焊接的工艺特点及流程介绍

合集下载

焊接工艺(锡焊)

焊接工艺(锡焊)
6.2 手工焊接的工艺要求及质量 分析技术
6.3 自动焊接技术
目前常用的自动焊接技术包括: 浸焊 波峰焊接技术 再流焊技术 表面安装技术(SMT)
6.3.1 浸焊
浸焊是指:将插装好元器件的印制电路板浸入有熔融状焊料的锡锅内,一次完成印制电路板上所有焊点的自动焊接过程。 1.浸焊的特点 操作简单,无漏焊现象,生产效率高;但容易造成虚焊等缺陷,需要补焊修正焊点;焊槽温度掌握不当时,会导致印制板起翘、变形,元器件损坏。
2.焊剂(助焊剂)
焊剂是进行锡铅焊接的辅助材料。 焊剂的作用:去除被焊金属表面的氧化物,防止焊接时被焊金属和焊料再次出现氧化,并降低焊料表面的张力,有助于焊接。 常用的助焊剂有: 无机焊剂 有机助焊剂 松香类焊剂:电子产品的焊接中常用。
6.1 焊接的基本知识
6.1.3 锡焊的基本过程
锡焊是使用锡铅合金焊料进行焊接的一种焊接形式。其过程分为下列三个阶段: A.润湿阶段(第一阶段) B.扩散阶段(第二阶段) C.焊点的形成阶段(第三阶段)
6.1 焊接的基本知识
3.1.4 锡焊的基本条件
正确的焊接姿势
一般采用坐姿焊接,工作台和坐椅的高度要合适。 焊接操作者握电烙铁的方法: 反握法:适合于较大功率的电烙铁(>75W)对 大焊点的焊接操作。 正握法:适用于中功率的电烙铁及带弯头的电 烙铁的操作,或直烙铁头在大型机架上的焊接。 笔握法:适用于小功率的电烙铁焊接印制板上 的元器件。
6.2 手工焊接的工艺要求及质量 分析技术
6.2.3 焊点的质量分析
1.对焊点的质量要求 电气接触良好 机械强度可靠 外形美观
6.2 手工焊接的工艺要求及质量 分析技术
2.焊点的常见缺陷及原因分析
虚焊(假焊) 拉尖 桥接 球焊 印制板铜箔起翘、焊盘脱落 导线焊接不当

焊接工艺的特点及应用场合

焊接工艺的特点及应用场合

焊接工艺的特点及应用场合焊接工艺是一种将金属或非金属材料通过熔接的方式连接在一起的加工方法。

焊接工艺具有以下特点:1. 热加工过程:焊接是一种热加工工艺,通过加热将焊接件的金属或非金属材料熔化,并在冷却过程中形成连接。

这种热加工过程使得焊接能够在连接处达到较高的强度。

2. 高效节能:焊接具有高效、节能的特点。

相较于其他连接方式,如螺栓连接、铆接等,焊接工艺不需要附加的连接材料,只需利用焊接材料将零部件连接在一起,既节省了材料,又减少了连接过程中的工艺步骤,提高了生产效率。

