【精选】 一元一次方程单元测试卷 (word版,含解析)

合集下载

一元一次方程单元测试卷(含答案解析)

 一元一次方程单元测试卷(含答案解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。

一元一次方程单元测试题(含答案)

一元一次方程单元测试题(含答案)

一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =52.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =24.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣55.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−436.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=17.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣28.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120B .720+120=6(x +32x )C .6x +6×32x +120=720D .6(x +32x )+120=72010.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x ﹣1与x +2的值相等,则x = . 12.(3分)若2a3x +1与−15x 2x +4的和是单项式,则x 的值为 .13.(3分)若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 .14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 . 三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x ); (2)x −13=2x −32+117.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元一元一次方程单元测试题(含答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =5【分析】利用一元一次方程的定义判断即可. 【解答】解:x +1=0是一元一次方程, 故选:B .【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定【分析】根据一元一次方程的定义,得出|a |﹣1=1,注意a ﹣2≠0,进而得出答案. 【解答】解:由题意得:|a |﹣1=1,a ﹣2≠0, 解得:a =﹣2. 故选:B .【点评】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键. 3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =2【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A 、由ac =bc ,当c =0时,a 不一定等于b ,错误;B 、由x 5=x5−1,得a =b ﹣5,错误; C 、由2a ﹣3=a ,得a =3,正确; D 、由2a ﹣1=3a +1,得a =﹣2,错误;故选:C .【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理. 4.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣5【分析】把x =1代入方程ax +3x =2得出a +3=2,求出方程的解即可. 【解答】解:把x =1代入方程ax +3x =2得:a +3=2, 解得:a =﹣1, 故选:B .【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a 的一元一次方程,难度适中.5.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−43【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到m 的值. 【解答】解:根据题意得:x 3+1+2x −73=0, 去分母得:m +3+2m ﹣7=0, 解得:m =43,故选:B .【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=1 【分析】根据解一元一次方程的步骤依次计算可得.【解答】解:A .由5x =3x +1移项得5x ﹣3x =1,此选项正确;B .由2(x +1)=x +7去括号、移项、合并同类项得x =5,此选项正确;C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3),此选项正确; D .由2(2x ﹣1)﹣3(x ﹣3=1)去括号得 4x ﹣2﹣3x +9=1,此选项错误;故选:D .【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.7.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm =长方形的宽+2cm ,根据此列方程即可.【解答】解:设长方形的长为xcm ,则宽是(13﹣x )cm ,根据等量关系:长方形的长﹣1cm =长方形的宽+2cm ,列出方程得:x ﹣1=(13﹣x )+2,故选:B .【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x 8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 【分析】设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天,根据甲完成的部分+乙完成的部分=整个工作量(单位1),即可得出关于x 的一元一次方程,此题得解.【解答】解:设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天, 根据题意得:x 12+x −38=1.故选:D .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×32x +120=720D .6(x +32x )+120=720【分析】设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,根据相遇问题的数量关系建立方程求出其解即可.【解答】解:设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,由题意,得:120+6(x +32x )=720,故列方程错误的是B . 故选:B .【点评】本题考查了由实际问题抽象一元一次方程的知识,解答本题的关键是仔细审题,根据等量关系建立方程.10.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上【分析】要想知道乙追到甲时在哪一边上,则必须知道它们追上时所行的路程,那么只要求出追到时的时间,就可求出路程.根据路程计算沿正方形所走的圈数,就可知道在哪一边上.【解答】解:设乙第一次追上甲时,所用的时间为x ,依题意得:100x =60x +3×80 解得:x =6∴乙第一次追上甲时所行走的路程为:6×100=600m ∵正方形边长为80m ,周长为320m ,∴当乙第一次追上甲时,将在正方形AB 边上.故选:B.【点评】解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x﹣1与x+2的值相等,则x= 3 .【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1=x+2,移项合并得:x=3,故答案为:3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.(3分)若2a3x+1与−15x2x+4的和是单项式,则x的值为 3 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求解.【解答】解:根据题意得:3x+1=2x+4,解得:x=3.故答案是:3.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(3分)若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于 5 .【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为x−1413=x+2614【分析】设春游的总人数是x人,根据大巴的载客量做为等量关系列方程求解.【解答】解:设春游的总人数是x 人.根据题意所列方程为x −1413=x +2614, 故答案为:x −1413=x +2614. 【点评】本题考查理解题意的能力,因为同样的大巴,所以以大巴的载客量做为等量关系列方程求解.15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 1710元 .【分析】设该照相机的原售价是x 元,从而得出售价为,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x 元,根据题意得:=1200×(1+14%),解得:x =1710.答:该照相机的原售价是1710元.故答案为:1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x );(2)x −13=2x −32+1 【分析】(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号得,5+3x =10﹣2x ,移项得,3x +2x =10﹣5,合并同类项得,5x =5,系数化为1得,x =1;(2)去分母得,2(x ﹣1)=3(2x ﹣3)+6,去括号得,2x ﹣2=6x ﹣9+6,移项得,2x ﹣6x =﹣9+6+2,合并同类项得,﹣4x =﹣1,系数化为1得,x =14;【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x 2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.【分析】先求出第一个方程的解得x =−13,再根据倒数的定义把x =﹣3代入第二个方程,求出5k =﹣17,然后代入(5k +12)3,计算即可.【解答】解:解方程2﹣3(x +1)=0得:x =−13,−13的倒数为﹣3,把x =﹣3代入方程x +x 2−3k =1﹣2x 得:x −32−3k =1+6, 解得:5k =﹣17,则(5k +12)3=(﹣17+12)3=﹣125.【点评】本题考查了倒数、解一元一次方程、代数式求值,能得出关于k 的方程是解此题的关键.18.(8分)已知x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,求k 的值.【分析】将x =﹣2代入原方程,即可得出关于k 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,∴代入得:﹣4﹣|k ﹣1|=﹣6,∴|k ﹣1|=2,∴k ﹣1=2或k ﹣1=﹣2,解得:k =3或k =﹣1.答:k 的值是3或﹣1.【点评】本题考查了一元一次方程的解,将x =﹣2代入原方程,找出关于k 的含绝对值符号的一元一次方程是解题的关键.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x =4和3x +6=0为“兄弟方程”.(1)若关于x 的方程5x +m =0与方程2x ﹣4=x +1是“兄弟方程”,求m 的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的方程2x +3m ﹣2=0和3x ﹣5m +4=0是“兄弟方程”,求这两个方程的解.【分析】(1)根据新定义运算法则解答;(2)根据“兄弟方程”的定义和已知条件得到:n ﹣(﹣n )=8或﹣n ﹣n =8,解方程即可;(3)求得方程2x +3m ﹣2=0和3x ﹣5m +4=0解,然后由“兄弟方程”的定义解答.【解答】解:(1)方程2x ﹣4=x +1的解为x =5,将x =﹣5代入方程5x +m =0得m =25;(2)另一解为﹣n .则n ﹣(﹣n )=8或﹣n ﹣n =8,∴n =4或n =﹣4;(3)方程2x +3m ﹣2=0的解为x =−3x +22, 方程3x ﹣5m +4=0的解为x =5x −43, 则−3x +22+5x −43=0, 解得m =2.所以,两解分别为﹣2和2.【点评】考查了一元一次方程的解的定义,解题的关键是掌握“兄弟方程”的定义.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人【分析】(1)根据旅行社收费标准,分别求出两家旅行社所需的费用,再比较即可;(2)设带领的小孩有x人,根据这两家旅行社的总费用一样列出方程,求解即可.【解答】解:(1)由题意可得,甲旅行社所需费用为:3×200+×200×2=880(元),乙旅行社所需费用为:×(3+2)×200=800(元),故选择乙旅行社更优惠;(2)设带领的小孩有x人,根据题意得3×200+×200x=×(3+x)×200,解得x=6.答:如果这两家旅行社的总费用一样,那么带领的小孩有6人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b +20b ﹣70|=10,解得,b 1=167,b 2=127, 答:127小时或167小时后两人相距10千米. 【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n 块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n 所满足的条件.【分析】(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求解即可;(2)设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解如果是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a 块金属原料加工螺栓,则用(n ﹣a )块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n 与a 的关系,进而求解即可.【解答】解:(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽. 由题意,可得2×3x =4(20﹣x ),解得x =8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.由题意,可得2×3y =4(26﹣y ),解得y=.由于不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n﹣a),解得a=25 n,则n﹣a=35 n,即n所满足的条件是:n是5的正整数倍的数.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是300元时,甲超市实付款=购物标价×,乙超市实付款=300×,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当一次性购物标价总额是300元时,甲超市实付款=300×=264(元),乙超市实付款=300×=270(元);(2)设当标价总额是x元时,甲、乙超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款=500×=440(元),乙超市实付款=500×=450(元),∵440<450,∴x>500.根据题意得=500×+(x﹣500),解得x=625.答:当标价总额是625元时,甲、乙超市实付款一样;(3)小明两次到乙超市分别购物付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷=220元,第二次购物付款466元,购物标价是(466﹣450)÷+500=520元,两次购物标价之后是198+520=718元,或220+520=740元.若他只去一次该超市购买同样多的商品,实付款500×+(718﹣500)=元,或500×+(740﹣500)=642元,可以节省198+466﹣=元,或198+466﹣642=22元.答:若他只去一次该超市购买同样多的商品,可以节省或22元.【点评】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.¥。

