模板匹配MATLAB实现及算法优化

合集下载

matlab中模板匹配算法 -回复

matlab中模板匹配算法 -回复

matlab中模板匹配算法-回复模板匹配算法是一种在图像处理和计算机视觉中常用的技术,用于寻找给定模板在一幅图像中的位置。

在Matlab中,有多种方法可以实现模板匹配,其中包括基于相关性的方法、基于梯度的方法以及基于归一化互相关的方法。

以下将逐步介绍这些方法的原理和实现方式。

首先,我们需要了解模板匹配算法的基本原理。

模板匹配算法的目标是找到一幅图像中与给定模板最相似的部分。

这通常通过比较模板与图像的局部区域的像素值来实现。

具体而言,模板图像中的每一个像素与图像中对应位置的像素进行比较,并计算它们之间的相似度指标。

相似度指标可以是相关性、差异度等。

一种常用的模板匹配算法是基于相关性的方法。

在Matlab中,可以使用函数`normxcorr2`实现基于归一化互相关的模板匹配。

这个函数可以计算模板与图像的归一化互相关,即将模板和图像进行归一化处理后再进行相关性计算。

该函数返回归一化互相关的结果图像,其峰值位置对应于匹配模板的最佳位置。

下面是一个使用`normxcorr2`函数进行模板匹配的示例代码:matlab读取模板和图像template = imread('template.png');image = imread('image.png');将图像和模板进行归一化处理template = double(template) / 255;image = double(image) / 255;使用normxcorr2函数计算归一化互相关correlation = normxcorr2(template, image);找到最大相关性的位置[maxCorr, maxIndex] = max(correlation(:));[y, x] = ind2sub(size(correlation), maxIndex);在原图像上标出匹配位置figure;imshow(image);hold on;rectangle('Position', [x, y, size(template, 2), size(template, 1)], 'EdgeColor', 'r', 'LineWidth', 2);上述代码中,首先读取模板图像和待匹配图像,并将它们进行归一化处理。

Matlab优化算法及应用案例

Matlab优化算法及应用案例

Matlab优化算法及应用案例一、引言优化算法在科学和工程领域中起着重要的作用。

Matlab作为一款强大的科学计算软件,提供了丰富的优化算法工具箱,为用户提供了广泛的优化应用场景。

本文将介绍Matlab优化算法的基本原理,并通过实际案例来展示其在实际问题中的应用。

二、优化算法的基本原理优化算法的目标是求解一个函数的最优解,通常包括最大化或最小化目标函数。

Matlab中的优化算法主要基于以下两种类型:局部搜索算法和全局优化算法。

1. 局部搜索算法局部搜索算法是在当前解的附近搜索最优解的一类算法。

其中最为常见的是梯度下降法和牛顿法。

梯度下降法是一种迭代方法,通过沿着目标函数的负梯度方向不断调整参数,以逐步接近最优解。

具体步骤如下:(1)计算目标函数在当前解的梯度。

(2)根据梯度方向和步长系数进行参数调整。

(3)重复以上步骤直到满足停止准则。

牛顿法是一种基于二阶导数的优化方法,相比梯度下降法更为高效,但也更为复杂。

其基本思想是通过泰勒展开近似目标函数,然后解析求解导数为零的方程,得到下一次迭代的参数值。

2. 全局优化算法全局优化算法是通过全局搜索空间来找到最优解的方法。

Matlab提供了一些全局优化算法工具箱,其中最常用的是遗传算法和模拟退火算法。

遗传算法是一种模拟自然进化的优化方法,通过不断迭代生成新的解并选择适应度高的个体,并模拟自然选择、交叉和变异等操作来优化目标函数。

遗传算法在搜索空间较大且复杂的问题上有很好的表现。

模拟退火算法是一种以某种概率接受劣解的搜索算法,通过模拟金属退火过程来逐渐降低目标函数的值。

它能够避免局部最优解,并在一定程度上探索全局最优解。

三、Matlab优化算法的应用案例1. 机器学习中的参数调优在机器学习中,模型的性能很大程度上取决于参数的选择。

Matlab提供了优化工具箱,可以帮助用户选择合适的参数以提高模型的性能。

以支持向量机(SVM)为例,通过调整核函数类型、惩罚项系数和软间隔参数等参数,可以提高模型的分类准确度。

matlab模板匹配算法

matlab模板匹配算法

matlab模板匹配算法Matlab模板匹配算法是一种常用的计算机视觉技术,用于在图像中寻找特定的模式或物体。

该算法通过对比模板图像和待匹配图像的像素值,来确定模板在待匹配图像中的位置。

在本文中,我们将详细介绍Matlab模板匹配算法的原理、步骤以及在实际应用中的一些注意事项。

通过这些内容的介绍,读者将能够全面了解该算法的工作原理以及如何在Matlab中实现。

一、原理介绍模板匹配算法的基本思想是在待匹配图像中滑动一个与模板大小相同的窗口,并计算窗口中的像素值与模板像素值的相似度。

相似度可以通过计算像素值之间的差异来进行评估,常见的方法有求和差分平方和(SSD)和归一化互相关(NCC)等。

二、步骤说明1. 加载图像和模板图像:首先,我们需要使用Matlab的图像处理工具箱加载待匹配的图像和模板图像。

可以使用imread函数将图像数据读取为Matlab中的矩阵。

2. 确定窗口大小:根据需要匹配的模板大小,在待匹配图像中滑动一个与模板大小相同的窗口。

通常情况下,窗口大小与模板大小相同或略大于模板大小。

3. 计算相似度:对于每个窗口,在窗口中提取像素值,并将其与模板图像逐像素进行比较。

根据所选的相似度度量方法,计算窗口和模板之间的相似度。

4. 确定匹配位置:确定窗口与模板的最佳匹配位置。

匹配位置通常是相似度最大的位置,可以使用Matlab的max函数来查找最大值的位置。

5. 可选的后处理:根据具体情况,可以对匹配结果进行进一步的后处理。

例如,可以通过设置合适的匹配阈值来过滤掉相似度低于阈值的结果。

6. 可视化结果:最后,可以使用Matlab的图像绘制函数,在待匹配图像上标记出匹配的位置,以便于结果的可视化和分析。

三、注意事项在使用Matlab模板匹配算法时,需要注意以下几点:1. 模板选择:选择合适的模板非常关键。

模板应该具有明显的特征,并且在待匹配图像中具有一定的可区分性。

2. 光照和尺度变化:模板匹配算法对光照和尺度变化非常敏感。

最优化方法的Matlab实现

最优化方法的Matlab实现

最优化方法的Matlab实现Matlab中使用最优化方法可以使用优化工具箱。

在优化工具箱中,有多种最优化算法可供选择,包括线性规划、非线性规划、约束优化等。

下面将详细介绍如何在Matlab中实现最优化方法。

首先,需要建立一个目标函数。

目标函数是最优化问题的核心,它描述了要优化的变量之间的关系。

例如,我们可以定义一个简单的目标函数:```matlabfunction f = objFun(x)f=(x-2)^2+3;end```以上代码定义了一个目标函数`objFun`,它使用了一个变量`x`,并返回了`f`的值。