3. 结构简洁:焊接工艺连接的零部件结构简洁,外形美观。

焊接连接处的强度高,不易被外界力量破坏,因此焊接连接在工程结构和制造中应用广泛。

4. 应用范围广泛:焊接工艺既适用于金属材料的连接,也适用于非金属材料的连接。

在金属结构、建筑、汽车制造、船舶制造、航空航天等领域中,焊接工艺是最常用的连接工艺之一。

5. 工艺复杂度较高:焊接工艺的施工过程相对较为复杂,需要合理控制焊接参数、选用合适的焊接材料以及严格遵循焊接程序,否则会导致焊缝质量不达标。

因此,焊接工艺需要经过专门的培训和实践才能熟练掌握。

焊接工艺的应用场合主要包括以下几个方面:1. 金属结构制造:焊接工艺在金属结构的制造中被广泛应用,如建筑桥梁、厂房、钢结构等。

焊接能够将金属零部件牢固地连接在一起,提高结构的强度和稳定性。

2. 机械制造:焊接工艺在机械制造中应用广泛,如汽车制造、机械设备制造等。

通过焊接,可以将不同材料的零部件连接起来,形成复杂的机械系统。

3. 船舶制造:焊接工艺在船舶制造中具有重要的地位。

船体的焊接是整个船舶制造过程的重要环节,焊接质量的好坏直接关系到船舶的安全性、耐久性和性能。

4. 冶金工业:焊接工艺在冶金工业中被广泛应用,如钢铁冶炼、有色金属冶炼等。

通过焊接可以将金属材料精确无误地连接在一起,实现高效的冶金加工。

5. 航空航天:焊接工艺在航空航天领域中具有重要的应用价值。

焊接工艺指导书完整版

焊接工艺指导书完整版
射线检测
利用X射线或γ射线穿透 焊缝,在胶片上形成影 像,以检测焊缝内部缺 陷。
超声波检测
利用超声波在焊缝中的 反射和传播特性,检测 焊缝内部缺陷。
磁粉检测
利用磁场对铁磁性材料 的磁化作用,检测焊缝 表面或近表面的裂纹等 缺陷。
验收标准制定和执行流程
制定验收标准
根据焊接工艺评定报告、产品技术条件和合同要求等,制定具体的验收标准。
注意焊条的保管和烘干要求,确保焊条在使用前具有
良好的工艺性能。
焊丝类型及选用原则
01
根据母材的材质、焊接方法、工艺性能和焊缝质量 要求,选择相应牌号和规格的焊丝。
02
考虑焊丝的化学成分、力学性能、表面质量等因素 ,选择品质优良的焊丝。
03
注意焊丝的保管和烘干要求,确保焊丝在使用前具 有良好的工艺性能。
焊接工艺指导书完整版
目录
• 焊接工艺概述 • 焊接材料选择与准备 • 焊接设备与方法介绍 • 焊接工艺参数设置与优化 • 质量检查与验收标准制定 • 安全防护措施与环保要求
01
焊接工艺概述
焊接工艺定义与分类
焊接工艺定义
焊接工艺是一种通过加热、加压或两 者并用,使两个或多个金属材料在连 接处达到原子或分子间的结合,形成 永久性连接的工艺方法。
减少辅助时间和准备时间
合理安排生产流程,减少辅助时间和准备时 间。
优化焊接工艺参数
通过试验确定最佳工艺参数,提高焊接质量 和效率。
降低材料消耗和能源消耗
采用合理的下料和排版方法,减少材料浪费 ;选用高效节能设备,降低能源消耗。
05
质量检查与验收标准制定
外观质量检查项目和方法
焊缝成形
检查焊缝余高、焊缝宽度、焊缝表面是否平整,有无咬边、焊瘤 、弧坑等缺陷。

钢管焊接施工工艺

钢管焊接施工工艺

钢管焊接施工工艺钢管焊接是一种常见的金属连接方法,广泛应用于建筑、船舶、石化、桥梁等工程领域。

在钢管焊接施工中,正确的工艺是确保焊接质量的关键因素。

本文将介绍钢管焊接施工的一般工艺流程以及关键要点。

一、准备工作在进行钢管焊接前,必须进行充分的准备工作,包括以下几个方面:1. 清理和准备钢管表面:首先要确保钢管表面干净,无油污、锈蚀等杂质。

可以使用钢丝刷或砂纸清理钢管表面。

2. 切割和准备焊缝:根据设计要求,使用适当的切割工具将钢管切割成所需的尺寸。

同时,清理焊缝的两侧,确保焊接面光滑。

3. 请求焊接材料和设备:根据焊接材料类型和钢管规格,准备好所需的焊条、焊丝等焊接材料。

同时,保证焊接设备正常运转,并对其进行检查和维护。

二、焊接工艺钢管焊接的工艺主要包括以下几个步骤:1. 预热:对于厚壁钢管或材料,需要进行预热,以减少焊接热裂纹的发生。

预热温度和时间应根据焊接材料和钢管规格进行合理的选择。

2. 对焊缝进行倒角或坡口处理:根据设计要求,对焊缝进行倒角或坡口处理,以便于焊接。

这样可以增加焊接区域的接触面积,同时减少焊接应力。

3. 焊接电流和电压选择:根据焊接材料的类型和钢管的规格,选择合适的焊接电流和电压。

这些参数的选择将直接影响焊接质量。

4. 焊接方法选择:根据钢管焊接的要求和实际情况,选择合适的焊接方法,包括手工电弧焊、气体保护焊、埋弧焊等。

5. 焊接顺序和层数:根据焊接要求和结构特点,确定焊接的顺序和层数。

合理的焊接顺序和层数可以降低焊接应力,提高焊接质量。

6. 焊接控制:在焊接过程中,需要控制焊接速度、均匀度和温度等参数。

同时,根据焊接材料和焊接面积进行合理的热输入控制。

7. 焊后处理:焊接结束后,对钢管进行必要的焊后处理,包括去除焊渣、平整焊缝以及进行必要的喷涂防腐措施。

三、质量控制与安全注意事项在钢管焊接施工过程中,除了正确的工艺流程外,还需要注意以下几个质量控制和安全事项:1. 焊工资质:确保焊工具有合适的焊接技能和证书,熟悉焊接规范和操作规程。