《一元一次方程》单元试卷及答案

《一元一次方程》单元试卷及答案

《一元一次方程》检测试卷班级: 姓名: 成绩:一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( )A. 243x x -=B. 0x =C. 23x y +=D. 11x x-=2.若方程2152x kx x -+=-的解为1-,则的值为( )A. 10B. 4-C.6-D. 8-3.一个两位数的个位数字与十位数字都是,如果将个位数字与十位数字分别加2和1,所得新数比原数大12,则可列的方程是( )A. 2312x +=B. 10310x x ++=C. ()()()10101210x x x x +-+-+=D. ()()10121012x x x x +++=++4. 若方程235x +=,则610x +等于()A.15B.16C.17D.345.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A.0x =B.3x =C.3x =-D.2x = 6.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设xs 后甲可追上乙,则下列四个方程中不正确的是( )A. 7 6.55x x =+B. 75 6.5x x +=C. ()7 6.55x -=D. 6.575x x =-7. 数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是( )A.6B.7C.9D.88.某商人在一次买卖中均以120元卖出两件衣服,一件赚0025,一件赔0025,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定9. 已知:()2135m --有最大值,则方程5432m x -=+的解是x = ( ) A.79 B. 97 C. 79- D. 97- 10.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A.1B.2C.3D.4二、填空题(每小题5分,共20分)11.若52x +与29x -+互为相反数,则2x -的值为 _________.12.已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________. 13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为人x ,可列方程为_________. 14. 商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打_________折.三、解答题(共50分)15.(15分)解下列方程:(1)2(2)3(41)9(1)y y y +--=-;(2)7151322324x x x-++-=-;(3)0.89 1.33511.20.20.3x x x--+-=.16. (8分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h,乙单独做需要4 h,甲先做30 min,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?17.(8分)有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.18.(9分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,求这一天有几名工人加工甲种零件.19. (10分)某地区居民生活用电基本价格为每千瓦时0.4元,若每月用电量超过a千瓦时,70收费.则超过部分按基本电价的00(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费多少元?《一元一次方程》检测试卷参考答案1. B 解析:243x x -=中,未知数的次数是2,所以不是一元一次方程;23x y +=中,有两个未知数,所以不是一元一次方程;D. 11x x -=中,分母中含有未知数,所以不是一元一次方程。

