ∴-=线段CD 长度的最小值为52-. 52-14.2解:如图,作点C 关于,OA OB 的对称点,M N ,连接,,,,DM EN OM OC ON ,则,,,,,DM CD OM OC AOM AOC EN CE ON OC BON BOC ==∠=∠==∠=∠, CDE ∴的周长为CD DE CE DM DE EN ++=++,由两点之间线段最短得:当点,,,M D E N 共线时,CDE △周长最小,最小值为MN , ,AOM AOC BON BOC ∠=∠∠=∠,45AOC BOC AOB ∠+∠=∠=︒,2()90MON AOM AOC BON BOC AOC BOC ∴∠=∠+∠+∠+∠=∠+∠=︒,由同圆半径相等得:2OC OB ==,2OM ON ∴==,在Rt MON 中,2222MN OM ON +=即CDE △周长的最小值为22 故答案为:2215.4当⊙P 与直线CD 相切时,设PC =PM =x .则PB =9-x ,132BM AB == 在Rt △PBM 中,∵222PM BM PB =+,∴2223(9)x x =+-,∴x =5,∴PC =5,∴BP =BC ﹣PC =9﹣5=4.故答案为:4.16.解:(1)AE DF =,AE DF ⊥,理由是:∵四边形ABCD 是正方形,∴AD DC =,90ADE DCF ∠=∠=︒,∵DE CF =,在ADE 和DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ≅△△,∴AE DF =,DAE FDC ∠=∠∵90ADE ∠=︒,∴90ADP FDC ∠+∠=︒,∴90ADP DAE ∠+∠=︒,∴1809090APD ∠=︒-︒=︒,∴AE DF ⊥;(2)如图,①∵点P 在运动中保持90APD ∠=︒,设正方形ABCD 的中心为O , ∴得出点P 的运动路径是以AD 为直径的圆的圆弧DPO (去除端点D ,O ),②设AD 的中点(圆心)为G ,连接CG 交圆弧于点P ,此时线段CP 的长度最小. 在Rt CDG 中,222210555CG CD DG ++∴555=-=-CP CG GP即线段CP的最小值是555-.17.(1)4;(2)15°;(3)存在,232+解:(1)如图1中,∵AB是直径,∴∠ACB=90°,∵AC=4,BC=3∴AB2222++=8,4(43)AC BC∴⊙O的半径为4.(2)如图1中,连接OC,OD.∵CD=2,OC=OD=4,∴CD2=OC2+OD2,∴∠COD=90°,∴∠OCD=45°,∵AC=OC=OA,∴△AOC是等边三角形,∴∠ACO=60°,∴∠ACD=∠ACO﹣∠DCO=60°﹣45°=15°.(3)如图2中,连接OM,OC.∵AM=MD,∴OM⊥AD,∴点M的运动轨迹以AO为直径的⊙J,连接CJ,JM.∵△AOC是等边三角形,AJ=OJ,∴CJ⊥OA,∴CJ22=-=23,AC AJ∵CM≤CJ+JM=23+2,∴CM的最大值为23+2.18.【详解】(1)证明:如图,过O作AC的垂线OM,垂足为M.∵AB=AC,AO⊥BC,∴AO平分∠BAC,∵OE⊥AB,OM⊥AC,∴ OE =OM ,∵ OE 为⊙O 的半径,∴ OM 为⊙O 的半径,∴ AC 是⊙O 的切线.(2)解:∵OM =OE =OF =3.且F 是OA 的中点,∴ AO =6,在Rt ΔAEO 中,AE =33, ∴ AEO S =12OE AE =932. ∵ OE ⊥AB ,在Rt ΔAEO 中,∠OEA =90°,AO =6,AE =33,OE =3,∴ ∠EOF =60°,∴ OEF S 扇形=260333602ππ⋅=, ∴ S 阴影AEO OEF S S =-扇形△93322π=-. (3)解:如图,作点F 关于BC 的对称点G ,连接EG 交BC 于P ,∵ =PF PG ,∴ PE PF PE PG EG +=+=,此时EP +FP 最小,∵ OG =OF =OE ,∴ =G OEG ∠∠,而 =+=60AOE G OEG ︒∠∠∠,∴=30G︒∠,∴=G EAG∠∠,∴33EG EA==,即PE PF+最小值为33,在Rt OPG中,333OP OG==,在Rt ABO中,3362333OB OA==⨯=,∴=23-3=3BP,即当PE+PF取最小值时,BP的长为3.19.(1)CP=5;(2)⊙C的半径为258,EF=74.解:(1)连接AC,如图1所示:∵AH⊥BC,∴∠AHB=∠AHC=90°,∴BH=2222534AB AH-=-=,∴CH=BC﹣BH=4,∴CA=225AH CH+=,当⊙C经过点A时,CP=CA=5;(2)∵四边形ABCD是平行四边形,∴AD∥BC,当AP∥CE时,四边形APCE是平行四边形,∵CP=CE,∴四边形APCE是菱形,∴P A=CP,设P A=CP=x,则PH=4﹣x,在Rt△APH中,由勾股定理得:AH2+PH2=P A2,即32+(4﹣x )2=x 2,解得:x =258, 即⊙C 的半径为258, 作CM ⊥EF 于M ,如图2所示:则CM =AH =3,ME =MF =12EF ,在Rt △CEM 中,由勾股定理得:ME =2222257()388CE CM -=-=, ∴EF =2ME =74.20.解:(1)∵45CDE CFE ∠=∠=︒,90ACB ∠=︒∴45DAC CDA ∠=∠=︒∴6CD AC ==(2)∵//CF AB ,∴B FCB ∠=∠,∵FCB DEF ∠=∠,∴B DEF ∠=∠,①又90BAC B ∠+∠=︒②∵CD 是圆O 的直径,90CED ∠=︒,∴90DEF CEF ∠+∠=︒③由①②③可得BAC CEF ∠=∠(3)CFE 是CF 为底的等腰三角形,则EF CE =,则∠EFC =∠ECF . 连接FD ,并延长和AB 相交于G ,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,BG2+DG2=BD2,∴42+x2=(8-x)2,解得x=3,即CD=3。
九年级数学压轴题练习
九年级数学压轴题练习一、平行四边形类型的练习1、如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线经过点B,且对称轴是直线x=﹣(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D 都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为,2、如图,在平面直角坐标系中,已知Rt △AOB 的两条直角边OA 、OB 分别在y 轴和x 轴上,并且OA 、OB 的长分别是方程x2﹣7x+12=0的两根(OA<OB)(1)求A 、B 两点的坐标.(2)求当t 为何值时,△APQ 与△AOB 相似,并直接写出此时点Q 的坐标.(3)当t=2时,在坐标平面内,是否存在点M ,使以A 、P 、Q 、M 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.3如图,在四边形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:;A B =C D (2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.A DCB M Q 60°4已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.5抛物线y=x 2﹣2x ﹣3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.