【精选】 一元一次方程单元测试卷 (word版,含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.

(1)求 a,b;A、B 两点之间的距离.

(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.

(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,

∴a+5=0,b﹣7=0,

∴a=﹣5,b=7;

∴A、B两点之间的距离=|﹣5|+7=12;

(2)解:设向左运动记为负数,向右运动记为正数,

依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.

答:点P所对应的数为﹣1015

(3)解:设点P对应的有理数的值为x,

①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,

依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;

②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,

依题意得:7﹣x=3(x+5),

解得:x=﹣2;

③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,

依题意得:x﹣7=3(x+5),

解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.

综上所述,点P所对应的有理数分别是﹣11和﹣2.

所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.

【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

2.用“ ”规定一种新运算:对于任意有理数 a 和b,规定

.如:

.

(1)求的值;

(2)若=32,求的值;

(3)若,(其中为有理数),试比较m、n的大小.

【答案】(1)解:∵

∴ =

(2)解:∵=32,

∴可列方程为;

解方程得:x=1

(3)解:∵ = ,

∴;

【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.

3.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.

(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?

(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;

(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:

打折前一次性购物总金额优惠措施

不超过300元不优惠

超过300元且不超过400元售价打九折

超过400元售价打八折

200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?

【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。

由已知得15x+35(100-x)=2700

解得x=40

答:购进甲商品40件,乙商品60件。

(2)解:设:购进甲商品x件,购进乙商品(100-x)件。

利润W=5x+10(100-x)

根据题意可得5x+10(100-x)≤760和x≤50;

解得48≤x≤50,

∴进货方案有三种

①甲48件,乙52件,

②甲49件,乙51件

③甲50件,乙50件

(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)

第二天:打折,

打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)

打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)

答:购买甲商品10件,乙商品8件或者9件。

【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可

4.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅行社,这家旅行社报价为4000元/人,但根据具体报名情况推出了优惠举措:

人数10人及以下(含10人)超过10人不超过20人的部分超过20人的部分

收费标准原价(不优惠)3500元/人3000元/人

(2)在(1)问前提下,后来又有部分同学要求参加,设这部分同学加入后总共参与旅游的人数为人,若总人数还是不超过20人,则总费用为________元;若总人数超过了

20人,则总费用为________元;(结果均用含的代数式表示)

(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游?【答案】(1)50500

(2);

(3)解:,显然 .

①若,则;

(不合题意,舍去)

②若,则;

答:共有25人参加了本次旅游

【解析】【解答】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2)根据题意得,

①若总人数x还是不超过20人,则总费用为:

4000×10+3500(x-10)=3500x+5000(元);

②若总人数x超过了20人,则总费用为:

4000×10+3500(20-10)+3000(x-20)=3000x+15000(元)

故答案为:(3500x+5000);(3000x+15000)

【分析】(1)根据优惠措施,旅游13人的总费用为:其中10人按4000元/人算,另3人按3500元/人计算;

(2)分两种情况解答:

①不超过20人时,总费用=10×400+3500×(x-10);

②超过20人时总费用=10×4000+3500×10+3000×(x-20);

(3)先判断出x>10,然后分两种情况解答:①当时,②当时,

5.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.

(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?

(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?

【答案】(1)解:设两厂同时处理每天需xh完成,

根据题意,得(55+45)x=700,解得x=7.

答:甲、乙两厂同时处理每天需7 h.

(2)解:设安排甲厂处理y h,

根据题意,得550y+495× ≤7370,

解得y≥6.

∴y的最小值为6.

相关文档
最新文档