一元一次方程单元测试题(附参考答案)

一元一次方程单元测试题(附参考答案)

一元一次方程单元测试(附参考答案)一、填空题1、1y =是方程()232m y y --=的解,则m = 。

2、若()23340x y -++=,则xy = 。

3、如果21m x-+8=0是一元一次方程,则m= 。

4、若3x -的倒数等于12,则x -1= 。

5、今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。

6、如果方程340x +=与方程3418x k +=是同解方程,则k= 。

7、单项式1414x a b +与9a 2x -1b 4是同类项,则x= 。

8、若52x +与29x -+是相反数,则x -2的值为 。

二、选择题9、下列各式中是一元一次方程的是( )。

A 、1232x y -=- B 、2341x x x -=- C 、1123y y -=+ D 、1226x x-=+ 10、根据“x 的3倍与5的和比x 的13多2”可列方程( )。

A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523xx +=+) 11、解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。

A 、200025101032x x -+= B 、20025100.132x x-+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 12、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。

A 、56 B 、48 C 、36 D 、1213、方程2152x kx x -+=-的解为-1时,k 的值为( )。

A 、10 B 、-4 C 、-6 D 、-814、已知:()2135m --有最大值,则方程5432m x -=+的解是( )7979B C D 9797A --、、、、 15、若关于x 的方程230m mxm --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =16、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。

一元一次方程综合测试卷(word含答案)

 一元一次方程综合测试卷(word含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

(1)求饮用水和蔬菜各有多少件。

(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。

已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。

(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。

该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.4.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.5.为保持水土,美化环境,W中学准备在从校门口到柏油公路的这一段土路的两侧栽一些树,并要求土路两侧树的棵数相等间距也相等,且首、尾两端均栽上树,现在学校已备好一批树苗,若间隔30米栽一棵,则缺少22棵;若间隔35米栽一棵,则缺少14棵. (1)求学校备好的树苗棵数.(2)某苗圃负责人听说W中学想在校外土路两旁栽树的上述情况后,觉得两树间距太大,既不美观,又影响防风固沙的效果,决定无偿支援W中学300棵树苗.请问,这些树苗加上学校自己备好的树苗,间隔5米栽一棵,是否够用?【答案】(1)解:设学校备好的树苗为x棵,依题意,得:30(﹣1)=35(﹣1),解得:x=36.答:学校备好的树苗为36棵.(2)解:由(1)可知,校外土路长840米.若间隔5米栽树,则共需树苗2( +1)=338(棵),300+36=336(棵),∵336<338,∴如果间隔5米栽一棵树,这些树苗不够用.【解析】【分析】(1)设树苗x棵,则根据题意可分别表示出土路的长度分别为30(﹣1)和 35(﹣1),列出方程求解即可;(2)由(1)知校外土路长,再根据间距5米栽一棵,计算出所需总树苗数,通过与已有树苗数比较即可判断是否够用。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

人教版七年级上册数学 一元一次方程单元测试卷 (word版,含解析)

人教版七年级上册数学 一元一次方程单元测试卷 (word版,含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.2.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;3.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。

初中数学一元一次方程练习题60道Word版含解析

初中数学一元一次方程练习题60道Word版含解析
(1)判断3+x=5是不是“商解方程”.
(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.
4.已知关于 的一元一次方程 的解为 ,那么关于 的一元一次方程 的解 =______.
5.(1)
(2)
6.如果方程 的解与方程 的解相同,求式子 的值.
7.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.
(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;
(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;
(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.
35.如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.
16.一项工程,甲单独做需20天完成,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?
17.一艘轮船从甲码头到乙码头顺流而行,用了 ,从乙码头返回甲码头逆流而行,用了 .已知水流的速度是 ,求船在静水中的平均速度.
18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.
10.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.

(word完整版)一元一次方程单元测试题及答案,推荐文档

(word完整版)一元一次方程单元测试题及答案,推荐文档

一、填空题(每题3分,共30分)1.关于x 的方程(k-1)x-3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.3.若x=3是方程2x-10=4a 的解,则a=______. 4.(1)-3x+2x=_______. (2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 6.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 7.某服装成本为100元,定价比成本高20%,则利润为________元. 8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 9.当m 值为______时,453m 的值为0. 10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.二、选择题(每题3分,共30分)11.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D .2y-3=1是一元一次方程12.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13 D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0C .13x-3=1xD .3x-2=4x-714.下列各组方程中,解相同的方程是( )515.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .16 18.解方程1432x x---=1去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1 C .2(x-1)-3(4-x )=6 D .2x-2-12-3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( )A .280千米,240千米B .240千米,280千米C .200千米,240千米D .160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( ) A . 120x=(x+2)x B .1202x x =+ 120120120120.3.322C D x x x x-==+++21.(1)3-6x=-2x+1; (5分) (2)y-2(y-1)=3(y-1); (5分)(3)34 [43(12x-14)-8]= 32x+1;(5分) (4)0.20.110.30.2x x -+-=.(5分)22.(8分)若关于x 的方程2x-3=1和2x k-=k-3x 有相同的解,求k 的值.四、应用题(每题8分,共32分)23.(8分)某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3•间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?24.(8分)如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、•每条对角线上三个数的和相等,问图中的m是多少?25.(8分)已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。

一元一次方程单元测试(含答案)

一元一次方程单元测试(含答案)