二 相似和图形面积类型的练习6如图,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.7如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,CPB y A ox请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线△的面积最大,求出点D的AC上方的抛物线上有一点D,使得DCA坐标.8如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.9如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F 为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.三特殊三角形和其它图形类型的练习10如图1,已知抛物线(b是实数且b>2)与x 轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.11在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2﹣x+n的对称轴是直线x=2.(1)求出该抛物线的解析式.(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值.②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.12已知:如图①,直线y =-3x + 3与x 轴、y 轴分别交于A 、B 两点,两动点D 、E 分别从A 、B 两点同时出发向O 点运动(运动到O 点停止);对称轴过点A 且顶点为M 的抛物线y =a (x -k )2+h (a <0) 始终经过点E ,过E 作EG ∥OA 交抛物线于点G ,交AB 于点F ,连结DE 、DF 、AG 、BG .设D 、E 的运动速度分别是1个单位 长度/秒和3个单位长度/秒,运动时间为t 秒. (1)用含t 代数式分别表示BF 、EF 、AF 的长;(2)当t 为何值时,四边形ADEF 是菱形?判断此时△AFG 与△AGB 是否相似,并说明理由;(3)当△ADF 是直角三角形,且抛物线的顶点M 恰好在BG 上时,求抛物线的解析式.xyO BA图① 图②13已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
初三九年级上册数学压轴题专题练习(解析版)
初三九年级上册数学压轴题专题练习(解析版)一、压轴题 1.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.2.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?4.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.5.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.6.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.8.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.MN=,在劣弧MN和优弧MN上分别有点9.MN是O上的一条不经过圆心的弦,4AM BM.A,B(不与M,N重合),且AN BN=,连接,(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.10.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).11.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)12;(2)53;(3)202. 【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==,222255352OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点 PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.2.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN 内部或边界时,矩形OMQN 是点M ,N ,P 的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x 的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18; ②t=4或t=-1; (2)如图,过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.3.(1)4;(2)t为4s,203s,283s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=203(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=283(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而283<11,∴当t为4s,203s,283s时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.4.(1)4;(2)52;(3)600(2+1).【解析】【分析】(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(2+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=52.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC+BC+BD2+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD=AC时,AB+BC+BD的值最大,最大值=6002+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.5.(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH3﹣13+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明. (3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC ,∴2322AH =+,∴31AH =-,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°, ∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴2322CH ,=+ ∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.6.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t ==【解析】【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论.【详解】(1)∵AC =4,BC =3,∴AC +BC =7.∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t .故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB .∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<); (3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH .∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ). ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边AC 相切,∴PC =PG .∵PC =t ﹣4,∴t ﹣445=(7﹣t ),∴t 163=秒.综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.7.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2=DC2+DE2,∴(8-x )2=62+x 2,解得:x=74, ∵P 为边BC 上一个动点(可以包括点C 但不包括点B ), ∴线段AE 长度的取值范围为:74≤AE <254. 【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.8.(1)PA O 2)见解析;(3)⊙O 的半径为2或5 【解析】【分析】(1)过点A 作BP 的垂线,作直径AM ,先在Rt △ABH 中求出BH ,AH 的长,再在Rt △AHP 中用勾股定理求出AP 的长,在Rt △AMP 中通过锐角三角函数求出直径AM 的长,即求出半径的值;(2)证∠APB =∠PAD =2∠PAE ,即可推出结论;(3)分三种情况:当AE ⊥BD 时,AB 是⊙O 的直径,可直接求出半径;当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,通过证△BFE ∽△DAE ,求出BE 的长,再证△OBE 是等边三角形,即得到半径的值;当AE ⊥AB 时,过点D 作BC 的垂线,通过证△BPE ∽△BND ,求出PE ,AE 的长,再利用勾股定理求出直径BE 的长,即可得到半径的值.【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP ,在Rt △ABH 中,∠ABH =60°,∴∠BAH =30°,∴BH=12AB =2,AH =AB •sin60°= ∴HP =BP ﹣BH =1,∴在Rt △AHP 中,AP∵AB 是直径,∴∠APM =90°,在Rt △AMP 中,∠M =∠ABP =60°,∴AM =APsin 60︒=3,∴⊙O的半径为3,即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D 作BC 的垂线,交BC 的延长线于点N ,延开PE 交AD 于点Q , 在Rt △DCN 中,∠DCN =60°,DC =4,∴DN =DC •sin60°=23,CN =12CD =2, ∴PQ =DN =23,设QE =x ,则PE =23﹣x ,在Rt △AEQ 中,∠QAE =∠BAD ﹣BAE =30°,∴AE =2QE =2x ,∵PE ∥DN ,∴△BPE ∽△BND ,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣533x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥//OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠=290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠=A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==,NE MM '⊥于点E.11()22ME EM MM a b ''∴===+, ()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=, 16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.10.(1)详见解析;(2)3CD =或3;(3)详见解析.【解析】【分析】(1)只要证明△EAF ∽△FEG 即可解决问题;(2)如图3中,作DE ⊥BA 交BA 的延长线于E .设AE=a .在Rt △BDE 中,利用勾股定理构建方程求出a ,分两种情形构建方程求解即可;(3)①当△AFE ∽△EFC 时,连接BC ,AC ,BD .②当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .③当△AFE ∽△CEF 时,分别求解即可,注意答案不唯一.【详解】解:(1)如图1,∵正方形ABCD 中4AB AD CD ===,90A D ∠=∠=,E 为AD 中点∴2AE ED ==,∵1AF DH ==,∴12AF DE AE CD == ∴AEF DCE ∆∆∽∴AEF DCE ∠=∠,AFE DEC ∠=∠ ∵//AF DH ,∴四边形AFHD 为平行四边形∴AD FH ,∴AEF EFG ∠=∠,DEC EGF AFE ∠=∠=∠∴AEF EFG ∆∆∽∴EF 为四边形AFGE 的相似对角线.(2)如图2,过点D 作DE BA ⊥,垂足为E ,设AE a =∵120A CBD ∠=∠=,∴60EAD ∠=,∴3DE a = ∵2AB =,6BD =∴()22236a a ++=312a -=(负根已经舍弃), ∴31AD =-分为两种情况:①如图3,当ABD BCD ∆∆∽时,AD BD BD CD = ∴()316CD -=,∴333CD =+②如图4,当ABD BDC ∆∆∽时,AB BD BD CD= ∴26CD =,∴3CD =综上,333CD =+或3(3)①如图5,∵∠FEC=∠A=90°,∠BEF=∠BEC+∠FEC=∠A+∠AEF ,∴AFE BEC ∠=∠,AF EF AF AE EC BE==,∴AFE BEC ∆∆∽,∴90B ∠= 由“一线三等角”得83AF =.②如图,当△AFE∽△FEC时,作CH⊥AD交AD的延长线于H,作OM⊥AD于M,连接OA.∵△AFE∽△FEC,∴∠AFE=∠FEC,∴AD∥EC,∴∠CEB=∠DAB=90°,∵∠OMA=∠AHC=90°,∴四边形AEOM,四边形AECH都是矩形,∵OM⊥AD,∴AM=MD=3,∴AM=OE=3,∵OE⊥AB,∴AE=EB=4,∴OA=2234+=5,∴CE=AH=8,设AF=x,则FH=8-x,CH=AE=4,由△AEF∽△HFC,可得AFCH=AEFH,∴448xx =-,解得x=4,经检验x=4是分式方程的解,∴AF=4.③如图当△AFE∽△CEF时易证四边形AECF是矩形,AF=EC=8.综上所述,满足条件的AF的长为83或4或8.(答案不唯一)【点睛】本题属于圆综合题,考查正方形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)35,5784y x=+;(2r≤.