在这个例子中,目标函数是`(x-2)^2 + 3`。

接下来,需要选择一个最优化算法。

在Matlab中,有多种最优化算法可供选择,如黄金分割法、割线法、牛顿法等。

以下是一个使用黄金分割法的示例:```matlabx0=0;%初始点options = optimset('fminsearch'); % 设定优化选项```除了黄金分割法,还有其他最优化算法可供选择。

例如,可以使用`fminunc`函数调用一个无约束优化算法,或者使用`fmincon`函数调用带约束的优化算法。

对于非线性约束优化问题,想要求解最优解,可以使用`fmincon`函数。

以下是一个使用`fmincon`函数的示例:```matlabx0=[0,0];%初始点A = []; b = []; Aeq = []; beq = []; % 约束条件lb = [-10, -10]; ub = [10, 10]; % 取值范围options = optimoptions('fmincon'); % 设定优化选项```除了优化选项,Matlab中还有多个参数可供调整,例如算法迭代次数、容差等。

可以根据具体问题的复杂性来调整这些参数。

总而言之,Matlab提供了丰富的最优化工具箱,可以灵活地实现不同类型的最优化方法。

Matlab优化工具箱指南

Matlab优化工具箱指南

Matlab优化工具箱指南介绍:Matlab是一种强大的数值计算和数据分析软件,具备丰富的工具箱来支持各种应用领域的研究与开发。

其中,优化工具箱作为其中一个重要的工具箱,为用户提供了解决优化问题的丰富功能和灵活性。

本篇文章旨在向读者介绍Matlab优化工具箱的使用方法和注意事项,帮助读者更加高效地进行优化问题的求解。

一、优化问题简介在实际应用中,我们经常面临着需要在一些约束条件下,找到最优解的问题。

这类问题被称为优化问题。

优化问题广泛存在于各个研究领域,例如工程设计、金融投资、物流规划等。

Matlab优化工具箱提供了一系列算法和函数,用于求解不同类型的优化问题。

二、优化工具箱基础1. 优化工具箱的安装与加载优化工具箱是Matlab的一个扩展模块,需要进行安装后才能使用。

在Matlab 界面中,选择“Home”->“Add-Ons”->“Get Add-Ons”即可搜索并安装“Optimization Toolbox”。

安装完成后,使用“addpath”命令将工具箱路径添加到Matlab的搜索路径中,即可通过命令“optimtool”加载优化工具箱。

2. 优化问题的建模解决优化问题的第一步是对问题进行建模。

Matlab优化工具箱提供了几种常用的建模方法,包括目标函数表达式、约束条件表达式和变量的定义。

例如,可以使用“fmincon”函数建立一个含有非线性约束条件的优化问题。

具体的建模方法可以根据问题类型和需求进行选择。

三、优化算法的选择Matlab优化工具箱提供了多种优化算法供用户选择,每个算法都适用于特定类型的优化问题。

对于一般的无约束优化问题,可以选择“fminunc”函数结合梯度下降法进行求解。

而对于具有约束条件的优化问题,可以使用“fmincon”函数结合某种约束处理方法进行求解。

在选择优化算法时,需要注意以下几个方面:1. 算法的求解效率。

不同的算法在求解同一个问题时,可能具有不同的求解效率。

优化方法matlab

优化方法matlab

优化方法matlab对于matlab代码的优化,可以从以下几个方面入手:1. 算法优化:首先,对于算法的优化是最直接有效的方法。

通过优化算法,可以减少代码执行的时间和内存占用。

在编写代码时,可以使用更高效的算法来解决问题。

例如,对于排序问题可以使用快速排序算法代替冒泡排序算法;对于查找问题可以使用二分查找算法代替顺序查找算法。

通过选择合适的算法,可以大大提高程序的效率。

2. 向量化操作:向量化操作是matlab中常用的优化方法之一。

在matlab中,向量和矩阵操作是高效的,而循环操作是低效的。

所以,尽量使用向量和矩阵操作,避免使用循环。

例如,可以使用矩阵乘法代替循环逐个相乘,使用矩阵的元素操作代替循环逐个操作。

3. 减少内存占用:在编写matlab代码时,要注意减少内存的占用,避免不必要的内存拷贝和创建大量的临时变量。

可以使用in-place操作来减少内存使用,尽量避免为临时变量重新分配内存空间。

此外,可以使用matlab内置的函数来高效地处理矩阵和数组,避免不必要的内存开销。

4. 编译优化:matlab提供了mex函数,可以将matlab代码编译成二进制mex 文件,提高代码的执行速度。

通过编译优化,可以将matlab代码转化成C/C++代码,并拥有与C/C++相当的执行效率。

可以将matlab中的瓶颈函数使用mex进行编译优化,提高程序的运行速度。

5. 并行计算:对于一些需要进行大规模计算的问题,可以使用matlab中的并行计算工具箱来进行并行计算,提高程序的运行效率。

可以使用parfor循环来代替普通的for循环,让代码并行执行。

同时,可以使用matlab的并行计算工具箱提供的函数来进行并行计算,如parallel.pool.Constant类来创建共享的常量,parallel.pool.DataQueue类来进行数据通信等。

除了以上几个方面,还可以通过以下方式进行matlab代码的优化:6. 预分配矩阵空间:在编写matlab代码时,可以提前预分配矩阵的空间,避免动态扩展矩阵的大小。

如何在MATLAB中进行多目标优化

如何在MATLAB中进行多目标优化

如何在MATLAB中进行多目标优化多目标优化问题是指在存在多个冲突目标的情况下,求解一个能够同时最小化或最大化多个目标函数的问题。

在实际应用中,多目标优化问题被广泛应用于工程优化、金融投资、交通规划等领域。

在MATLAB中,有多种方法可以用来解决多目标优化问题,本文将介绍其中的几种常用方法。

一、多目标优化问题的定义在开始使用MATLAB进行多目标优化之前,首先需要明确多目标优化问题的数学定义。

一般而言,多目标优化问题可以表示为:```minimize f(x) = [f1(x), f2(x), ..., fm(x)]subject to g(x) ≤ 0, h(x) = 0lb ≤ x ≤ ub```其中,f(x)为多个目标函数,g(x)和h(x)为约束条件,lb和ub分别为决策变量的下界和上界。