第三章一元一次方程单元测试之蔡仲巾千创作班别___________ 姓名____________ 成绩_______________一. 选择题(第小题3分,共30分)1.(3分)下列各式中,是一元一次方程的是()A.﹣=1B.=3C.x2+1=5D.x﹣52.(3分)已知关于x的方程3﹣(a﹣2x)=x+2的解是x=4,则a的值是()A.4B.5C.3D.23.(3分)方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=()A.2B.﹣2C.±1D.±24.(3分)解方程﹣3x+4=x﹣8,下列移项正确的是()A.﹣3x﹣x=﹣8﹣4B.﹣3x﹣x=﹣8+4C.﹣3x+x=﹣8﹣4D.﹣3x+x=﹣8+45.(3分)方程﹣4x=的解是()A.x=﹣2B.x=﹣C.x=﹣8D.x=26.(3分)下列等式变形中不正确的是()A.若x=y,则x+5=y+5B.若=,则x=yC.若﹣3x=﹣3y,则x=yD.若mx=my,则x=y7.(3分)在解方程﹣=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=68.(3分)已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.29.(3分)一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(15﹣x)﹣2B.x+1=(30﹣x)﹣2C.x﹣1=(15﹣x)+2D.x﹣1=(30﹣x)+210.(3分)轮船在静水中速度为每小时20km,水流速度为每小时4km,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.设两码头间的距离为x km,则列出方程正确的是()A.(20+4)x+(20﹣4)x=5B.20x+4x=5C.+D.+二. 填空题(第小题4分,共24分)11.(4分)请写出一个一元一次方程,使得这个方程的解为“x=1”:12.(4分)已知2x﹣6=0,则4x=.13.(4分)若x与9的积等于x与﹣16的和,则x=.14.(4分)定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比方:2⊗5=2×(2﹣5)+1=2×(-3)+1=-6+1=-5.若4⊗x=13,则x=.15.(4分)当k=时,方程kx+4=3﹣2x无解.16.(4分)一件工作,甲队独做10天可以完成,乙队独做可以15天完成.若两队合作2天,然后由乙队单独完成,还需要多少天可以完成剩下的工作?设乙队还需要x天可以完成剩下的工作,列方程为_______________.三. 解答题(共5小题,共46分)17.(12分)解方程:(1)12x+8=8x﹣4(2)x+3=x﹣2(3)4x﹣10=6(x﹣2)(4)﹣=118.(8分)方程x﹣3=的解与关于x的方程2x﹣m=x﹣2的解互为相反数,求m的值.19.(8分)先阅读例1,再仿照例1解方程:|3x﹣4|=5.这就是“整体代换”数学思想方法例1 解方程:|x﹣2|=3解:把x﹣2看作一个整体a,令a=x﹣2,方程可变形为|a|=3,这是“分类讨论”数学思想方法∴a=3 或 a=﹣3即x﹣2=3 或 x﹣2=﹣3当x﹣2=3时,x=5当x﹣2=﹣3时,x=﹣1综上所述,方程的解为x=5或x=﹣1.20.(8分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?21.(10分)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不克不及同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?一元一次方程单元测试参考答案与试题解析一.选择题(共10小题)ABBAB DDCCD二. 填空题(共6小题)11.x﹣1=0 12.12 .13.﹣2 .14. 1 .15.﹣2 16.(+)×2+=1.三. 解答题(共5小题)17.【解答】解:(1)移项合并得:4x=﹣12,解得:x=﹣3;(2)去分母得:8x+36=9x﹣24,移项合并得:﹣x=﹣60,解得:x=60;(3)去括号得:4x﹣10=6x﹣12,移项合并得:﹣2x=﹣2,解得:x=1;(4)去分母得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9.18.【解答】解:解方程x﹣3=x﹣得:x=3,把x=﹣3代入方程2x﹣m=x﹣2得:﹣6﹣m=﹣5,解得:m=﹣1.19.【解答】解:把3x﹣4看作一个整体b,令b=3x﹣4,方程可变形为|b|=5,这是“分类讨论”数学思想方法∴b=5或b=﹣5,即3x﹣4=5或3x﹣4=﹣5.当3x﹣4=5时,x=3;当3x﹣4=﹣5时,x=﹣.综上所述,方程的解为x=3或x=﹣.20.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.21.【解答】解:方案一:∵4500×140=630000(元),∴将食品全部进行粗加工后销售,则可获利润630000元方案二:15×6×7500+(140﹣15×6)×1000=725000(元),∴将食品尽可能多的进行精加工,没来得及加工的在市场上直接销售,则可获利润725000元;方案三:设精加工x天,则粗加工(15﹣x)天.根据题意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的吨数=6×10=60,16×5=80吨.这时利润为:80×4500+60×7500=810000(元)答:该公司可以粗加工这种食品80吨,精加工这种食品60吨,可获得最高利润为810000元.。

七年级数学上册 一元一次方程单元测试卷 (word版,含解析)

七年级数学上册 一元一次方程单元测试卷 (word版,含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.2.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.3.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。

一元一次方程应用题测试卷(含解析答案,纯word,可编辑,完美排版)

一元一次方程应用题测试卷(含解析答案,纯word,可编辑,完美排版)