焊接的工艺特点及流程介绍

焊接的工艺特点及流程介绍

可通过与波峰焊的比较来了解选择性焊接的工艺特点。

两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。

由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。

在焊接前也必须预先涂敷助焊剂。

与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。

另外选择性焊接仅适用于插装元件的焊接。

选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。

选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。

助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。

焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。

助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。

助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。

回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。

微孔喷射式绝对不会弄污焊点之外的区域。

微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。

预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。

在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。

在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。

使用者可根据具体的情况来安排选择性焊接的工艺流程。

焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。

焊接工艺的特点及适用领域

焊接工艺的特点及适用领域

焊接工艺的特点及适用领域焊接是一种常见且广泛应用于制造过程中的金属连接技术。

它通过将两个或更多金属部件加热至融化状态,并将它们合并成一个整体,从而实现金属连接。

焊接工艺具有以下特点:1. 强度高:焊接连接通常具有与母材相近的强度。

通过适当的焊接方法和参数选择,可以获得高强度的焊缝。

强度高:焊接连接通常具有与母材相近的强度。

通过适当的焊接方法和参数选择,可以获得高强度的焊缝。

2. 高效性:相比于其他连接方法,如螺纹连接或铆接,焊接通常更加高效。

无需进行额外的装配步骤,焊接可以直接将两个部件牢固地连接在一起。

高效性:相比于其他连接方法,如螺纹连接或铆接,焊接通常更加高效。

无需进行额外的装配步骤,焊接可以直接将两个部件牢固地连接在一起。

3. 适应性强:焊接工艺适用于各种金属及其合金的连接,如钢、铝、铜等。

它可以适应不同材料和厚度的连接需求。

适应性强:焊接工艺适用于各种金属及其合金的连接,如钢、铝、铜等。

它可以适应不同材料和厚度的连接需求。

4. 可自动化:现代焊接工艺可以通过自动化和机器人技术实现。

这不仅提高了生产效率,还降低了人工操作的风险和劳动强度。

可自动化:现代焊接工艺可以通过自动化和机器人技术实现。

这不仅提高了生产效率,还降低了人工操作的风险和劳动强度。

焊接工艺在许多领域中得到广泛应用,包括但不限于以下几个领域:1. 制造业:焊接工艺在制造过程中广泛应用于连接金属部件,如汽车制造、船舶建造、机械制造等。

制造业:焊接工艺在制造过程中广泛应用于连接金属部件,如汽车制造、船舶建造、机械制造等。

2. 建筑业:焊接技术用于连接结构件和金属构件,如钢结构框架、管道系统等。

建筑业:焊接技术用于连接结构件和金属构件,如钢结构框架、管道系统等。

3. 石油和天然气工业:管道的焊接连接是石油和天然气输送系统中常见的应用。

石油和天然气工业:管道的焊接连接是石油和天然气输送系统中常见的应用。

4. 航空航天业:焊接工艺在航空航天制造中用于连接飞机、火箭和航天器的金属部件。

焊接工艺的特点及应用实例

焊接工艺的特点及应用实例

焊接工艺的特点及应用实例焊接工艺的特点:1. 焊接可靠性高:焊接是将金属材料融化并连接在一起的工艺,焊接接头具有较高的强度和耐久性,可以承受复杂的载荷和环境条件。