【解析】【分析】(1)①由矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6,即点C坐标为(-3,-2)或(6,-2),设AC表达式为y=kx+b,代入即可求出结果;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙P的半径最小,当点E的纵坐标为1时,⊙P的半径最大,即可得出结果.【详解】(1)①∵A(﹣2,3),B(5,0),C(2,﹣2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35;②∵点A,B,C的最优覆盖矩形的面积为40,∴由定义可知,t=﹣3或6,即点C坐标为(﹣3,﹣2)或(6,﹣2),设AC表达式为y=kx+b,∴3223k bk b=-+⎧⎨-=-+⎩或3226k bk b=-+⎧⎨-=+⎩∴513kb=⎧⎨=⎩或5874kb⎧=-⎪⎪⎨⎪=⎪⎩∴y=5x+13或5784y x=-+;(2)①OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,如图1所示:∵点D (1,1),∴OD 所在的直线表达式为y =x ,∴点E 的坐标为(2,2),∴OE =222+2=22,∴⊙P 的半径最小r =2,②当DE ∥x 轴时,即:点E 的纵坐标为1,如图2所示:∵点D (1,1).E (m ,n )是函数y =4x (x >0)的图象上一点 ∴1=4x ,解得x =4, ∴OE ═224+117, ∴⊙P 的半径最大r =172, 172r ≤. 【点睛】 本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -= 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =, AF OD ∴=,AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS , FDA OCD ∴∠=∠, 90FDA CDP ∠=∠=︒, ∴ 90OCD CDP ∠=∠=︒, 90CPD ∴∠=︒,90FAO FPO ∠=∠=︒, ∴A ,F ,P ,O 四点共圆, PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。
北师大版九年级数学上册期末压轴题综合复习题(含答案)
2021-2022年北师大版九年级数学上册期末压轴题综合复习题1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择题.A题:当点E是AB的中点时,矩形EFGH的面积是.B题:当BE=时,矩形EFGH的面积是8.3、在△ABC中,∠ABC=90°,ABnBC,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BM.PQ BQ②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.4、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C 出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择题.A.若四边形BGEH为菱形,则BD的长为.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.7、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为.(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.17、如图,直线y=x+n交x轴于点A(﹣8,0),直线y=﹣x﹣4经过点A,交y轴于点B,点P是直线y=﹣x﹣4上的一个动点,过点P作x轴的垂线,过点B作y轴的垂线,两条垂线交于点D,连接PB,设点P的横坐标为m.(1)若点P的横坐标为m,则PD的长度为(用含m的式子表示);(2)如图1,已知点Q是直线y=x+n上的一个动点,点E是x轴上的一个动点,是否存在以A,B,E,Q为顶点的平行四边形,若存在,求出E的坐标;若不存在,说明理由;(3)如图2,将△BPD绕点B旋转,得到△BD′P′,且旋转角∠PBP′=∠OCA,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.18、如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.19、在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.20、如图①,已知点A(﹣1,0),B(0,﹣2),▱ABCD的边AD与y轴交于点E,且E为AD的中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图③),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当点T在AF上运动时,的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.参考答案1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.1、【解答】(1)证明:∵∠PGB=∠EHP=∠BPE=90°,∴∠PBG=∠EPH(同角的余角相等),∴△PGB∽△EHP;(2)解:连接BE,∵PE⊥PB,∴∠BPE=90°,∵∠BCE=90°,∴∠BCE+∠BPE=180°,∴P,B,E,C四点共圆,∴∠PBE=∠PCE,在Rt△BPE与Rt△ADC中,∠D=∠BP E=90°,∠ACD=∠PBE,∴Rt△BPE∽Rt△ADC,∴=,即==;(3)设AP的长为x.∵AD=3,AB=4,∴由勾股定理得到:AC===5∵cos∠GAP===,∴AG=AP=x.同理,sin∠GAP===.则GP=x.在Rt△PBG中,PB2=BG2+PG2=(4﹣x)2+(x)2=x2﹣x+16,∵==.∴PE=PB,∴S矩形BPEF=PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择A或B题.A题:当点E是AB的中点时,矩形EFGH的面积是9.B题:当BE=2或4时,矩形EFGH的面积是8.2、【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AB=BC=CD=AD,∴∠A+∠B=180°,∵BE=BF=DH=DG,∴AE=AH=CF=CG,∴∠AEH=∠AHE=(180°﹣∠A),∠BEF=∠BFE=(180°﹣∠B),∴∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,同法可证:∠EFG=∠EHG=90°,∴四边形EFGH是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),由题意:x•(6﹣x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.3、在△ABC中,∠ABC=90°,ABnBC=,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BMPQ BQ=.②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.3、【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH ∥BQ , ∴==.