问题的目标是找到一组决策变量x,使得目标函数f(x)取得最小值。

二、多目标优化问题的解法在MATLAB中,有多种方法可以用来解决多目标优化问题。

下面将介绍其中的几种常见方法。

1. 非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,它将候选解集划分为多个等级或层次,从而使得每个解在候选解集内具备非劣势性。

在MATLAB中,可以使用多目标遗传算法工具箱(Multi-Objective Optimization Toolbox)中的`gamultiobj`函数来实现NSGA算法。

该函数可以通过指定目标函数、约束条件和决策变量范围等参数来求解多目标优化问题。

2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于群体智能的多目标优化算法,它模拟了粒子的行为,通过不断迭代寻找最优解。

在MATLAB中,可以使用多目标粒子群优化工具箱(Multi-Objective Particle Swarm Optimization Toolbox)中的`mopso`函数来实现MOPSO算法。

matlab多目标优化算法

matlab多目标优化算法

matlab多目标优化算法
Matlab多目标优化算法是一种数学优化算法,它针对函数最小化或最大化,用来优化两个或多个目标。

它很灵活,可以应用于不同的评估和优化任务。

通常,这种算法也被称为可优化性综合算法。

多目标优化算法包括三个子过程:裁剪算法、分析优化过程和对象函数的更新。

裁剪算法将两个或多个目标函数分别处理,进行优化,然后连接它们,以便将它们转换为单个函数。

它还可以将该函数转换为新函数,以充分反映其特征,而减少其复杂性。

接下来,分析优化过程使用这些函数来计算优化变量的折衷解决方案,其目的是实现对各个优化目标的贸易-off。

该过程还可以计算各个优化目标之间的关系,以便有效地找出该变量的非折衷解决方案。

最后,对象函数的更新根据分析的结果更新和优化对象函数。

这可以使优化器找到最佳折衷解决方案。

总的来说,多目标优化算法可以灵活地比较多个目标函数,并使用一致性贸易-off和可靠的模型来找到最佳解决方案。

此外,多目标优化算法还可用于可行解的综合优化。

在可行优化中,给定的目标被施加满足边界的约束,以限定可行解范围。

多目标优化算法可以在这样的约束条件下面寻求最优解。

它还可以用来优化非线性约束或混合约束系统,允许优化者比较多个解决方案,并从中找出最佳解。

优化问题的Matlab求解方法

优化问题的Matlab求解方法

优化问题的Matlab求解方法引言优化问题在实际生活中有着广泛应用,可以用来解决很多实际问题。

Matlab作为一款强大的数学计算软件,提供了多种求解优化问题的方法。

本文将介绍在Matlab中求解优化问题的常见方法,并比较它们的优缺点。

一、无约束无约束优化问题是指没有约束条件的优化问题,即只需要考虑目标函数的最大或最小值。

在Matlab中,可以使用fminunc函数来求解无约束优化问题。

该函数使用的是拟牛顿法(quasi-Newton method),可以迭代地逼近最优解。

拟牛顿法是一种迭代方法,通过逐步近似目标函数的梯度和Hessian矩阵来求解最优解。

在使用fminunc函数时,需要提供目标函数和初始点,并可以设置其他参数,如迭代次数、容差等。

通过不断迭代,拟牛顿法可以逐步逼近最优解。

二、有约束有约束优化问题是指在优化问题中加入了约束条件。

对于有约束优化问题,Matlab提供了多种求解方法,包括线性规划、二次规划、非线性规划等。

1. 线性规划线性规划是指目标函数和约束条件都为线性的优化问题。

在Matlab中,可以使用linprog函数来求解线性规划问题。

该函数使用的是单纯形法(simplex method),通过不断迭代来逼近最优解。

linprog函数需要提供目标函数的系数矩阵、不等式约束矩阵和约束条件的右手边向量。

通过调整这些参数,可以得到线性规划问题的最优解。

2. 二次规划二次规划是指目标函数为二次型,约束条件线性的优化问题。

在Matlab中,可以使用quadprog函数来求解二次规划问题。

该函数使用的是求解二次规划问题的内点法(interior-point method),通过迭代来求解最优解。

quadprog函数需要提供目标函数的二次项系数矩阵、线性项系数矩阵、不等式约束矩阵和约束条件的右手边向量。

通过调整这些参数,可以得到二次规划问题的最优解。

3. 非线性规划非线性规划是指目标函数或者约束条件中至少有一个是非线性的优化问题。

Matlab优化算法以及应用案例分析

Matlab优化算法以及应用案例分析

Matlab优化算法以及应用案例分析引言Matlab是一款功能强大的数学软件,以其丰富的功能和灵活的编程环境而受到广泛的应用。

在数学建模和优化问题中,Matlab优化算法是一个重要的工具。

本文将介绍Matlab优化算法的基本原理和常见应用案例分析。

一、Matlab优化算法的基本原理1.1 最优化问题的定义在开始介绍优化算法之前,我们首先需要了解什么是最优化问题。

最优化问题可以定义为在一定的约束条件下,找到使得目标函数达到最大或者最小的变量取值。

最优化问题可以分为无约束问题和约束问题两种。

1.2 Matlab优化工具箱Matlab提供了丰富的优化工具箱,其中包含了许多优化算法的实现。

这些算法包括无约束优化算法、约束优化算法、全局优化算法等。

这些工具箱提供了简单易用的函数接口和丰富的算法实现,方便用户在优化问题中使用。

1.3 优化算法的分类优化算法可以分为传统优化算法和启发式优化算法两类。

传统优化算法包括梯度下降法、牛顿法、共轭梯度法等,它们利用目标函数的一阶或二阶导数信息进行搜索。

而启发式优化算法则通过模拟生物进化、遗传算法、蚁群算法等方法来进行搜索。

二、Matlab优化算法的应用案例分析2.1 无约束优化问题无约束优化问题是指在没有约束条件的情况下,找到使得目标函数达到最小或最大值的变量取值。

在Matlab中,可以使用fminunc函数来求解无约束优化问题。

下面以一维函数的最小化问题为例进行分析。

首先,我们定义一个一维的目标函数,例如f(x) = 3x^2 - 4x + 2。

然后使用fminunc函数来求解该问题。

代码示例:```matlabfun = @(x)3*x^2 - 4*x + 2;x0 = 0; % 初始点[x, fval] = fminunc(fun, x0);```在上述代码中,fun是目标函数的定义,x0是初始点的取值。

fminunc函数将返回最优解x和目标函数的最小值fval。

Matlab中的多目标优化算法实现指南

Matlab中的多目标优化算法实现指南

Matlab中的多目标优化算法实现指南简介:多目标优化是在现实问题中常见的一种情况,例如在工程设计、金融投资和决策支持等领域。

Matlab作为一种强大的数值计算和工程仿真软件,提供了多种多目标优化算法的工具箱,如NSGA-II、MOGA等。

本文将介绍如何使用Matlab实现多目标优化算法,并给出一些应用示例。

一、多目标优化问题多目标优化问题是指在存在多个冲突的目标函数的情况下,找到一组最优解,使得这些目标函数能够达到最优。

在现实问题中,通常会涉及到多个目标,例如在工程设计中同时考虑成本和性能,或者在金融投资中同时考虑风险和收益等。

二、Matlab的多目标优化工具箱Matlab提供了多种多目标优化算法的工具箱,如Global Optimization Toolbox、Optimization Toolbox等。