一元一次方程应用题测试卷姓名____________得分____________1、某数的7倍减去5等于这个数的5倍加上3,设某数为x ,根据题意所列方程是________________.2、若4:3:=ba ,6:7:=cb ,则=c b a ::________________.3、ABC ∆中,,3:2:1::=∠∠∠C B A 那么A ∠的度数是_______,B ∠的的度数是_______,C ∠的的度数是_______.4、某商品的成本价为a 元,现按成本价加七成作为售价,则售价为________________元.5、小王在银行存了1000元,存期5年,年利率为10.8%,到期后可得利息____________元,如果扣除20%的利息税,小王实得本利和是________________元.6、一项工程,甲单独做需要60天,乙单独需要120天,现在两人合作一天可以完成工程的_______________,现在要完成工程的52,需要_______________天.7、一件工作,甲单独做9天完成,甲乙合作需要6天,如果由乙单独做需要_________天可以完成8、船在航海中的问题,船顺水的速度=船在静水中的速度+______________;船逆水的速度=______________-水速.已知船在顺水中的速度是20千米/时,在静水中的速度是18千米/时,那么船在逆水中的速度是______________千米/时.9、甲乙两地相距400千米,一列.慢车从甲站开出每小时32千米,一列快车从乙站开出每小时行48千米,1)两车同时开出相向而行,x 小时后两车相遇,列出方程为______________.2)两车同时开出同向而行,快车在慢车后面,x 小时后快车追上慢车,列出方程为______________.3)两车相背而行,x 小时后相距660千米,列出方程为______________.10、一个两位数,十位数字是个位数字的3倍,如果把这个两位数的十位数字与个位数字对调,得到新两位数比原来的两位数小18,则原来的两位数是______________.11、在同一段路上,某人上坡的速度是a ,下拨速度是b ,那么他的平均速度是______________. 12、解方程33121xx x +-=--; 13、解方程)62.0(5)53.0(2-=+x x ;14、解方程%905%704x x -=- ; 15、解方程1255.09.04.0+-=+x x ;16、已知关于x 的方程a a x =+-5)2(2的根是2-,求a 的值.17、甲、乙、丙三个数的比是5:8:12,甲乙两数之和减去丙数所得的差等于7,求这三个数.18、一份文件,甲打字员单独工作需4小时完成,乙打字员单独工作需8小时,由甲先工作1小时后,甲乙共同完成余下的工作,完成这份工作甲一共工作了几小时?19、汽车以每小时40千米的速度从甲地开往乙地,行3小时后,速度每小时减慢了10千米,因此比预定时间迟到1小时,求甲乙两地的距离?20、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的。

(完整word版)一元一次方程习题精选附答案

(完整word版)一元一次方程习题精选附答案

6.2.4解一元一次方程(三)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣115.(A 类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=32.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式3x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x ﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.。

北师大版七年级上册数学第五章一元一次方程单元测试卷(Word版,含答案)

北师大版七年级上册数学第五章一元一次方程单元测试卷(Word版,含答案)

北师大版七年级上册数学第五章一元一次方程单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.已知a b =,根据等式的性质,可以推导出的是( )A .21a b +=+B .33a b -=-C .232a b -=D .a b c c = 2.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( )A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .55191662x x x ++=B .21191653x x x ++= C .2191635x x x ++= D .25191652x x x ++= 4.若3x =是关于x 的方程5ax b -=的解,则622a b --的值为( )A .2B .8C .-3D .-85.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 6.我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为( )A .25B .75C .81D .907.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x 元,那么依题意所列方程正确的是( )A .70%(1+70%)x =x +38B .70%(1+70%)x =x ﹣38C .70%(1+70%x )=x ﹣38D .70%(1+70%x )=x +388.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =-9.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-10.已知|2|(3)58---=a a x 是关于x 的一元一次方程,则=a ( )A .3或1B .1C .3D .011.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 12.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款( )A .288B .360C .288或316D .360或395。