焊接接头的可靠性可以通过合适的焊接材料和工艺来保证。

2. 焊接速度快:相对于其他连接方式,如螺纹连接、铆接等,焊接速度较快。

一般情况下,焊接只需几秒到几分钟完成,可以大大提高生产效率。

3. 焊接适用范围广:焊接适用于大多数金属材料的连接,包括钢、铝、铜、镍合金等。

不同材料可以通过选择合适的焊接方法和材料进行连接。

4. 焊接灵活性高:焊接可以应用于各种复杂的工件形状和结构,不受材料形状的限制。

可以焊接成直线、弧线、环形等形状,适应不同的设计需求。

5. 焊接方式多样性:焊接工艺包括多种方法,如电弧焊、氩弧焊、激光焊、等离子焊等。

每种焊接方法有其特定的应用范围和特点,可以根据需要选择合适的焊接方式。

焊接工艺的应用实例:1. 建筑领域:焊接广泛应用于建筑领域,如钢结构建筑、桥梁、隧道等。

焊接可以用于连接各种形状的结构件,并提供更强的连接强度和耐候性,保证建筑物的安全性和稳定性。

2. 汽车制造业:汽车制造过程中需要大量的焊接工艺,用于连接车身部件、底盘和发动机等。

焊接可以提供可靠的连接,同时具有较高的生产效率和成本效益。

3. 航空航天领域:焊接在航空航天领域具有重要应用,如飞机的机身、发动机等都需要通过焊接实现多个部件的连接。

焊接可以满足飞机高强度和轻量化的要求。

4. 石油化工领域:石油化工设备如储罐、管道、换热器等都需要采用焊接工艺进行连接。

由于石油化工设备经常承受高温高压环境,焊接接头的可靠性尤为重要。

5. 电力行业:电力设备如输电塔、变压器、火力发电锅炉等都需要采用焊接进行连接。

焊接可以提供高强度的接头,确保设备的安全运行和长期稳定性。

总之,焊接工艺具有可靠性高、速度快、适用范围广、灵活性高和方式多样性等特点,广泛应用于各行各业。

焊接的应用实例包括建筑领域、汽车制造业、航空航天领域、石油化工领域以及电力行业等。

各种金属材料的焊接特点及其热处理工艺

各种金属材料的焊接特点及其热处理工艺

各种金属材料的焊接特点及其热处理工艺焊接是一种将两个或多个金属材料通过熔化或变形并在熔融金属之间形成接头的加工方式。

在焊接过程中,金属材料经历了高温和冷却的过程,从而影响了焊接接头的性能和组织结构。

不同金属材料具有不同的焊接特点和热处理工艺。

下面将分别介绍常见金属材料的焊接特点及其热处理工艺。

1.钢材焊接特点及热处理工艺:钢材是最常见的金属材料之一,具有良好的可焊性。

其焊接特点如下:(1)钢材容易氧化,焊接时需要保护气体或保护剂以防止氧化。

(2)焊接速度快,热影响区较小,易形变。

(3)钢材焊接后易产生残余应力和变形。

钢材的热处理工艺包括退火、正火和淬火等。

退火可以减轻焊接残余应力,正火可提高焊接接头的硬度和强度,淬火可增加焊接接头的硬度。

2.铝材焊接特点及热处理工艺:铝材具有良好的导热性和导电性,但其可焊性较差。

其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。

(2)焊接速度快,热影响区较小。

(3)铝材焊接后容易产生变形。

铝材的热处理工艺主要包括固溶处理和时效处理。

固溶处理可使铝材中的合金元素均匀溶解,时效处理可提高焊接接头的硬度和强度。

3.铜材焊接特点及热处理工艺:铜材具有良好的导热性和导电性,但其可焊性较差。

其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。

(2)焊接速度较慢,热影响区较大。

(3)铜材焊接后容易产生变形和裂纹。

铜材的热处理工艺主要包括退火和时效处理。

退火可减轻焊接接头的残余应力,时效处理可提高焊接接头的硬度和强度。

4.镁合金焊接特点及热处理工艺:镁合金具有轻质高强度的特点,但其可焊性较差。

其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。

(2)焊接速度快,热影响区较小。

(3)焊接时易燃,需要采取安全措施。

镁合金的热处理工艺主要包括固溶处理和时效处理。

固溶处理可提高镁合金的强度和耐腐蚀性,时效处理可进一步提高焊接接头的硬度和强度。

电子元件的焊接方法

电子元件的焊接方法

电子元件的焊接方法在电子设备制造和维修过程中,电子元件的焊接是一项至关重要的工艺。

焊接质量的好坏直接影响到电子设备的稳定性和可靠性。

为了确保焊接工作的准确性和有效性,人们开发出多种不同的焊接方法。

本文将介绍一些常用的电子元件焊接方法,以及它们的特点和应用场景。

1. 手工焊接手工焊接是最传统的焊接方法之一,也是最简单的一种方法。

它通常适用于小型电子元件的焊接工作,如电阻、电容等。

手工焊接的工艺流程包括以下几个步骤:(1)清理焊接区域:使用无尘布或棉球清理焊接区域的杂质和氧化物,确保焊接表面干净。

(2)涂抹焊接剂:在焊接区域涂抹一层薄薄的焊接剂,可以提高焊接效果。

(3)焊接:使用电子焊台或焊枪将焊锡加热至熔化,迅速将焊锡涂抹在焊接区域,使电子元件与焊盘牢固连接。

手工焊接的好处是简单易行,成本低,适用于小批量生产和维修工作。

然而,由于操作人员技术要求较高,容易出现焊接不到位、短路等问题。

2. 表面贴装技术(SMT)表面贴装技术是一种先进的焊接方法,广泛应用于电子元件的大规模生产中。

与手工焊接相比,SMT技术具有以下优点:(1)高效性:整板自动化装配,大大提高了焊接速度和效率。