这些工具箱可以帮助用户快速实现多目标优化算法,并且提供了丰富的优化函数和评价指标。

三、NSGA-II算法实现NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它通过遗传算法的方式来搜索最优解。

在Matlab中,我们可以使用NSGA-II工具箱来实现该算法。

1. 确定目标函数首先,我们需要确定待优化的问题中具体的目标函数,例如最小化成本和最大化性能等。

在Matlab中,我们可以使用函数句柄来定义这些目标函数。

2. 设定决策变量决策变量是影响目标函数的参数,我们需要确定这些变量的取值范围。

在Matlab中,可以使用函数句柄或者向量来定义这些变量。

3. 设定其他参数除了目标函数和决策变量,NSGA-II算法还需要其他一些参数,例如种群大小、迭代次数等。

在Matlab中,我们可以使用结构体来存储这些参数。

4. 运行算法将目标函数、决策变量和其他参数传递给NSGA-II工具箱,然后运行算法。

Matlab会自动进行优化计算,并给出一组最优解。

如何在Matlab中进行迭代优化和迭代求解

如何在Matlab中进行迭代优化和迭代求解

如何在Matlab中进行迭代优化和迭代求解引言:Matlab是一种非常强大和流行的数值计算软件,广泛应用于工程、科学和数学等领域。

在问题求解过程中,迭代优化和迭代求解是常常使用的技术。

本文将介绍如何在Matlab中利用迭代方法进行优化和求解,以及相关的技巧和应用。

一、什么是迭代优化和迭代求解迭代优化指的是通过多次迭代,逐步接近优化问题的最优解。

常用的迭代优化方法包括梯度下降法、牛顿法、拟牛顿法等。

迭代求解则是通过多次迭代,逐步逼近方程或问题的解,常用的迭代求解方法有牛顿迭代法、弦截法、二分法等。

二、迭代优化的基本原理与方法1. 梯度下降法(Gradient Descent):梯度下降法是一种常用的迭代优化方法,用于寻找函数的极小值点。

其基本原理是通过计算函数对各个变量的偏导数,从当前点开始沿着负梯度的方向迭代更新,直至达到最小值。

在Matlab中,可以利用gradient函数计算梯度向量,并通过循环迭代实现梯度下降法。

2. 牛顿法(Newton's Method):牛顿法是一种迭代优化方法,用于求解非线性方程的根或函数的极值点。

其基本思想是利用函数的局部线性近似,通过求解线性方程组来得到函数的极值点。

在Matlab中,可以使用fminunc函数来实现牛顿法。

3. 拟牛顿法(Quasi-Newton Methods):拟牛顿法是一类迭代优化方法,主要用于求解无约束非线性优化问题。

其基本思想是通过构造逼近目标函数Hessian矩阵的Broyden-Fletcher-Goldfarb-Shanno(BFGS)公式或拟牛顿方法中的其他公式,来估计目标函数的梯度和Hessian矩阵。

在Matlab中,可以利用fminunc函数,并设置算法参数来实现拟牛顿法。

三、迭代求解的基本原理与方法1. 牛顿迭代法(Newton's Method):牛顿迭代法是一种常用的迭代求解方法,用于求解方程或问题的根。

matlab 中的优化算法

matlab 中的优化算法

matlab 中的优化算法MATLAB提供了多种优化算法和技术,用于解决各种不同类型的优化问题。

以下是一些在MATLAB中常用的优化算法:1.梯度下降法:梯度下降法是一种迭代方法,用于找到一个函数的局部最小值。

在MATLAB中,可以使用fminunc函数实现无约束问题的梯度下降优化。

2.牛顿法:牛顿法是一种求解无约束非线性优化问题的算法,它利用泰勒级数的前几项来近似函数。

在MATLAB中,可以使用fminunc 函数实现无约束问题的牛顿优化。

3.约束优化:MATLAB提供了多种约束优化算法,如线性规划、二次规划、非线性规划等。

可以使用fmincon函数来实现带约束的优化问题。

4.最小二乘法:最小二乘法是一种数学优化技术,用于找到一组数据的最佳拟合直线或曲线。

在MATLAB中,可以使用polyfit、lsqcurvefit等函数实现最小二乘法。

5.遗传算法:遗传算法是一种模拟自然选择过程的优化算法,用于求解复杂的优化问题。

在MATLAB中,可以使用ga函数实现遗传算法优化。

6.模拟退火算法:模拟退火算法是一种概率搜索算法,用于在可能的解空间中找到全局最优解。

在MATLAB中,可以使用fminsearchbnd函数实现模拟退火算法优化。

7.粒子群优化算法:粒子群优化算法是一种基于群体智能的优化算法,用于求解非线性优化问题。

在MATLAB中,可以使用particleswarm函数实现粒子群优化算法。

以上是MATLAB中常用的一些优化算法和技术。

具体的实现方法和应用可以根据具体问题的不同而有所不同。

MATLAB多目标优化计算方法

MATLAB多目标优化计算方法

MATLAB多目标优化计算方法多目标优化是指在优化问题中存在多个目标函数的情况下,通过寻找一组解来使这些目标函数达到最优或接近最优的过程。

MATLAB中提供了多种方法来进行多目标优化计算,下面将介绍几种常用的方法。

1. 非支配排序遗传算法(Non-dominted Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,其思想是通过遗传算法求解优化问题。

它采用非支配排序的方法,将种群中的个体按照支配关系划分为不同的层次,然后通过选择、交叉和变异等操作来生成新的个体,最终得到一组非支配解。

2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于粒子群优化的多目标优化算法,它将种群中的个体看作是粒子,在过程中通过更新速度和位置来寻找最优解。

MOPSO通过使用非支配排序和拥挤度计算来维护多个目标之间的均衡,从而产生一组近似最优的解。

3. 多目标差分进化算法(Multi-objective Differential Evolution,MODE)MODE是一种基于差分进化的多目标优化算法,它通过变异和交叉操作来生成新的个体,并通过比较个体的适应度来选择最优解。

MODE采用了非支配排序和拥挤度计算来维护种群的多样性,从而得到一组较好的近似最优解。

4. 遗传算法与模拟退火的组合算法(Genetic Algorithm with Simulated Annealing,GASA)GASA是一种结合了遗传算法和模拟退火算法的多目标优化算法。