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案七年级数学上册《一元一次方程单元测试卷》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=52.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣33.(3分)若关于x的一元一次方程A.B.1C.的解是x=﹣1,则k的值是()D.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣XXX5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2C.x+1=(26﹣x)﹣2B.x﹣1=(13﹣x)+2D.x+1=(13﹣x)﹣26.(3分)某市肆有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在此次生意中,这家市肆()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程精确的是()A.x•30%×80%=312C.312×30%×80%=xB.x•30%=312×80%D.x(1+30%)×80%=3128.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同砚做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.20 9.(3分)若2x+1=4,则4x+1等于()第1页(共17页)A.6B.7C.8D.910.(3分)甲比乙大15岁,5年前甲的年岁是乙的年岁的2倍,乙目前年岁是()A.30岁二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是.12.(3分)如果关x的方程值是.13.(3分)轮船沿江从A港顺流行驶到B港,比从B 港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=.15.(3分)关于x的方程=4的解是x=4,则a=.与的解相同,那么m的B.20岁C.15岁D.10岁16.(3分)当x=时,3x+4与4x+6的值相等.17.(3分)如果单项式3a4x+1b2与应分别为.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x=.20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.可以合并为一项,那么x与y的值22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用几何张制瓶身,几何张制瓶底,第2页(共17页)可以恰好制成成套的饮料瓶?23.(10分)收拾整顿一批图书,如果由一个人零丁做要用30h,现先放置一局部人用1h收拾整顿,随后又增长6人和他们一起又做了2h,恰好完成收拾整顿事情.假定每一个人的事情效率相同,那么先放置收拾整顿的职员有几何?24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生XXX同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=.(2)若该用户九月份的均匀电费为0.36元,则九月份共用电千瓦时,应交电费是元.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,该厂家出产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.第3页(共17页)(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的计划中,为使销售利润最多,你选择哪一种进货计划?第4页(共17页)七年级数学上册《一元一次方程》单元测试卷参考答案与试题剖析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只要一项为哪一项吻合问题要求的,将此选项的字母填在答题卡上)1.(3分)以下方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项精确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;应选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是.2.(3分)以下方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣3【分析】方程的解的定义,就是可以使方程摆布两边相等的未知数的值.以是把x=﹣1分别代入四个选项举行检验便可.【解答】解:A、把x=﹣1代入方程的左侧=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左侧=﹣14≠右边,以是不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选:A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.第5页(共17页)3.(3分)若关于x的一元一次方程A.B.1C.的解是x=﹣1,则k的值是()D.【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣XXX﹣=1,【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a ﹣4=0,解得:a=8.故选:D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2C.x+1=(26﹣x)﹣2B.x﹣1=(13﹣x)+2D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量第6页(共17页)关系比较隐藏,要注意仔细审题,耐心寻找.6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数目关系树立方程求出其解便可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1﹣20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元故选:C.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312C.312×30%×80%=xB.x•30%=312×80%D.x(1+30%)×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选:D.【点评】此题考察了由实际问题抽象出一元一次方程,把握找出等量关系是解题的枢纽.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19第7页(共17页)D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同砚做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.应选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)若2x+1=4,则4x+1等于()A.6B.7C.8D.9【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选:B.【点评】此题考察了代数式求值,利用了团体代入的思想,熟练把握运算法例是解此题的枢纽.10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁【分析】本题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,则甲为(x+15)岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x﹣5)岁,由题意得:x+15﹣5=2(x﹣5)解得x=20应选:B.【点评】解题关键是读懂题意,找到合适的等量关系,列出方程.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9.第8页(共17页)【分析】方程去分母,移项合并,把x系数化为1,便可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考察了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程值是±2.【分析】此题中有两个方程,且是同解方程,普通思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程收拾整顿得:15x﹣3=42,解得:x=3,把x=3代入得=x+4+2|m|=与的解相同,那么m的=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺风行驶到B港,比从B 港返回A港罕用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距504km.【分析】根据逆流速率=静水速率﹣水流速率,逆流速率=静水速率+水流速率,表示出逆流速率与逆流速率,根据题意列出方程,求出方程的解便可获得成效.【解答】解:设A港与B港相距xkm,第9页(共17页)根据题意得:解得:x=504,+3=,则A港与B港相距504km.故答案为:504.【点评】此题考察了一元二次方程的应用,找出题中的等量关系是解此题的枢纽.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=1.【分析】根据的绝对值为,得3y﹣2=0,解方程得x,y 的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程【分析】把x=4代入方程【解答】解:把x=4代入方程XXX:a=0.故填.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x=﹣2时,3x+4与4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,XXX:x=﹣2.故填﹣2.【点评】办理此类问题的枢纽是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2与应分别为1和2.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字第10页(共17页)=4的解是x=4,则a=.=4得关于a的方程,再求解即得a的值.=4,得:=4,可以合并为一项,那么x与y的值母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=4.【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题首要考察了一元一次方程解的定义.解答此题的枢纽是熟知方程组有公共解的含义,考察了学生对题意的了解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x=.【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x ﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27.【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一第11页(共17页)个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题枢纽是要读懂问题标意思,根据问题给出的前提,找出合适的数目关系,列出方程,再求解.此题中要熟悉连续奇数的表示办法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,便可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,便可求出解.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;(2)去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,通过理解题意可知本题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.第12页(共17页)【解答】解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.(10分)收拾整顿一批图书,如果由一个人零丁做要用30h,现先放置一局部人用1h收拾整顿,随后又增长6人和他们一起又做了2h,恰好完成收拾整顿事情.假定每一个人的事情效率相同,那么先放置收拾整顿的职员有几何?【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设第一放置收拾整顿的职员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,第13页(共17页)首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k ﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生XXX同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电根本代价为每千瓦时0.40元,若每月用电量跨越a千瓦时,则跨越局部按根本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的均匀电费为0.36元,则九月份共用电90千瓦时,应第14页(共17页)交电费是32.40元.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×XXX(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳跨越800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应征税224元,若王老师获得的稿费为4000元,则应征税440元;(2)若王老师获稿费后征税420元,求这笔稿费是几何元?【分析】本题列出了不同的判断条件,要将本题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:(1)若王老师获得的稿费为2400元,则应征税224元,若王老师获得的稿费为4000元,则应征税440元;第15页(共17页)(2)因为XXX纳税420元,所以由(1)可知XXX的这笔稿费高于800元,而低于4000元,设XXX老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:XXX的这笔稿费为3800元.【点评】解题枢纽是要读懂问题标意思,依据问题给出的不同前提举行判断,然后分类会商,再根据问题给出的前提,找出合适的等量关系,列出方程,求解.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,该厂家出产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则解得:.第16页(共17页),③设购乙种电视机y台,丙种电视机z台.则解得:(分歧题意,舍去);(2)计划一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.。

人教新版2024-2025学年度七年级上册第3章 一元一次方程单元测试卷 [含答案]

人教新版2024-2025学年度七年级上册第3章 一元一次方程单元测试卷 [含答案]