(2)密度大:元件焊接在PCB表面,减小了电路板的厚度,实现了高密度的元件安装。

(3)可靠性强:焊接点牢固可靠,能够抵抗外界振动和冲击。

在SMT焊接过程中,首先将元件粘贴在PCB板上,然后通过进一步加热使焊锡熔化并固定在焊盘上。

SMT焊接适用于小型电子元件,如集成电路、芯片等。

它是大规模生产的主要焊接方法之一。

3. 反向焊接技术反向焊接技术主要应用于具有特殊要求的电子元件,如大功率二极管、散热器等。

与传统的焊接方法不同,反向焊接技术将焊接点位于PCB板的背面。

这种焊接方法有以下优势:(1)热量较低:焊接热量被散热器吸收,减少了对电子元件的热损伤。

(2)良好的散热效果:焊接点位于散热器上,能够有效地散发热量。

(3)可靠性强:焊接点牢固,能够承受高温和高电流的冲击。

铝合金管的焊接特点及焊接工艺

铝合金管的焊接特点及焊接工艺

铝合金管的焊接特点及焊接工艺焊接特点
铝合金管的焊接具有以下特点:
1. 热导性高:铝合金具有较高的热导性,容易导致焊接区域温度过高或焊接速度过快,需要控制好焊接参数和技术。

2. 氧化性强:铝合金容易与氧发生反应生成氧化物,焊接时容易产生氧化皮,需要在焊接前清除氧化皮并采取防护措施。

3. 熔点低:铝合金的熔点相对较低,焊接时需要注意控制焊接温度,避免过高或过低的焊接温度影响焊接质量。

4. 焊缝收缩大:铝合金焊接后,焊缝会产生较大的收缩量,容易导致焊缝变形和应力集中,需要采取适当的焊接工艺和措施。

焊接工艺
铝合金管的焊接工艺可分为以下几种常见方法:
1. 氩弧焊:氩弧焊是常用的铝合金管焊接方法之一。

通过在焊接区域引入氩气,形成保护气体,避免氧与铝合金发生反应,从而减少氧化皮的产生。

2. TIG焊接:TIG焊接是一种手工氩弧焊接的方法,适用于对焊缝质量和外观要求较高的情况。

焊接过程中需要手持焊枪,同时控制焊接参数和焊接速度。

3. 焊锡焊接:对于较薄的铝合金管,可以采用焊锡焊接。

焊锡焊接是一种较为简单的焊接方法,但焊接强度较低,适用于一些低要求的应用场景。

4. 摩擦搅拌焊接:摩擦搅拌焊接是一种新兴的铝合金管焊接方法,通过机械方式在焊接区域进行摩擦和搅拌,形成焊缝。

该方法具有焊接速度快、焊接强度高等优点。

以上是铝合金管的焊接特点及焊接工艺的介绍,希望对您有所帮助。

激光焊接的工艺技术和性能特点介绍讲解

激光焊接的工艺技术和性能特点介绍讲解

激光焊接的工艺技术和性能特点介绍激光焊接的工艺技术和性能特点一、激光焊接的工艺参数。

1、功率密度。

功率密度是激光加工中最关键的参数之一。

采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。

因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。

对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。

因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。

2、激光脉冲波形。

激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。

当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。

在一个激光脉冲作用期间内,金属反射率的变化很大。

3、激光脉冲宽度。

脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

4、离焦量对焊接质量的影响。

激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。

离开激光焦点的各平面上,功率密度分布相对均匀。

离焦方式有两种:正离焦与负离焦。

焦平面位于工件上方为正离焦,反之为负离焦。

按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。

负离焦时,可获得更大的熔深,这与熔池的形成过程有关。

实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。

与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。

当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。

所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

、激光焊接工艺方法1、片与片间的焊接。

包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等 4种工艺方法。

铜及铜合金的焊接工艺方法

铜及铜合金的焊接工艺方法

铜及铜合金的焊接工艺方法
引言
铜及铜合金是常见的金属材料,在工业生产中有广泛的应用。

为了满足不同的需求,需要采用适当的焊接工艺方法来连接铜及铜合金材料。

本文将介绍几种常见的焊接工艺方法和其特点。

1. 电弧焊
电弧焊是一种常用的焊接方法,适用于连接较厚的铜及铜合金材料。

其特点如下:
- 可以使用直流电或交流电进行焊接;
- 需要使用焊条和电弧来产生熔化的金属,形成焊缝;
- 焊接过程需要较高的电流和热量,因此需要注意对工件的热影响。