②简解:(射影定理)证2BM PM AM = 由BM =CM 得2CM PM AM = 则△PMC ∽△CMA 可得∠BPQ =∠BAC4、已知:矩形OABC 的顶点O 在平面直角坐标系的原点,边OA 、OC 分别在x 、y 轴的正半轴 上,且OA =3cm ,OC =4cm ,点M 从点A 出发沿AB 向终点B 运动,点N 从点C 出发沿CA 向终点A 运动,点M 、N 同时出发,且运动的速度均为1cm /秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t 秒. (1)当点N 运动1秒时,求点N 的坐标;(2)试求出多边形OAMN 的面积S 与t 的函数关系式;(3)t 为何值时,以△OAN 的一边所在直线为对称轴翻折△OAN ,翻折前后的两个三角形所组成的四边形为菱形?4、【解答】解:(1)∵t =1∴CN =1,AM =1 过N 作NE ⊥y 轴,作NF ⊥x 轴 ∴△CEN ∽△COA ,∴,即,∴EN =.(1分) 由勾股定理得:,,∴.(2分)(2)由(1)得,∴∴N 点坐标为. ∵多边形OAMN 由△ONA 和△AMN 组成 ∴=(3分) =(4分) ∴多边形OAMN 的面积S =.(0≤t≤4)(5分)(3)①直线ON为对称轴时,翻折△OAN得到△OA′N,此时组成的四边形为OANA′,当AN=A′N=A′O=OA,四边形OANA’是菱形.即AN=OA,∴5﹣t=3∴t=2.(6分)②直线OA为对称轴时,翻折△OAN得到△OAN′,此时组成的四边形为ONAN′,连接NN′,交OA于点G.当NN′与OA互相垂直平分时,四边形ONAN′是菱形.即OA⊥NN′,OG=AG=,∴NG∥CO,∴点N是AC的中点,∴CN=,∴(7分)③直线AN为对称轴时,翻折△OAN得到△O′AN,此时组成的四边形为ONO′A,连接OO’,交AN于点H.当OO′与AN互相垂直平分时,四边形ONO’A是菱形.即OH⊥AC,AH=NH=,由面积法可求得OH=,在Rt△OAH中,由勾股定理得,AH=.∴,∴.(8分)综上所述,t的值为.5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.5、【解答】解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t)=(3﹣t),∴AM=AQ+QM=t+(3﹣t)=(t+3)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴∴t=1(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择A题.A.若四边形BGEH为菱形,则BD的长为5.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.6、【解答】(1)证明:∵四边形ABCD和四边形BEFG是菱形,∴CD∥AG∥FH,BC∥GF,∠ABD=∠ABC,∠BGE=∠BGF,∴∠ABC=∠BGF,∴∠ABD=∠BGE,∴BH∥GE,∵EH∥BG,∴四边形BGEH是平行四边形;(2)解:A、∵四边形ABCD和四边形BGEH为菱形,∴AB=AD,∠ABD=∠CBD=∠GBE=60°,∴△ABD是等边三角形,∴BD=AB=5;故答案为:A,5;B、如图所示:∵四边形BHCF为矩形,∴CE=BE,∵EH∥BG,∴EH∥CD,∴EH是△BCD的中位线,∴BH=BD=3,∴CF=3;故答案为:3;8、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为(1,2).(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.7、【解答】解:(1)∵点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5,∴点B(1,2),故答案为:B(1,2);(2)如图1,过点B作BD⊥CO,则点D(1,0),∴OD=1,BD=2,∵AC⊥x轴,点A(﹣4,2),∴AC=2,CO=4,∴,且∠ACO=∠ODB=90°,∴△ACO∽△ODB,∴当点D为(1,0)时,△AOC与△BOD相似;∵△ACO∽△ODB,∴∠AOC=∠OBD,∠CAO=∠BOD,∵∠AOC+∠CAO=90°,∴∠AOC+∠BOD=90°,∴AO⊥BO,∵AC=2,CO=4,∴AO===2,∵OD=1,BD=2,∴OB===,过点B作BD'⊥OB,交x轴于D',∵∠ACO=∠OBD',∠BOD=∠CAO,∴△ACO∽△OCD',∴,∴OD'==5,∴D'(5,0)综上所述:当点D为(1,0)或(5,0)时,△AOC与△BOD相似;(3)连接DO,∵将△AOB折叠,使得点A刚好落在O处,∴AD=DO,∵DN2+ON2=DO2,∴DN2+4=(4﹣DN)2,∴DN=,∴点D坐标(﹣,2),∴BD=2+=,∵四边形BDPQ的周长=BD+PQ+PD+BQ=++PD+BQ,∴当PD+BQ最小时,四边形BDPQ的周长有最小值,作点B关于AO的对称点B'(﹣1,﹣2),过点D作DH∥AO,且DH=,∴H(,1),∴B'H为PD+BQ的最小值,∴B'H==,∴四边形BDPQ的周长最小值=++=.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.8、【解答】证明:(1)如图2,∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴▱OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形,理由是:由(1)得:四边形OEMF是平行四边形,∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵EM∥OC,∴∠EMB=∠OCB,∴∠EMB=∠OBC,∴BE=EM,∵BM=MC,EM∥OC,∴BE=OE,∴OE=EM,∴▱OEMF是菱形;故答案为:菱形;(3)如图4,ME=OB+MF,理由是:由(2)得:OB=OC,∴∠OBC=∠OCB,∵MF∥BE,∴∠OBC=∠BMF,∴∠OCB=∠BMF,∵∠OCB=∠FCM,∴∠FCM=∠BMF,∴FC═FM,由(1)得四边形OEMF是平行四边形,∴OF=EM,∵OF=OC+FC=OB+FM,∴ME=OB+MF.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.9、【解答】解:(1)∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D,∴在△GAB和△GC′D中,,∴△GAB≌△GC′D(AAS),∴BG=DG;(2)∵△GAB≌△GC′D,∴AG=C′G,设C′G=x,则GD=BG=8﹣x,∴x2+62=(8﹣x)2,解得:,∴;(3)∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,∴在Rt△ABD中,BD=10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是AB=AD.11、【解答】证明:(1)如图(2),∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,由折叠得:G、E、M将AD四等分,∴ED=BF,∵∠EOD=∠FOB,∴△EOD≌△FOB,∴OE=OF;(2)由(1)得:△EOD≌△FOB,∴OD=OB,连接AC,∴A、O、C共线,∵GT∥EO,∴=1,∴DT=OT,∵AE=ED,OT=DT,∴ET∥AC,ET=AO,即EQ∥AC,同理得:TQ=OC,∴EQ=AC,同理得:PF=AC,PF∥AC,∴PF=EQ,PF=EQ,∴四边形EPFQ是平行四边形,∵PF∥AC,F是BC的中点,∴P为AB的中点,同理得:Q为DC的中点,∴AP=QD=AB,∵AE=AD,∠BAD=∠ADC=90°,∴△APE≌△DQE,∴PE=EQ,∴▱EPFQ是菱形.