人教新版2024-2025学年度七年级上册第3章一元一次方程单元测试卷一、选择题1.(3分)下列方程是一元一次方程的是( )A.=5x B.x2+1=3x C.y2+y=0D.2x﹣3y=12.(3分)下列说法不正确的是( )A.若x=y,则3﹣x=3﹣y B.若x=y,则0.5x=0.5yC.若﹣4a=﹣4b,则a=b D.若m+5=n﹣5,则m=n3.(3分)方程=1去分母正确的是( )A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=64.(3分)下列解方程过程中,变形正确的是( )A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=65.(3分)已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是( )A.0B.6C.43D.以上答案均不对6.(3分)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后2分钟内,两人相遇的次数为( )A.7B.6C.5D.47.(3分)如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分( )A.43B.43.5C.44D.458.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得( )个馒头A.25B.72C.75D.909.(3分)某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,该家商店( )A.亏损2元B.盈利5元C.亏损5元D.不亏不盈10.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在( )A.点A B.点B C.点C D.点D二、填空题11.(3分)方程2x=3x﹣4的解是x= .12.(3分)若2x﹣3=1与ax﹣3=x+1有相同的解,那么a﹣1= .13.(3分)把黄豆发成豆芽后,质量增加4倍,要得到1000千克豆芽,需要 千克黄豆.14.(3分)在梯形面积公式S=(a+b)•h中,已知S=18,b=2a,h=4,则b= .15.(3分)若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则m= ,这个方程的解是 .16.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打八折销售,则该商品每件销售利润为 元.17.(3分)如图,这是某超市“飘柔”洗发水的价格标签,一位服务员不小心将标签弄脏了,使得原价看不清.请你帮忙算一算,该洗发水的原价是 元.18.(3分)某人将2000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和2080元,这种存款方式的年利率是 .三、解答题19.(8分)解方程:(1)7x﹣9=9x﹣7(2)20.(6分)小强的练习册上有一道方程题,其中一个数字被墨水污染了,成了(﹣+x)=1﹣(“⊙”表示被污染的数字),他翻了书后的答案,知道这个方程的解为x=5,于是他把被污染的数字求了出来,请你把小强的计算过程写出来.21.(8分)本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:解方程:﹣=1解:原方程可化为:﹣=1…………①方程两边同时乘以15,去分母,得3(20x﹣3)﹣5(10x+4)=15…………②去括号,得60x﹣9﹣50x+20=15…………③移项,得60x﹣50x=15+9﹣20……………④合并同类项,得10x=4………………⑤系数化1,得x=0.4………………⑥所以x=0.4原方程的解上述小亮的解题过程从第 (填序号)步开始出现错误,错误的原因是 .22.(8分)已知代数式比大1,求x的值.23.(8分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下:(1)降价前每件衬衫的利润率为多少?(2)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?24.(8分)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?参考答案与试题解析一、选择题1.(3分)下列方程是一元一次方程的是( )A.=5x B.x2+1=3x C.y2+y=0D.2x﹣3y=1【分析】根据一元一次方程的定义对各选项进行逐一分析即可.【解答】解:A、符合一元一次方程的定义,故本选项正确;B、是一元二次方程,故本选项错误;C、是一元二次方程,故本选项错误;D、是一元一次方程,故本选项错误.故选:A.【点评】本题考查的是一元一次方程的定义,即只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.2.(3分)下列说法不正确的是( )A.若x=y,则3﹣x=3﹣y B.若x=y,则0.5x=0.5yC.若﹣4a=﹣4b,则a=b D.若m+5=n﹣5,则m=n【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、根据等式性质2,等式两边都乘以﹣1,再根据等式性质1,两边都加3即可得到3﹣x=3﹣y;B、根据等式性质2,等式两边都乘以0.5,即可得到0.5x=0.5y;C、根据等式性质2,等式两边都除以﹣4,即可得到a=b;D、若m+5=n﹣5,则m=n﹣10.综上所述,故选D.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.3.(3分)方程=1去分母正确的是( )A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=6【分析】根据等式的性质,方程两边同时乘以6,去括号,选出正确的选项即可.【解答】解:﹣=1,方程两边同时乘以6得:3(3x﹣1)﹣2(2x+1)=6,去括号得:9x﹣3﹣4x﹣2=6,故选:D.【点评】本题考查了解一元一次方程,正确掌握等式的性质是解题的关键.4.(3分)下列解方程过程中,变形正确的是( )A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=6【分析】各方程整理得到结果,即可作出判断.【解答】解:A、由2x﹣1=3得2x=3+1,不符合题意;B、由+1=+1.2得+1=+1.2,不符合题意;C、由﹣75x=76得x=﹣,不符合题意;D、由﹣=1得2x﹣3x=6,符合题意,故选:D.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.5.(3分)已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是( )A.0B.6C.43D.以上答案均不对【分析】把y=1代入已知方程求出m的值,即可确定出所求方程的解.【解答】解:把y=1代入方程得:2﹣(m﹣1)=2,去分母得:6﹣m+1=6,解得:m=1,把m=1代入方程得:x﹣3﹣2=1,解得:x=6,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(3分)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后2分钟内,两人相遇的次数为( )A.7B.6C.5D.4【分析】利用时间=路程÷两人的速度之和可求出两人每隔s相遇一次,设两人相遇的次数为x,由运动的总时间为2分钟,即可得出关于x的一元一次方程,解之即可得出x的值,再结合x为整数,即可得出两人相遇的次数为5.【解答】解:设两人相遇的次数为x,依题意得:x=60×2,解得:x=.又∵x为整数,∴x取5.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分( )A.43B.43.5C.44D.45【分析】设长方形的宽为x公分,抽出隔板后之水面高度为h公分,根据题意列出方程,求出方程的解即可.【解答】解:设长方形的宽为x公分,抽出隔板后之水面高度为h公分,长方形的长为130+70=200(公分)130x×40+70x×50=200•x•h,解得:h=43.5,即抽出隔板后之水面高度为43.5公分故选:B.【点评】本题考查了一元一次方程的应用,能根据题意列出方程是解此题的关键.8.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得( )个馒头A.25B.72C.75D.90【分析】设有x个大和尚,则有(100﹣x)个小和尚,根据馒头数=3×大和尚人数+×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设有x个大和尚,则有(100﹣x)个小和尚,依题意,得:3x+(100﹣x)=100,解得:x=25,∴3x=75.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,该家商店( )A.亏损2元B.盈利5元C.亏损5元D.不亏不盈【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用120﹣两件衣服的进价后即可找出结论.【解答】解:设盈利20%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.20x=60,解得:x=50,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣20%y元,列方程y+(﹣20%y)=60,解得:y=75.