2. 惰性气体保护焊(TIG焊)
TIG焊是一种高质量的焊接方法,适用于连接较薄的铜及铜合金材料。

其特点如下:
- 使用惰性气体(如氩气)保护焊缝,避免氧化和污染;
- 可以实现较高的焊接质量和焊缝外观;
- 需要较高的焊接技术要求,操作相对复杂。

3. 焊接钎焊
焊接钎焊是一种常用的焊接方法,适用于连接不同类型的金属材料,包括铜及铜合金。

其特点如下:
- 使用钎料来填充和连接金属材料,形成焊缝;
- 钎焊过程中不熔化基材,避免对工件的热影响;
- 可以实现高强度的连接。

4. 焊接热压焊
热压焊是一种适用于连接铜及铜合金的方法,其特点如下:
- 使用热力和压力将材料连接在一起,形成焊缝;
- 焊接过程中不需要添加额外的填充材料;
- 可以实现相对较高的连接强度。

结论
根据需求和材料特性,我们可以选择适当的焊接工艺方法来连接铜及铜合金材料。

电弧焊、TIG焊、焊接钎焊和焊接热压焊是常用的方法,每种方法都有其特点和适用范围。

在实际应用中,应根据具体情况选择最合适的焊接工艺方法。

焊接的工艺流程和技术方案

焊接的工艺流程和技术方案

焊接的工艺流程和技术方案随着工业的快速发展,焊接作为一种重要的连接工艺,在各行各业中起着至关重要的作用。

本文旨在介绍焊接的工艺流程和技术方案,以帮助读者更好地了解和应用焊接技术。

一、焊接的定义和分类焊接是指利用热源、电弧或压力等能量集中的作用,使金属或其他熔融材料相互结合形成连接的工艺。

根据焊接材料的性质和连接部位的特点,焊接可以分为以下几类:电弧焊接、气焊、激光焊、摩擦焊、电阻焊等。

二、焊接的工艺流程1. 准备工作焊接前的准备工作非常重要,包括材料准备、设备准备、安全措施等。

首先,要确保焊接材料的表面光洁,无油污和氧化物;其次,选用适当的焊接设备和工具,并保证其正常运行;最后,要注意个人防护,佩戴焊接手套、防护面罩等,确保操作安全。

2. 焊接工艺参数设定根据焊接材料、材料厚度和连接部位的要求,合理设定焊接工艺参数,包括焊接电流、电压、速度、电极间距等。

这些参数的设定直接影响焊接质量和效率,因此要根据具体情况进行调整。

3. 进行焊接开始焊接时,要注意焊接技术的操作要领。

首先,将焊枪或电极移至焊接起始位置,并点燃电弧或启动焊接设备;接下来,按照预定路径进行焊接操作,保持焊缝的均匀性和质量。

在整个焊接过程中,要控制焊接速度、温度和电流等参数,以确保焊接质量。

4. 焊后处理焊接完成后,要对焊缝进行相应的处理,包括研磨、切割、清理等。

这些后续处理步骤有助于提高焊接接头的平整度和美观度。

三、焊接技术方案1. 选择合适的焊接方法根据焊接材料的特性和连接要求,选择合适的焊接方法是至关重要的。

例如,对于厚材料的焊接,可以选用电弧焊接或激光焊接;对于高强度连接的要求,可以选择摩擦焊接或电阻焊接。

2. 优化工艺参数针对不同的焊接材料和焊接要求,需要不断优化工艺参数以达到最佳焊接效果。

通过试焊、实验和参数调整,可以找到最适合的工艺参数,提高焊接质量和效率。

3. 采用先进的焊接设备和材料现代焊接技术不断创新,不断涌现出先进的焊接设备和材料。

焊接生产流程

焊接生产流程

焊接生产流程焊接是一种常见的金属加工方法,它在制造业中扮演着重要的角色。

正确的焊接生产流程可以保证产品质量,提高生产效率。

下面将介绍一般的焊接生产流程。

首先,焊接生产流程的第一步是准备工作。

在进行焊接之前,需要对焊接材料进行清洁处理,去除表面的油污和氧化物,以确保焊接质量。

同时,还需要对焊接设备进行检查,确保设备的正常运转。

准备工作的做好与否直接关系到焊接后的质量,因此这一步至关重要。

接下来,是焊接工艺的选择。

根据焊接材料的种类、厚度和要求,选择合适的焊接工艺。

常见的焊接工艺包括电弧焊、气体保护焊、激光焊等。

不同的工艺有着不同的特点和适用范围,选择合适的工艺可以提高焊接效率和质量。

然后,是焊接操作。

在进行焊接操作时,需要严格按照焊接工艺规程进行操作,控制焊接参数,确保焊接过程中的稳定性和质量。

焊接操作的技术要求较高,需要经过专门的培训和实践,熟练掌握焊接技术。

接着,是焊接检验。

焊接完成后,需要对焊缝进行检验,以确保焊接质量符合要求。

常见的焊接检验方法包括目视检查、渗透检查、X射线检查等。

检验结果将直接影响产品的质量和安全性。

最后,是焊接后处理。

焊接完成后,还需要进行后处理工作,包括去除焊渣、打磨焊缝、防腐处理等。

后处理工作可以提高产品的表面质量和耐腐蚀性,使产品更加美观和耐用。

总的来说,焊接生产流程包括准备工作、工艺选择、焊接操作、焊接检验和焊接后处理。

每一步都至关重要,需要严格执行,以确保产品的质量和生产效率。

只有在严格遵循焊接生产流程的前提下,才能生产出高质量的焊接产品,满足市场和客户的需求。

焊接工艺及设备

焊接工艺及设备

03
缝过宽、过深,影响美观和使用性能。
焊丝与焊条的选择
根据不同的焊接需求和材料特性,应 选择合适的焊丝和焊条。
焊丝和焊条在使用前应进行质量检查, 确保无缺陷和杂质,以保证焊接质量。
焊丝和焊条的材质、规格、成分等都 会影响焊接质量和效率,因此选择时 应综合考虑。
05
焊接质量检测与评估
外观检测
总结词
焊接工艺及设备
• 焊接工艺概述 • 焊接工艺流程 • 焊接设备介绍 • 焊接工艺参数与材料选择 • 焊接质量检测与评估 • 焊接安全与环境保护
01
焊接工艺概述
焊接的定义与特点
焊接定义
焊接是通过加热或加压,或两者 并用,使分离的工件产生原子间 结合力,从而将它们连接在一起 的过程。
焊接特点
焊接具有高效、低成本、高强度 等优点,广泛应用于制造业和维 修领域。
03
焊接设备介绍
焊接电源
01
02
03
04
焊接电源是焊接设备中的核心 部件,为焊接过程提供所需的
电能。
根据不同的焊接工艺和需求, 焊接电源可分为交流电源和直
流电源两大类。
交流电源主要用于焊接厚板材 ,而直流电源则适用于焊接薄
板和精密焊接。
焊接电源的品质直接影响焊接 质量,因此选择优质的焊接电 源是保证焊接质量的前提。
焊接机头
焊接机头是实现焊接工艺的关键部分, 它包括送丝机构、焊枪和行走机构等 部分。
行走机构则控制焊枪在工件上的移动 轨迹,实现自动化焊接。
送丝机构负责将焊丝送入焊枪,焊枪 则负责将电弧热量传递给焊丝和母材, 实现熔化焊接。
焊接机头的性能和精度直接影响到焊 接质量和效率。
控制系统