它首先使用遗传算法生成一组候选解,然后使用模拟退火算法对候选解进行优化,从而得到一组更好的近似最优解。

5. 多目标优化的精英多免疫算法(Multi-objective Optimization based on the Elitism Multi-immune Algorithm,MOEMIA)MOEMIA是一种基于免疫算法的多目标优化算法,它通过模拟生物免疫系统的免疫策略来全局最优解。

matlab模板匹配的代码

matlab模板匹配的代码

matlab模板匹配的代码如何使用Matlab进行模板匹配?Matlab是一种强大的数学计算软件,也可以用于图像处理和模式识别。

模板匹配是一种常见的图像处理技术,用于在图像中查找给定模板的位置。

在本文中,我们将一步一步地介绍如何使用Matlab进行模板匹配。

首先,我们需要从Matlab的图像处理工具箱中加载相应的函数。

打开Matlab并在命令窗口中输入以下命令:matlab加载图像处理工具箱addpath('toolboxdir');这将加载Matlab的图像处理工具箱,使我们能够使用与图像相关的函数。

接下来,我们需要准备我们的图像和模板。

假设我们有一张名为"image.jpg"的图像和一个名为"template.jpg"的模板。

确保这两张图像位于Matlab的当前工作目录下。

为了读取图像和模板,我们可以使用以下代码:matlab读取图像和模板image = imread('image.jpg');template = imread('template.jpg');现在,我们已经准备好了我们的图像和模板。

接下来,我们可以使用模板匹配函数来查找模板在图像中的位置。

在Matlab中,我们可以使用`normxcorr2`函数来实现模板匹配。

`normxcorr2`函数计算两个图像之间的归一化互相关系数。

它可以帮助我们找到图像中与模板最相关的位置。

以下是如何使用`normxcorr2`函数的示例代码:matlab进行模板匹配correlation_map = normxcorr2(template, image);`normxcorr2`函数将返回一个相关系数矩阵,其中的每个元素表示图像中与模板位置相关的程度。

在这个相关系数矩阵中,最大值对应于最佳匹配位置。

要找到最佳匹配位置,我们可以使用以下代码:matlab寻找最佳匹配位置[maxValue, maxIndex] = max(correlation_map(:));[y, x] = ind2sub(size(correlation_map), maxIndex);这将返回相关系数矩阵中的最大值和对应的位置坐标(y,x)。

最优化计算方法及其matlab程序实现

最优化计算方法及其matlab程序实现

最优化计算方法及其matlab程序实现最优化计算是一种通过寻找最佳解决方案来解决问题的方法。

在许多实际问题中,我们希望找到使某个目标函数达到最大或最小值的变量取值。

最优化计算可以应用于各种领域,如工程、经济、物理等。

在最优化计算中,我们首先需要定义一个目标函数,它描述了我们要优化的问题。

目标函数可以是线性的也可以是非线性的,具体取决于问题的性质。

然后,我们需要确定变量的取值范围和约束条件。

最后,我们使用最优化算法来搜索最佳解。

常用的最优化算法包括梯度下降法、牛顿法、拟牛顿法等。

这些算法基于不同的原理和策略,在不同的问题中表现出不同的性能。

选择合适的最优化算法对于获得高效的求解结果非常重要。

接下来,我们将介绍如何使用Matlab编写程序来实现最优化计算方法。

Matlab是一种功能强大的数值计算和编程环境,它提供了丰富的工具箱和函数来支持最优化计算。

我们需要定义目标函数。

在Matlab中,我们可以使用函数句柄来表示目标函数。

例如,假设我们要最小化一个简单的二次函数f(x) = x^2,我们可以定义一个函数句柄如下:```matlabf = @(x) x^2;```然后,我们可以使用Matlab提供的最优化函数来搜索最佳解。

例如,使用fminsearch函数来实现梯度下降法:```matlabx0 = 1; % 初始值x = fminsearch(f, x0);```在上述代码中,x0是变量的初始值,fminsearch函数将根据梯度下降法来搜索最佳解,并将结果存储在变量x中。

除了梯度下降法,Matlab还提供了其他常用的最优化函数,如fminunc、fmincon等。

这些函数具有不同的功能和参数,可以根据具体的问题选择合适的函数来求解。

除了单变量最优化,Matlab还支持多变量最优化。

在多变量最优化中,目标函数和约束条件可以是多元函数。

我们可以使用Matlab 提供的向量和矩阵来表示多变量的取值和约束条件。

模板匹配MATLAB实现及算法优化

模板匹配MATLAB实现及算法优化

模板匹配MATLAB实现及算法优化模板匹配是一种常用的图像处理技术,它在图像中寻找指定的模板,并确定模板在图像中的位置。

MATLAB提供了丰富的工具和函数来实现模板匹配。

在本文中,我们将介绍模板匹配的MATLAB实现,并探讨一些相关的算法优化。

模板匹配的基本思想是将模板图像与目标图像进行比较,找出在目标图像中与模板最相似的位置。

下面是模板匹配的基本步骤:1.准备模板图像和目标图像。

2.将模板图像与目标图像进行比较,计算它们之间的相似度。

3.找出相似度最高的位置作为匹配结果。

现在,让我们具体看一下MATLAB中如何实现这些步骤。

准备模板图像和目标图像首先,我们需要准备模板图像和目标图像。

可以使用MATLAB中的imread函数读取图像文件,并使用imresize函数调整图像尺寸。

通常情况下,目标图像的尺寸较大,而模板图像的尺寸较小。

所以,我们需要将模板图像调整为与目标图像相同的尺寸。

```matlabtemplate = imread('template.png'); % 读取模板图像template = imresize(template, size(target)); % 调整模板图像尺寸与目标图像相同```比较模板图像和目标图像接下来,我们需要计算模板图像和目标图像之间的相似度。

在MATLAB中,可以使用函数normxcorr2来计算归一化的互相关系数。

这个函数将返回一个与目标图像相同大小的矩阵,其中的每个元素表示与模板图像在该位置重叠的部分的相似度。

```matlabc = normxcorr2(template, target); % 计算归一化的互相关系数```找出匹配位置最后,我们需要找出相似度最高的位置作为匹配结果。