(3)当AB=AD时,四边形EPFQ是正方形,理由是:∵E是AD的中点,P是AB的中点,∴AE=AD,AP=AB,∵AB=AD,∴AP=AE,∴△APE是等腰直角三角形,∴∠AEP=45°,同理∠QED=45°,∴∠PEQ=90°,由(2)得:四边形EPFQ是菱形,∴四边形EPFQ是正方形;故答案为:AB=AD.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形12、【解答】解:(1)∵AB,CD为边作菱形ABEF和菱形CDGH,∴EF∥AB,EF=AB,HG∥CD,HG=CD,∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∴FG=EH;(2)A、如图2,延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴∠BAF+∠DAM=90°,∠CDG+∠ADM=90°,∵∠BAF=60°,∠CDG=30°,∴∠DAM=30°,∠ADM=60°,∴∠ADM=180°﹣∠DAM﹣∠ADM=90°在Rt△ADM中,∠DAM=30°,AD=4,∴DM=AD=2,AM=2,∵AF=DG=4,∴FM=AF +AM=4+2,MG=MD +DG=6,∴S 四边形AFGD =S △FMG ﹣S △MAD=×FM ×GM ﹣×AM ×DM=×(4+2)×6﹣×2×2=12+4,B 、方法1、如图3.连接FD ,AG (简化图),∵∠BAF=∠CDG ,∴∠DAF=∠ADG在△ADF 和△ADG 中,,∴△ADF ≌△ADG ,∴∠ADF=∠DAG ,DF=AG ,∴∠ADF=(180°﹣∠AOD )在△AFG 和△DGF 中,, ∴△AFG ≌△DGF ,∠AGF=∠DFG ,∴∠DFG=(180°﹣∠FOG )∵∠FOG=∠AOD ,∴∠ADF=∠DFG ,∴AD ∥FG ,∵AB ⊥AD ,∴AB ⊥FG ,∵AB ∥EF ,∴EF ⊥FG ,∴∠EFG=90°,由(1)知,四边形EFGH 为平行四边形,∴平行四边形EFGH 是矩形,即:四边形EFGH是矩形.方法2、延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∵∠BAF=∠CDG,∴∠MAD=∠MDA,∴MA=MD,∵四边形ABCD是正方形,∴AB=CD,∵四边形ABEF,CDGH是菱形,∴MF=MG,∠AFE=∠DGH,∴∠EFG=∠HGF,由(1)知,四边形EFGH是平行四边形,∴∠AFE+∠HGF=180°,∴∠EFG=90°,∴平行四边形EFGH是矩形.13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.13、【解答】解:(1)特例探究:AF=DE.理由:如图2,∵四边形ABCD是正方形,∴AD=BA,∠DAE=∠B=90°,∵∠AOE=∠ADC=90°,∴∠ADE+∠DAO=∠BAF+∠DAO=90°,∴∠ADE=∠BAF,∴在ADE和△BAF中,,∴△ADE≌△BAF(ASA),∴AF=DE;(2)类比解答:AF与DE的数量关系为AF=DE.理由:如图1,在AB上取点M使得DM=DA,连接DM,交AF于N,则∠DAM=∠DMA,DM=AD=AB,∵∠DAB+∠B=180°,∠DMA+∠DME=180°,∴∠DME=∠B,∵∠AOE=∠ADC,∴∠ADO+∠DAO=∠ADO+∠CDO,∴∠DAO=∠CDO,又∵CD∥AB,AD∥BC,∴∠CDO=∠MED,∠DAO=∠BFA,∴∠MED=∠BFA,在△MED和△BFA中,,∴△MED≌△BFA(AAS),∴AF=DE;(3)拓展延伸:=.如图3,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵平行四边形ABCD的面积=AB×GM=BC×HN,∵AB=a,AD=b,∴=,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°,∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∴△GME∽△HNF,∴==.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.14、【解答】解:(1)如图1中,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,根据对称性可知,AE=AB,BE⊥AD,∴B、A、E共线,∵AF∥BC,∴EF=FC,∴BF=EC.(2)A、如图2中,当E、D、C共线时,由(1)可知:DE=DC,∵EB⊥AD,AD∥BC,∴EB⊥BC,∴∠EBC=90°,∴BD=DC=DE=CB,∴△BDC是等边三角形,∴∠C=60°,∵AB∥CD,∴∠ABC=180°﹣60°=120°.B、(1)中结论成立.理由如下:如图3中,设BE交AD于H.∵B、E关于AD对称,∴BE⊥AD,EH=BH,∵AD∥BC,∴BE⊥BC,∴∠EBC=90°,∵EH=HB,HF∥BC,∴EF=FC,∴BF=EC.故答案为A或B.(3)A、如图4中,作FH⊥CD于H.∵∠ABC=135°,AD∥BC,∴∠EAF=∠BAF=45°,∠ADC=135°,∠ADG=45°,∴∠AGD=90°,∵∠FHC=90°,∴∠FHC=∠EGC=90°,∴FH∥FG,∵FE=FC,∴HC=HG,∴FH=EG,∵△DFH是等腰直角三角形,∴DF=FH,∴EG=DF,∴=.B、如图5中,作FH⊥CD于H.同法可证:EG=2FH,DF=FH,∴=.故答案为A或B.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=b 或b(用含m,n,b的式子表示).15、【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择A或B题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.16、【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4﹣4,∴GH=AE=8﹣4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,。
(完整word版)九年级数学期末复习-压轴题