焊接工艺特点及应用范围

焊接工艺特点及应用范围

焊接工艺特点及应用范围焊接是一种将两个或多个金属零件连接在一起的工艺。

它是一种广泛应用于各种行业的常见金属连接方法。

焊接工艺的特点与应用范围如下所述。

焊接工艺特点:1. 焊接强度高:焊缝在金属基材上形成固态连接,焊接强度通常与基材相当。

2. 连接牢固:焊接可以形成全连接,与其他连接方式相比具有更好的连接性能,焊接接头通常具有良好的气密性。

3. 焊接速度快:焊接通常只需几分钟或几秒钟即可完成,相比于其他连接方式,焊接速度更快。

4. 可靠性高:焊接接头通常具有较高的耐腐蚀性、抗磨损性和耐热性,靠焊接接头连接的结构通常可用于长期运行。

5. 自动化程度高:随着焊接技术的不断发展,现在很多焊接工艺都可以实现自动化、机器人化的生产。

焊接工艺应用范围:1. 制造业:焊接广泛应用于制造业,例如汽车制造、船舶制造、航空航天业、军工制造等。

焊接可以用于连接金属零件、修复损坏的构件以及进行结构加强。

2. 建筑工程:在建筑工程中,焊接被用于连接钢铁结构,如钢框架、钢梁、钢柱,以及焊接地下管道、焊接锅炉管道等。

3. 铁路和铁路交通:焊接广泛应用于铁路和铁路交通领域,例如焊接轨道、焊接车轮、焊接车辆车身等。

4. 石油和天然气工业:焊接用于连接管道、容器和设备,以便输送石油和天然气。

5. 电力工业:焊接应用于电力输送线路、电力设备和电力站建设。

6. 化工工业:在化工工业中,焊接用于连接管道、容器和反应器,以便进行化学反应和物料输送。

7. 医疗行业:焊接广泛用于医疗行业,例如制造医疗设备、手术器械等。

以上是焊接工艺特点及应用范围的简要介绍。

总体而言,焊接是一种广泛应用于各个行业的金属连接方式,具有连接牢固、强度高和可靠性高等优点,可以满足不同行业对于金属连接的需求。

随着焊接技术的不断发展,相信焊接将在更多领域得到广泛应用,并取得更好的效果。

简述常用的焊接方法及其特点

简述常用的焊接方法及其特点

简述常用的焊接方法及其特点焊接是一种通过加热材料并施加适当的压力使其熔化,并在冷却后形成牢固连接的方法。

在各个领域中,焊接是一种常见且重要的工艺。

本文将简要介绍几种常用的焊接方法以及它们的特点。

1. 电弧焊接电弧焊接是一种常见的焊接方法,使用电流通过两个电极之间的电弧来熔化和连接金属。

它可以使用直流或交流电源进行操作。

电弧焊接的特点包括:- 适用于各种金属,尤其是钢材。

- 熔化温度能够达到非常高,从而实现较大尺寸的焊接。

- 焊接速度快,适用于生产线焊接。

- 需要在特定的环境下进行,如焊接区域需避免风吹雨淋。

2. 氩弧焊接氩弧焊接是一种常用的保护气焊接方法,使用直流电源和氩气作为保护气体。

它的特点包括:- 适用于不锈钢、铝等容易氧化的金属。

- 氩气的保护能够避免焊缝受空气中氧化物的影响。

- 焊接过程稳定,焊缝美观,氮化氢少。

3. 气焊气焊是一种将燃料气体与氧气混合使用的焊接方法。

它的特点包括:- 焊接设备相对简单且易于操作。

- 焊接成本较低,适用于较大尺寸的金属构件。

- 焊接过程需要注意火焰的控制和操作技巧。

- 气焊的焊缝质量较差,不适用于高强度要求的焊接。

4. 感应焊接感应焊接是一种利用感应电流来加热工件并进行熔化的焊接方法。

它的特点包括:- 可以实现快速加热和冷却,适用于对焊接部分温度敏感的材料。

- 焊接过程不产生明显的变形,适用于需要保持工件形状的焊接。

- 对电磁场环境有一定要求,需要在无电磁干扰的场所进行。

5. 摩擦焊接摩擦焊接是一种利用热量产生摩擦来熔化和连接两个工件的方法。

它的特点包括:- 适用于容易与其他方法产生氧化的材料,如铝和铜。

- 对工件形状和材料无特殊要求,易于实现自动化焊接。

- 焊接速度快,焊缝质量高,无需额外添加填充材料。

以上是常用的几种焊接方法的简要介绍及其特点。

在实际应用中,不同的焊接方法有不同的适用场景和优缺点,需要根据具体需求选择合适的焊接方法。

无论采用哪种方法,正确的焊接操作和安全措施都是确保焊接质量和人身安全的关键。

总结焊接方法特点,工艺及应用技术

总结焊接方法特点,工艺及应用技术

总结焊接方法特点,工艺及应用技术在金属加工和制造领域,焊接是一项至关重要的工艺,其应用涵盖了各个行业,包括航空航天、汽车制造、建筑等。

不同的焊接方法具有各自的特点和适用范围,工艺和应用技术也因此有着诸多差异。

本文将就焊接方法的特点、工艺及应用技术进行全面评估,以期帮助读者更加深入地理解这一主题。

1. 电弧焊接电弧焊接是最常见的一种焊接方法,其特点是操作简单、成本低,适用于多种材料和厚度的焊接。

这种方法利用电弧产生高温,使焊件熔化并形成气密的焊缝。

电弧焊接工艺包括手工电弧焊、气体保护焊、手工氩弧焊等多种形式,应用范围广泛,可以用于焊接钢铁、铝合金、镍合金等材料。

2. 氩弧焊氩弧焊是一种常用的气体保护焊接方法,其特点是焊接过程稳定、焊缝质量高、操作技术要求较高。

氩气作为保护气体,可以有效地防止焊缝受到空气污染,从而保证焊接质量。

氩弧焊广泛应用于航空航天、电子、化工等领域,对焊接质量和外观要求较高的场合。

3. 气体保护焊气体保护焊是利用保护气体(如氩气、氩氩等)对焊接区域进行保护,防止空气中的氧气和氮气与熔融焊料或熔化金属发生反应而影响焊接质量。

该方法特点是焊接速度快、热影响小、焊缝质量高,适用于焊接薄板和精密部件。

4. 焊接工艺现代焊接工艺已经不再局限于传统的手工焊接,而是在自动化、智能化方向不断发展。

自动化焊接系统通过机器人或自动化设备实现焊接,大大提高了生产效率和焊接质量。

智能化焊接系统则通过先进的控制系统和传感器,实现焊接过程的监测和调节,确保焊接质量。

5. 应用技术焊接技术在各个领域都有着广泛的应用,比如在航空航天领域,要求焊接件必须具有高强度、轻质、高耐蚀性和高应变能力;在汽车制造领域,焊接件要求具有刚性好、强度高、密封性好、耐疲劳;在建筑领域,焊接件要求具有耐腐蚀、耐疲劳、气密性好等特点。