可以使用函数max来找到相似度矩阵中的最大值及其对应的位置。

```matlab[maxValue, maxIndex] = max(c(:)); % 找到最大值及其位置[y, x] = ind2sub(size(c), maxIndex); % 将位置转换为坐标```至此,我们已经完成了模板匹配的MATLAB实现。

Matlab中的多目标优化算法详解

Matlab中的多目标优化算法详解

Matlab中的多目标优化算法详解多目标优化是指在优化问题中同时考虑多个目标函数的最优解。

与单目标优化问题不同,多目标优化问题的解称为“帕累托最优解”。

Matlab提供了一些强大的多目标优化算法,本文将详细介绍这些算法的原理和应用。

一、多目标优化的基本概念多目标优化问题的目标函数通常是一组相互矛盾的指标,求解该问题即要在这些指标之间找到一个平衡点。

传统的单目标优化算法无法直接应用于多目标优化问题,因为它们只能找到单个最优解。

因此,需要借助多目标优化算法来解决这类问题。

多目标优化的基本概念可以用“帕累托最优解”来描述。

帕累托最优解是指在多个目标函数下,无法通过对一个目标函数的改进而不损害其他目标函数的值。

多目标优化问题的解集是所有帕累托最优解的集合,称为“帕累托前沿”。

二、多目标优化算法的分类在Matlab中,多目标优化算法可以分为以下几类:1. 基于加权的方法:将多个目标函数加权求和,然后将多目标优化问题转化为单目标优化问题。

这类方法的优点是简单有效,但是需要人工设定权重。

2. 遗传算法:通过模拟进化的过程,搜索出多目标优化问题的解集。

遗传算法具有全局搜索的能力,但是收敛速度较慢。

3. 粒子群优化算法:通过模拟鸟群觅食行为,搜索出多目标优化问题的解集。

粒子群优化算法具有较快的收敛速度和较强的全局搜索能力。

4. 差分进化算法:通过模拟物种进化的过程,搜索出多目标优化问题的解集。

差分进化算法具有较快的收敛速度和较强的全局搜索能力。

5. 支配排序算法:通过定义支配关系,将多目标优化问题的解集划分为不同的非支配解等级。

支配排序算法能够有效地寻找帕累托最优解。

三、多目标优化算法的应用多目标优化算法在实际应用中有着广泛的应用。

以下是几个常见的应用场景:1. 工程优化:在设计工程中,常常需要在多个目标之间进行权衡。

例如,在机械设计中,需要同时考虑产品的成本、质量和安全性等指标。

2. 金融投资:在金融投资领域,投资者通常需要考虑多个指标,如收益率、风险和流动性等。

matlab最优化算法

matlab最优化算法

matlab最优化算法Matlab最优化算法最优化算法是一种通过数学模型和计算方法来寻找最佳解的技术。

在工程和科学领域中,我们经常需要解决各种问题,如寻找最小化误差的参数、最大化效益或最小化成本的决策等。

Matlab是一款强大的数值计算软件,其中包含了许多用于解决最优化问题的算法。

Matlab提供了多种最优化算法,可以根据具体问题的特点选择最适合的算法。

下面将介绍几种常用的Matlab最优化算法。

1. 无约束优化算法:无约束优化算法用于在没有约束条件的情况下寻找最优解。

其中,最常用的算法是“fminunc”。

该算法使用了牛顿法或拟牛顿法,通过逐步迭代来寻找最小值。

在使用该算法时,我们需要提供一个初始点,并指定优化目标函数。

2. 线性规划算法:线性规划算法是一类特殊的最优化算法,用于求解线性目标函数在线性约束条件下的最优解。

Matlab中提供了“linprog”函数来实现线性规划算法。

该函数使用了单纯形法或内点法来求解最优解。

3. 二次规划算法:二次规划算法用于求解二次目标函数在线性约束条件下的最优解。

Matlab中的“quadprog”函数可以实现二次规划算法。

该函数使用了内点法或信赖域反射法来求解最优解。

4. 非线性规划算法:非线性规划算法用于求解非线性目标函数在约束条件下的最优解。

Matlab中的“fmincon”函数可以实现非线性规划算法。

该函数使用了积极集法或内点法来求解最优解。

5. 全局优化算法:全局优化算法用于在多个局部最优解中寻找全局最优解。

Matlab中的“fminsearch”函数可以实现全局优化算法。

该函数使用了模拟退火法或遗传算法来求解最优解。

以上只是介绍了几种常用的Matlab最优化算法,实际上Matlab 还提供了许多其他算法,如遗传算法、模拟退火法、粒子群优化等。

在选择最优化算法时,我们需要考虑问题的特点、约束条件以及算法的求解效率等因素。

Matlab最优化算法是一种强大的工具,可以帮助我们解决各种优化问题。

优化设计Matlab实例解析

优化设计Matlab实例解析

优化设计Matlab实例解析MATLAB是一种基于矩阵运算的高级编程语言和环境,被广泛应用于各个领域的科学计算和工程问题。

在实际应用中,我们经常面临优化设计的任务,即在给定的限制条件下,寻找最优的解决方案。

优化设计可以应用于诸如控制系统设计、信号处理、图像处理、机器学习等问题中。

下面我们以一个简单的例子来说明如何使用MATLAB进行优化设计。

假设我们有一个矩形花园,每边有一定的长度,我们希望找到一个长和宽使得花园的面积最大化。

令矩形花园的长和宽分别为x和y,由于边长有限制条件,即x的范围为0到20,y的范围为0到10,同时花园的长度之和不得超过30。

我们的目标是找到一组合适的x和y,使得面积A 最大。

在MATLAB中,我们可以使用优化工具箱中的函数fmincon来求解这个问题。

以下是具体的实现步骤:1.创建目标函数首先,我们需要定义一个目标函数来评估每组x和y的解决方案。

在这个例子中,我们的目标是最大化矩形花园的面积,因此我们的目标函数可以简单地定义为A=x*y。

```matlabfunction A = objective(x)A=-x(1)*x(2);%最大化面积,取负号end```2.设置限制条件接下来,我们需要定义限制条件。

在这个例子中,我们需要考虑两个限制条件,即x和y的范围以及长度之和的限制。

我们可以使用函数fmincon提供的constr函数来定义这些限制条件。

```matlabfunction [c, ceq] = constr(x)c=[x(1)-20;%x的上限x(2)-10;%y的上限x(1)+x(2)-30];%长度之和的限制ceq = []; % 无等式限制end```3.求解问题有了目标函数和限制条件,我们可以使用fmincon函数来求解问题。

```matlabx0=[10,5];%初始猜测lb = [0, 0]; % x和y的下限ub = [20, 10]; % x和y的上限options = optimoptions('fmincon', 'Display', 'iter'); % 设置选项```在这里,我们使用了初始猜测x0、x和y的上下限lb和ub以及其他选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模板匹配MATLAB实现及算法优化一、引言现代社会已进入信息时代,随着计算机技术、通信技术和数学的发展,图像信息处理能力和水平也不断提高,相应的也得到和更多关注、研究和更加广泛的应用。

图像匹配是图像处理的一项关键技术,可广泛用于目标识别与跟踪、立体视觉、变化检测、车场车牌识别、人脸识别、机器人导航、测绘、等领域,已成为一门新兴的分支学科。

由于拍摄时间、拍摄角度、自然环境的变化、多种传感器的使用和传感器本身的缺陷,使拍摄的图像不仅受噪声的影响,而且存在严重的灰度失真和几何畸变。

在这种条件下,如何有效地进行图像匹配一直是人们研究的热点和难点。

要研究模板匹配,首先必须明确模板匹配的定义:模板匹配是指通过一定的匹配算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜索区中相同大小的窗口的相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。