九年级数学期末复习—压轴题1.如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E 点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.2.如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.3.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.4.如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.5.如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足|QB﹣QC|最大时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E 点的坐标.九年级数学期末复习—压轴题参考答案与试题解析1.(2015•乳山市一模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.【解答】解:(1)令x=0,则y=﹣x+2=2;令y=0,则0=﹣x+2,解得x=4,所以B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,把A、B的坐标代入得,,解得.∴该二次函数的关系式为y=﹣x2+x+2;(3)如图2,过C点作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2)∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a,(0≤a≤4),∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a)=﹣a2+4a+=﹣(a﹣2)2+,(0≤a≤4),∴a=2时,S四边形CDBF的最大值为;∴E(2,1);(4)存在,如图3,∵抛物线y=﹣x2+x+2的对称轴x=﹣==,∴OD=,∵C(0,2),∴OC=2,在RT△OCD中,由勾股定理得CD=,∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD,如图所示,作CE⊥对称轴于E,∴EP1=ED=2,∴DP1=4,∴P1(,4),P2(,),P3(,﹣).2.(2015•曲靖一模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【解答】解:(1)令x=0,可得y=2,令y=0,可得x=4,即点B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,,解得:,即该二次函数的关系式为y=﹣x2+x+2;(3)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.如图1所示,作CE⊥对称轴于E,∴EP1=ED=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(4)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).∵直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤a≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤a≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).3.(2009•十堰)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴解得:∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x==﹣1,∴设P点坐标为(﹣1,a),当x=0时,y=3,∴C(0,3),M(﹣1,0)∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,∴P点坐标为:P1(﹣1,);∴当CM=PM时,(﹣1)2+32=a2,解得a=±,∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P点坐标为:P4(﹣1,6)综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=BF•EF+(OC+EF)•OF=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)==﹣+∴当a=﹣时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣,).4.(2016秋•富顺县月考)如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.【解答】解:(1)把A(2,0)和B(﹣6,0)代入y=ax2+bx+6得,解得,∴抛物线的解析式为y=﹣x2﹣2x+6.(2)如图1中,由题意C(0,6),M(﹣2,0),∴CM==2,①当P1C=CM时,可得P1(﹣2,12),②当MP2=MC时,P2(﹣2,2),③当MP3=MC时,P3(﹣2.﹣2).综上所述满足条件的点P坐标(﹣2,12)或(﹣2,2)或(﹣2,﹣2).(3)如图2中,连接BC交对称轴于Q,此时QA+QC最小.∵B(﹣6,0),C(0,6),∴直线BC的解析式为y=x+6,∴点Q(﹣2,4).(4)如图3中,设E(m,﹣m2﹣2m+6).连接EO.∵S四边形BOCE=S△BOE+S△COE=×6×(﹣m2﹣2m+6)+×6×(﹣m)=﹣(m+3)2+,∵a=﹣<0,∴m=﹣3时,四边形BOCE的面积最大,最大值为,此时点E(﹣3,).5.(2014秋•江津区期中)如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足|QB﹣QC|最大时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.【解答】解:(1)由题知:,解得:,故所求抛物线解析式为:y=﹣x2﹣2x+6;(2)∵抛物线解析式为:y=﹣x2﹣2x+6,∴对称轴为x==﹣2,设P点坐标为(﹣2,t),∵当x=0时,y=6,∴C(0,6),M(﹣2,0),∴CM2=(﹣2﹣0)2+(0﹣6)2=40.①当CP=PM时,(﹣2)2+(t﹣6)2=t2,解得t=,∴P点坐标为:P1(﹣2,);②当CM=PM时,40=t2,解得t=±2,∴P点坐标为:P2(﹣2,2)或P3(﹣2,﹣2);③当CM=CP时,由勾股定理得:40=(﹣2)2+(t﹣6)2,解得t=12,∴P点坐标为:P4(﹣2,12).综上所述,存在符合条件的点P,其坐标为P(﹣2,)或P(﹣2,2)或P(﹣2,﹣2)或P(﹣2,12);(3)∵点A(2,0)和点B(﹣6,0)关于抛物线的对称轴x=﹣2对称,∴QB=QA,∴|QB﹣QC|=|QA﹣QC|,要使|QB﹣QC|最大,则连结AC并延长,与直线x=﹣2相交于点Q,即点Q为直线AC与直线x=﹣2的交点,设直线AC的解析式为y=kx+m,∵A(2,0),C(0,6),∴,解得,∴y=﹣3x+6,当x=﹣2时,y=﹣3×(﹣2)+6=12,故当Q在(﹣2,12)的位置时,|QB﹣QC|最大;(4)过点E作EF⊥x轴于点F,设E(n,﹣n2﹣2n+6)(﹣6<n<0),则EF=﹣n2﹣2n+6,BF=n+6,OF=﹣n,S四边形BOCE=BF•EF+(OC+EF)•OF=(n+6)•(﹣n2﹣2n+6)+(6﹣n2﹣2n+6)•(﹣n)=﹣n2﹣9n+18=﹣(n+3)2+,所以当n=﹣3时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣3,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学期末复习-压轴题1.如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.2.如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.3.