不同领域对焊接技术的要求也有所不同。

个人观点和理解焊接作为一项重要的金属加工工艺,在现代制造业中占据着至关重要的地位。

冲压焊接工艺流程

冲压焊接工艺流程

冲压焊接工艺流程冲压焊接工艺是一种将金属材料通过冲压成型和焊接工艺相结合的加工方法,广泛应用于汽车制造、电子设备制造等领域。

下面将介绍冲压焊接工艺的流程及其特点。

首先,冲压焊接工艺的流程包括材料准备、冲压成型、焊接和后续处理四个主要步骤。

在材料准备阶段,需要准备好所需的金属材料,并根据产品的设计要求进行切割和预处理。

接下来是冲压成型,通过模具对金属材料进行冲压成型,使其获得所需的形状和尺寸。

然后是焊接,将冲压成型后的零部件进行焊接,使其形成整体结构。

最后是后续处理,包括去毛刺、打磨、喷涂等工艺,使产品表面光滑、美观。

冲压焊接工艺具有以下特点,首先,生产效率高。

由于冲压和焊接工艺相结合,可以实现自动化生产,提高生产效率。

其次,产品质量稳定。

冲压成型和焊接工艺可以保证产品的尺寸精度和一致性,提高产品质量稳定性。

再次,节约材料。

冲压成型可以有效利用材料,减少浪费,节约成本。

最后,适用范围广。

冲压焊接工艺适用于各种金属材料,可以满足不同产品的制造需求。

在实际应用中,冲压焊接工艺需要根据具体产品的要求进行工艺设计和工艺优化。

在材料准备阶段,需要选择合适的金属材料,并根据产品的结构特点进行切割和预处理。

在冲压成型阶段,需要设计合理的模具结构,保证冲压成型的精度和稳定性。

在焊接阶段,需要选择合适的焊接方法和焊接设备,保证焊接质量和效率。

在后续处理阶段,需要根据产品的要求进行表面处理,保证产品的外观质量。

总之,冲压焊接工艺是一种高效、稳定、节约材料、适用范围广的加工方法,对于提高产品质量和生产效率具有重要意义。

在实际应用中,需要根据具体产品的要求进行工艺设计和工艺优化,以确保产品质量和生产效率的达到最佳状态。

铬合金焊接工艺

铬合金焊接工艺

铬合金焊接工艺引言:铬合金是一种具有高强度和耐腐蚀性能的金属材料,广泛应用于航空航天、汽车工业、化工等领域。

而铬合金的焊接工艺对于保证焊缝质量和材料性能至关重要。

本文将介绍铬合金焊接工艺的几种常见方法及其特点。

一、手工电弧焊手工电弧焊是一种简便常用的焊接方法,对于铬合金的焊接也适用。

其工艺流程如下:1. 准备工作:清洁焊接表面,去除氧化物和污物,保证焊接接头的质量。

2. 选择合适的电极:铬合金焊接常用的电极有铬钼电极、铬铜电极等,根据具体需求选择合适的电极。

3. 确定焊接参数:包括电流、电压、焊接速度等,根据铬合金的材质和焊接要求进行调整。

4. 进行焊接:将电极与工件接触,通过电弧产生高温,使铬合金熔化,并与工件熔池融合。

5. 焊后处理:对焊缝进行清理、修整,提高焊接质量。

手工电弧焊的优点是操作简单、设备投资少,适用于小批量生产。

但其缺点也很明显,如焊接速度慢、效率低、焊缝质量难以保证等。

二、气体保护焊(TIG焊)气体保护焊是一种常用的焊接方法,适用于铬合金的焊接。

其工艺流程如下:1. 准备工作:清洁焊接表面,去除氧化物和污物,保证焊接接头的质量。

2. 安装并调整设备:安装TIG焊设备,选择合适的氩气保护,调整气体流量、电流等参数。

3. 进行焊接:通过TIG焊设备产生电弧,同时通过氩气保护焊缝,使铬合金熔化并与工件熔池融合。

4. 焊后处理:对焊缝进行清理、修整,提高焊接质量。

气体保护焊的优点是焊缝质量好、焊接速度快、热影响区小等。

但其设备投资较高,操作技术要求较高。

三、等离子焊接等离子焊接是一种高能量密度的焊接方法,适用于铬合金的焊接。

其工艺流程如下:1. 准备工作:清洁焊接表面,去除氧化物和污物,保证焊接接头的质量。

2. 安装并调整设备:安装等离子焊接设备,调整等离子弧电流、等离子弧电压等参数。

3. 进行焊接:通过等离子弧产生高温等离子体,使铬合金熔化,并与工件熔池融合。

4. 焊后处理:对焊缝进行清理、修整,提高焊接质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可通过与波峰焊的比较来了解选择性焊接的工艺特点。

两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。

由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。

在焊接前也必须预先涂敷助焊剂。

与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。

另外选择性焊接仅适用于插装元件的焊接。

选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。

选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。

助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。

焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。

助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。

助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。

回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。

微孔喷射式绝对不会弄污焊点之外的区域。

微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。

预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。

在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。

在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。

使用者可根据具体的情况来安排选择性焊接的工艺流程。

焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。

选择性拖焊工艺是在单个小焊嘴焊锡波上完成的。

拖焊工艺适用于在PCB上非常紧密的空间上进行焊接。

例如:个别的焊点或引脚,单排引脚能进行拖焊工艺。

PCB以不同的速度及角度在焊嘴的焊锡波上移动达到最佳的焊接质量。

为保证焊接工艺的稳定,焊嘴的内径小于6mm。

焊锡溶液的流向被确定后,为不同的焊接需要,焊嘴按不同方向安装并优化。

机械手可从不同方向,即0°~12°间不同角度接近焊锡波,于是用户能在电子组件上焊接各种器件,对大多数器件,建议倾斜角为10°。

与浸焊工艺相比,拖焊工艺的焊锡溶液及PCB板的运动,使得在进行焊接时的热转换效率就比浸焊工艺好。

然而,形成焊缝连接所需要的热量由焊锡波传递,但单焊嘴的焊锡波质量小,只有焊锡波的温度相对高,才能达到拖焊工艺的要求。

例:焊锡温度为275℃~300℃,拖拉速度10mm/s~25mm/s通常是可以接受的。

在焊接区域供氮,以防止焊锡波氧化,焊锡波消除了氧化,使得拖焊工艺避免桥接缺陷的产生,这个优点增加了拖焊工艺的稳定性与可靠性。

机器具有高精度和高灵活性的特性,模块结构设计的系统可以完全按照客户特殊生产要求来定制,并且可升级满足今后生产发展的需求。

机械手的运动半径可覆盖助焊剂喷嘴、预热和焊锡嘴,因而同一台设备可完成不同的焊接工艺。

机器特有的同步制程可以大大缩短单板制程周期。

机械手具备的能力使这种选择焊具有高精度和高质量焊接的特性。

首先是机械手高度稳定的精确定位能力(±0.05mm),保证了每块板生产的参数高度重复一致;其次是机械手的5维运动使得PCB能够以任何优化的角度和方位接触锡面,获得最佳焊接质量。

机械手夹板装置上安装的锡波高度测针,由钛合金制成,在程序控制下可定期测量锡波高度,通过调节锡泵转速来控制锡波高度,以保证工艺稳定性。

尽管具有上述这么多优点,单嘴焊锡波拖焊工艺也存在不足:焊接时间是在焊剂喷涂、预热和焊接三个工序中时间最长的。

并且由于焊点是一个一个的拖焊,随着焊点数的增加,焊接时间会大幅增加,在焊接效率上是无法与传统波峰焊工艺相比的。

但情况正发生着改变,多焊嘴设计可最大限度地提高产量,例如,采用双焊接喷嘴可以使产量提高一倍,对助焊剂也同样
可设计成双喷嘴.浸入选择焊系统有多个焊锡嘴,并与PCB待焊点是一对一设计的,虽然灵活性不及机械手式,但产量却相当于传统波峰焊设备,设备造价相对机械手式也较低。

根据PCB的尺寸,可以进行单板或多板并行传送,所有待焊点都将以并行方式在同一时间内完成助焊剂喷涂、预热和焊接。

但由于不同PCB上焊点的分布不同,因而对不同的PCB需制作专用的焊锡嘴。

焊嘴的尺寸尽可能大,保证焊接工艺的稳定,不影响PCB上的周边相邻器件,这一点对设计工程师讲是重要的,也是困难的,因为工艺的稳定性可能依赖于它。

"本文由"深圳柔性pcb线路板厂家网站原创,转载请注明出处
/index.html
/index.html。

相关文档
最新文档