其实质是在基元相似性的条件下,运用匹配准则的最佳搜索问题。

简单的讲就是,要判读一幅大图像中是否存在某种已知的图案,则以一幅与该图案有着相同尺寸和方向的小图像为模板,通过一定的算法可以在图中找到目标,确定其坐标位置。

那么如何实现模板与原图像的匹配呢?下面将结合一个具体例子说明模板匹配的实现过程。

二、问题描述及解决方法1.问题描述现有模板如下图:原图如下图:问题:如何在原图中找到模板所处的位置,并把该位置标记出来。

2.解决方法首先必须建立判断模板与原图相应位置相似程度的准则。

对于彩色图像,是基于图像的特征匹配;而灰度图像,则是基于相关函数。

本实验的处理对象主要是灰度图片。

相关函数又分成两类:(1) 差值测度。

计算公式如下:max |(,)(,)|f x y g x y ε=-|(,)(,)|Df x yg x y dxdy ε=-⎰⎰22[(,)(,)]Df x yg x y dxdy ε=-⎰⎰(2) 相关测度。

计算公式如下:1222(,)(,)(,)[(,)(,)]D D D f x y g x y dxdy p x y f x y dxdy g x y dxdy =⋅⎰⎰⎰⎰⎰⎰显然,上式中的p(x,y)取值范围是0到1。

越接近于0,表示两图像相差越大;越接近于1,表示两图像越相似。

有了描述相似程度的数学模型,接下来就可以用MATLAB 编程实现模板匹配,从而解决上述问题了。

三、 MATLAB 实现要实现这个程序,必须有三个重要组成部分:1. 模板循环功能:实现模板扫过原图的每一个像素点。

语句:for i=1:M-mfor j=1:N-nendend描述:以模板左上角第一个点为标志点,使其依次从左到右、从上到下扫过原图每一个像素点。

2. 相似性判断功能:在每一次循环时,计算模板与覆盖的原图区域的相似程度,并判断两图像是否相似。

语句:temp=imcrop(im,[j,i,n-1,m-1]);r=corr2(temp,T);%È¡µÃÏà¹ØϵÊýif r>0.95%¹æ¶¨ÖµÎª0.95end描述:(1)imcrop是MATLAB自带库函数,实现的是图像裁剪的功能,这里使用此函数,可以得到原图上被模板覆盖区域,与模板同尺寸的矩阵。

(2)corr2也是MATLAB自带库函数,是用来计算两个矩阵的相关测度的。

(3)0.95是置信阈值,当相关测度大于0.95时,就认为模板匹配成功。

3.标识原图上匹配成功的区域功能:用框圈出或高亮显示原图上与模板匹配成功的区域位置。

语句:plot(j:j+n,i,'w');plot(j:j+n,i+m,'w');plot(j,i:i+m,'w');plot(j+n,i:i+m,'w');描述:此语句实现用方框圈出匹配成功区域。

实验结果如图:四、算法优化模板匹配在实际应用中经常用于制导导引头、传感器等,这类设备计算能力、内存有限,且要求在较短时间内得到处理结果。

因此,以减少处理计算量、加快处理速度为目的的算法优化必不可少。

我个人将优化的方式分为三种:循环次数优化,具体有粗精匹配相结合、乱序匹配等;相似性计算优化,这是我们此次实验的着眼点,将做具体介绍;以及以上两种思路的结合优化。

通过上文列举的相似性计算准则可知,不同数学模型的计算量明显不同,而多种相似性计算公式的存在也为算法优化提供了可能。

1.差值测度优化思路:相比相关测度计算,差值测度只计算减法,所以在计算量上将大大降低。

语句:temp=imcrop(im,[j,i,n-1,m-1]);a=temp-T;b=abs(a);e=max(a);if e<50;end结果:未优化运行时间:T=3.9746s采用差值测度优化后运行时间:T=1.7524s2.TMP优化思路:TMP法首先认为原图与模板具有相同的直流分量,那么只要检测除直流分量能量外的能量水平,就可以判断相似性。

语句:Nimage=im(i:i+r2-1,j:j+c2-1);Nimage=Nimage-mean(mean(Nimage));corr=sum(sum(Nimage.*image22));M(i,j)=corr/sqrt(sum(sum(Nimage.^2)));结果:采用TMP优化算法后运行时间:T=1.5853s3.TMC优化思路:TMC法原理与TMP法相同,只是在计算时省略了归一化过程。

语句:Nimage=im(i:i+r2-1,j:j+c2-1);Nimage=Nimage-mean(mean(Nimage));corr=sum(sum(Nimage.*image22));corrMat(i,j)=corr;结果:采用TMC优化算法后运行时间:T=1.140s4.边缘检测优化思路:以上所有算法的处理对象都是模板及原图包含的所有信息,但是区别一个物体最直观的方式是区分他的轮廓,所以如果先提取原图与模板轮廓,然后再进行匹配计算,则在保证精度的基础上可以大大减少信息处理量。

语句:tedge = edge(tt);wedge = edge(ww);out = filter2(tedge,wedge);o = max(max(out));output = (1/o)*out;结果:采用边缘检测优化算法后运行时间:T=0.0964s结论:以上4种优化算法相比原未优化算法,在处理相同模板匹配问题的前提下,都显著提升了运行速度。