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.4.如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.5.如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足|QB﹣QC|最大时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.九年级数学期末复习-压轴题参考答案与试题解析1.(2015•乳山市一模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.【解答】解:(1)令x=0,则y=﹣x+2=2;令y=0,则0=﹣x+2,解得x=4,所以B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,把A、B的坐标代入得,,解得.∴该二次函数的关系式为y=﹣x2+x+2;(3)如图2,过C点作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2)∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a,(0≤a≤4),∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a)=﹣a2+4a+=﹣(a﹣2)2+,(0≤a≤4),∴a=2时,S四边形CDBF的最大值为;∴E(2,1);(4)存在,如图3,∵抛物线y=﹣x2+x+2的对称轴x=﹣==,∴OD=,∵C(0,2),∴OC=2,在RT△OCD中,由勾股定理得CD=,∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD,如图所示,作CE⊥对称轴于E,∴EP1=ED=2,∴DP1=4,∴P1(,4),P2(,),P3(,﹣).2.(2015•曲靖一模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【解答】解:(1)令x=0,可得y=2,令y=0,可得x=4,即点B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,,解得:,即该二次函数的关系式为y=﹣x2+x+2;(3)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.如图1所示,作CE⊥对称轴于E,∴EP1=ED=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(4)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).∵直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤a≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤a≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).3.(2009•十堰)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴解得:∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x==﹣1,∴设P点坐标为(﹣1,a),当x=0时,y=3,∴C(0,3),M(﹣1,0)∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,∴P点坐标为:P1(﹣1,);∴当CM=PM时,(﹣1)2+32=a2,解得a=±,∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P点坐标为:P4(﹣1,6)综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=BF•EF+(OC+EF)•OF=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)==﹣+∴当a=﹣时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣,).4.(2016秋•富顺县月考)如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.【解答】解:(1)把A(2,0)和B(﹣6,0)代入y=ax2+bx+6得,解得,∴抛物线的解析式为y=﹣x2﹣2x+6.(2)如图1中,由题意C(0,6),M(﹣2,0),∴CM==2,①当P1C=CM时,可得P1(﹣2,12),②当MP2=MC时,P2(﹣2,2),③当MP3=MC时,P3(﹣2.﹣2).综上所述满足条件的点P坐标(﹣2,12)或(﹣2,2)或(﹣2,﹣2).(3)如图2中,连接BC交对称轴于Q,此时QA+QC最小.∵B(﹣6,0),C(0,6),∴直线BC的解析式为y=x+6,∴点Q(﹣2,4).(4)如图3中,设E(m,﹣m2﹣2m+6).连接EO.∵S四边形BOCE=S△BOE+S△COE=×6×(﹣m2﹣2m+6)+×6×(﹣m)=﹣(m+3)2+,∵a=﹣<0,∴m=﹣3时,四边形BOCE的面积最大,最大值为,此时点E(﹣3,).5.(2014秋•江津区期中)如图1,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足|QB﹣QC|最大时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.【解答】解:(1)由题知:,解得:,故所求抛物线解析式为:y=﹣x2﹣2x+6;(2)∵抛物线解析式为:y=﹣x2﹣2x+6,∴对称轴为x==﹣2,设P点坐标为(﹣2,t),∵当x=0时,y=6,∴C(0,6),M(﹣2,0),∴CM2=(﹣2﹣0)2+(0﹣6)2=40.①当CP=PM时,(﹣2)2+(t﹣6)2=t2,解得t=,∴P点坐标为:P1(﹣2,);②当CM=PM时,40=t2,解得t=±2,∴P点坐标为:P2(﹣2,2)或P3(﹣2,﹣2);③当CM=CP时,由勾股定理得:40=(﹣2)2+(t﹣6)2,解得t=12,∴P点坐标为:P4(﹣2,12).综上所述,存在符合条件的点P,其坐标为P(﹣2,)或P(﹣2,2)或P(﹣2,﹣2)或P(﹣2,12);(3)∵点A(2,0)和点B(﹣6,0)关于抛物线的对称轴x=﹣2对称,∴QB=QA,∴|QB﹣QC|=|QA﹣QC|,要使|QB﹣QC|最大,则连结AC并延长,与直线x=﹣2相交于点Q,即点Q为直线AC与直线x=﹣2的交点,设直线AC的解析式为y=kx+m,∵A(2,0),C(0,6),∴,解得,∴y=﹣3x+6,当x=﹣2时,y=﹣3×(﹣2)+6=12,故当Q在(﹣2,12)的位置时,|QB﹣QC|最大;(4)过点E作EF⊥x轴于点F,设E(n,﹣n2﹣2n+6)(﹣6<n<0),则EF=﹣n2﹣2n+6,BF=n+6,OF=﹣n,S四边形BOCE=BF•EF+(OC+EF)•OF=(n+6)•(﹣n2﹣2n+6)+(6﹣n2﹣2n+6)•(﹣n)=﹣n2﹣9n+18=﹣(n+3)2+,所以当n=﹣3时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣3,).。