这几种算法中,边缘检测优化算法更具优势。

五、主要程序1.未优化原程序clcclearclose alltic;im=imread('D:\1120120260 ÕÔ´«\t-m\letters.jpg');%¶ÁÈ¡Ô-ͼÏñT=imread('D:\1120120260 ÕÔ´«\t-m\K.jpg');%¶ÁÈ¡Æ¥ÅäͼÏñimshow(im);im=rgb2gray(im);%½«Ô-ͼ»Ò¶È»¯T=rgb2gray(T);%½«Æ¥Åäͼ»Ò¶È»¯im=double(im);T=double(T);[m,n]=size(T);%»ñÈ¡Æ¥ÅäͼÏóµÄ´óС³ß[M,N]=size(im);%»ñÈ¡Ô-ͼÏóµÄ´óС³ß´çhold onfor i=1:M-mfor j=1:N-ntemp=imcrop(im,[j,i,n-1,m-1]);r=corr2(temp,T);%È¡µÃÏà¹ØϵÊýif r>0.95%¹æ¶¨ÖµÎª0.95%ÏÂÃæÓÃplotº¯ÊýÔÚÔ-ͼµÄ×ø±êϵÉÏ»-³öÆ¥ÅäÇøÓòplot(j:j+n,i,'w');plot(j:j+n,i+m,'w');plot(j,i:i+m,'w');plot(j+n,i:i+m,'w');endendendtime=toc;2.差值测度优化clcclearclose alltic;im=imread('D:\1120120260 ÕÔ´«\t-m\letters.jpg');%¶ÁÈ¡Ô-ͼÏñT=imread('D:\1120120260 ÕÔ´«\t-m\K.jpg');%¶ÁÈ¡Æ¥ÅäͼÏñimshow(im);im=rgb2gray(im);%½«Ô-ͼ»Ò¶È»¯T=rgb2gray(T);%½«Æ¥Åäͼ»Ò¶È»¯im=double(im);T=double(T);[m,n]=size(T);%»ñÈ¡Æ¥ÅäͼÏóµÄ´óС³ß[M,N]=size(im);%»ñÈ¡Ô-ͼÏóµÄ´óС³ß´çhold onfor i=1:M-mfor j=1:N-ntemp=imcrop(im,[j,i,n-1,m-1]);a=temp-T;b=abs(a);e=max(a);if e<50; %ÈÏΪ×î´óÎó²îСÓÚ50¼´Æ¥Åä³É¹¦%ÏÂÃæÓÃplotº¯ÊýÔÚÔ-ͼµÄ×ø±êϵÉÏ»-³öÆ¥ÅäÇøÓòplot(j:j+n,i,'w');plot(j:j+n,i+m,'w');plot(j,i:i+m,'w');plot(j+n,i:i+m,'w');endendendtime=toc;3. TMP优化clcclearclose alltic;im=imread('D:\1120120260 ÕÔ´«\t-m\letters.jpg');%¶ÁÈ¡Ô-ͼÏñT=imread('D:\1120120260 ÕÔ´«\t-m\K.jpg');%¶ÁÈ¡Æ¥ÅäͼÏñim=rgb2gray(im);%½«Ô-ͼ»Ò¶È»¯T=rgb2gray(T);%½«Æ¥Åäͼ»Ò¶È»¯im=double(im);T=double(T);[r1,c1]=size(im);[r2,c2]=size(T);image22=T-mean(mean(T));%»ùÓÚÄÜÁ¿·¨µÄÏà¹ØÐÔ¼ì²âM=[];for i=1:(r1-r2+1)for j=1:(c1-c2+1)Nimage=im(i:i+r2-1,j:j+c2-1);Nimage=Nimage-mean(mean(Nimage)); %ÓëÄ£°åÖغϲ¿·ÖÔ-ͼÏñµÄ¾ùÖµ²îcorr=sum(sum(Nimage.*image22));M(i,j)=corr/sqrt(sum(sum(Nimage.^2)));endend% plot box on the target imageresult=plotbox(im,T,M);imshow(uint8(result));title('Matching Result using tmp');% figure,% subplot(2,2,1),imshow(uint8(T));title('Template');% subplot(2,2,2),imshow(uint8(im));title('Target');% subplot(2,2,3),imshow(uint8(result));title('Matching Result using tmp');time=toc;4.TMC优化clcclearclose alltic;im=imread('D:\1120120260 ÕÔ´«\t-m\letters.jpg');%¶ÁÈ¡Ô-ͼÏñT=imread('D:\1120120260 ÕÔ´«\t-m\K.jpg');%¶ÁÈ¡Æ¥ÅäͼÏñim=rgb2gray(im);%½«Ô-ͼ»Ò¶È»¯T=rgb2gray(T);%½«Æ¥Åäͼ»Ò¶È»¯im=double(im);T=double(T);[r1,c1]=size(im);[r2,c2]=size(T);% Ä£°åµÄ¾ùÖµ²îimage22=T-mean(mean(T));corrMat=[];%»ùÓÚ¾ùÖµ²îµÄÏà¹ØÐÔ¼ìÑéfor i=1:(r1-r2+1)for j=1:(c1-c2+1)Nimage=im(i:i+r2-1,j:j+c2-1);Nimage=Nimage-mean(mean(Nimage)); % ÓëÄ£°åÖغϲ¿·ÖµÄͼÏñ¾ùÖµ²î corr=sum(sum(Nimage.*image22));corrMat(i,j)=corr;endend% plot box on the target imageresult=plotbox(im,T,corrMat);imshow(uint8(result));title('Matching Result using tmc');% figure,% subplot(2,2,1),imshow(uint8(T));title('Template');% subplot(2,2,2),imshow(uint8(im));title('Target');% subplot(2,2,3),imshow(uint8(result));title('Matching Result using tmc');time=toc;5.边缘检测优化clcclearclose alltic;%¶ÁÈëͼÏñSw = imread('D:\1120120260 ÕÔ´«\t-m\letters.jpg');w = im2double(w);sizw = size(w);% figure% imshow(w)% title('Input Image')%¶ÁÈëÄ£°åTt = imread('D:\1120120260 ÕÔ´«\t-m\K.jpg');t = im2double(t);sizt = size(t);% figure% imshow(t)% title('Target Image')ww = rgb2gray(w);tt = rgb2gray(t);%ÓÅ»¯-ÓñßÔµ½øÐÐÏà¹Ø¼ì²âtedge = edge(tt);wedge = edge(ww);%²ÉÓþí»ýÅжÏÏà¹ØÐÔ£¬ÈôÏàͬ£¬¾í»ý×î´óout = filter2(tedge,wedge);o = max(max(out));output = (1/o)*out;%ÕÒµ½Ä£°åλÖ㬲¢¸ßÁÁÏÔʾģ°åÇøÓòpixel = find(output == 1);pcolumn = fix(pixel / sizw(1));prow = mod(pixel,sizw(1));rdis = fix(sizt(1)/2);cdis = fix(sizt(2)/2);cmin = pcolumn - cdis;cmax = pcolumn + cdis;rmin = prow - rdis;rmax = prow + rdis;c = [cmin cmin cmax cmax];r = [rmin rmax rmax rmin];m = roipoly(ww,c,r);m = im2double(m);% figure,imshow(m);m = 0.5 * (m + 1);mask(:,:,1) = m;mask(:,:,2) = m;mask(:,:,3) = m;final = mask .* w;figureimshow(final)title('Result Image')time=toc;6.plotbox子程序function result=plotbox(im,T,M);[r1,c1]=size(im);[r2,c2]=size(T);[r,c]=max(M);[r3,c3]=max(max(M));i=c(c3);j=c3;result=im;for x=i:i+r2-1for y=jresult(x,y)=255;endendfor x=i:i+r2-1for y=j+c2-1result(x,y)=255;endendfor x=ifor y=j:j+c2-1result(x,y)=255;endendfor x=i+r2-1for y=j:j+c2-1result(x,y)=255;endend。

相关文档
最新文档