那么这两件衣服的进价是x+y=125元,而两件衣服的售价为60元.∴120﹣125=﹣5元,所以,这两件衣服亏损5元.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在( )A.点A B.点B C.点C D.点D【分析】根据题意可以得到前几次相遇的地点,从而可以发现其中的规律,进而求得第2018次相遇的地点,本题得以解决.【解答】解:由题意可得,第一次相遇在点D,第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D,……,每四次一个循环,∵2018÷4=504…2,∴第2018次相遇在点C,故选:C.【点评】本题考查数字的变化类,解答本题的关键是明确题意,找出题目中的变化规律.二、填空题11.(3分)方程2x=3x﹣4的解是x= 4 .【分析】方程移项合并,将x系数化为1,即可求出解.【解答】解:方程移项合并得:x=4.故答案为:4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.12.(3分)若2x﹣3=1与ax﹣3=x+1有相同的解,那么a﹣1= 2 .【分析】先求出2x﹣3=1的解,再根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值,然后将其代入求值式即可得到答案.【解答】解:∵2x﹣3=1解得:x=2把x=﹣2代入方程ax﹣3=x+1,得:2a﹣3=2+1,解得:a=3故a﹣1=2.【点评】已知条件中涉及到方程的解,把方程2x﹣3=1的解代入ax﹣3=x+1,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.13.(3分)把黄豆发成豆芽后,质量增加4倍,要得到1000千克豆芽,需要 200 千克黄豆.【分析】设需要x千克黄豆,根据要得到1000千克豆芽,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设需要x千克黄豆,依题意,得:x+4x=1000,解得:x=200.故答案为:200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.(3分)在梯形面积公式S=(a+b)•h中,已知S=18,b=2a,h=4,则b= 6 .【分析】由b=2a可得a=b,将S,a,h的值代入公式计算即可求出b的值.【解答】解:由b=2a得a=b,将S=18,a=b,h=4代入公式得:18=()×4,去分母得:36=,即6b=36,解得:b=6.故答案为:6.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.15.(3分)若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则m= 3 ,这个方程的解是 0 .【分析】根据一元一次方程的定义得出m﹣2=1且m≠0,求出m,代入方程,再求出x即可.【解答】解:∵关于x的方程mx m﹣2﹣m+3=0是一元一次方程,∴m﹣2=1且m≠0,解得:m=3,方程为3x=0,解得:x=0,即方程的解为x=0,故答案为:3,0.【点评】本题考查了一元一次方程的定义和解一元一次方程,能根据一元一次方程的定义求出m的值是解此题的关键.16.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打八折销售,则该商品每件销售利润为 16 元.【分析】设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.【解答】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.8,解得x=16.答:该商品每件销售利润为16元.故答案为16.【点评】本题考查一元一次方程的应用,正确理解题意找到等量关系是解题的关键.17.(3分)如图,这是某超市“飘柔”洗发水的价格标签,一位服务员不小心将标签弄脏了,使得原价看不清.请你帮忙算一算,该洗发水的原价是 24 元.【分析】设该洗发水的原价是x元,根据打七折后为16.8元可列方程求解.【解答】解:设该洗发水的原价是x元,根据题意,得0.7x=16.8,解得x=24.答:该洗发水的原价为24元.故答案为:24.【点评】本题考查一元一次方程的应用,关键知道标价和现价的关系,从而可列方程求解.18.(3分)某人将2000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和2080元,这种存款方式的年利率是 5% .【分析】利用本金×利率×时间=利息,列出一元一次方程,解方程即可.【解答】解:设这种存款方式的年利率为x,根据题意得:2000×x×1×(1﹣20%)=2080﹣2000,解得:x=5%,即这种存款方式的年利率为5%,故答案为:5%.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题19.(8分)解方程:(1)7x﹣9=9x﹣7(2)【分析】(1)移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20.(6分)小强的练习册上有一道方程题,其中一个数字被墨水污染了,成了(﹣+x)=1﹣(“⊙”表示被污染的数字),他翻了书后的答案,知道这个方程的解为x=5,于是他把被污染的数字求了出来,请你把小强的计算过程写出来.【分析】根据方程的解满足方程,可得关于⊙,根据解方程,可得答案.【解答】解:将x=5代入(﹣+x)=1﹣,得(﹣2+5)=1﹣(1﹣⊙/5),1=⊙/5解得⊙=5.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于⊙的方程是解题关键.21.(8分)本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:解方程:﹣=1解:原方程可化为:﹣=1…………①方程两边同时乘以15,去分母,得3(20x﹣3)﹣5(10x+4)=15…………②去括号,得60x﹣9﹣50x+20=15…………③移项,得60x﹣50x=15+9﹣20……………④合并同类项,得10x=4………………⑤系数化1,得x=0.4………………⑥所以x=0.4原方程的解上述小亮的解题过程从第 ③ (填序号)步开始出现错误,错误的原因是 利用乘法分配律时负数乘以正数积为负 .【分析】找出题中的错误,分析原因即可.【解答】解:从第③步出错,错误原因是:利用乘法分配律时负数乘以正数积为负,故答案为:③;利用乘法分配律时负数乘以正数积为负【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(8分)已知代数式比大1,求x的值.【分析】根据题意列出关于x的一元一次方程,再根据解方程的步骤依次计算可得.【解答】解:根据题意得﹣=1,5(3x+1)﹣2(2x﹣8)=10,15x+5﹣4x+16=10,15x﹣4x=10﹣5﹣16,11x=﹣11,x=﹣1.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.23.(8分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下:(1)降价前每件衬衫的利润率为多少?(2)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【分析】(1)根据利润率公式计算即可求解;(2)每件衬衫降价x元时,销售完这批衬衫正好达到盈利45%的预期目标,根据销售收入﹣进货成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)(120﹣80)÷80×100%=40÷80×100%=50%.故降价前每件衬衫的利润率为50%;(2)设每件衬衫降价x元时,销售完这批衬衫正好达到盈利45%的预期目标,根据题意得:120×400+(120﹣x)×(500﹣400)﹣80×500=80×500×45%,解得:x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(8分)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?【分析】(1)先根据一个人操作采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,求出一个人手工采摘棉花的效率,再乘以工作时间8小时,即可求解;(2)根据一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,列出关于a的方程,解方程即可;(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,由“采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元”列出方程解答.【解答】解:(1)35÷3.5×8=80(公斤);(2)7.5×8×10×a=900解得a=1.5(元);(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴8×10×1.5×x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).【点评】本题考查了一元一次方程及列代数式在实际生产与生活中的应用,抓住关键语句,找出等量关系是解题的关键,本题难度适中.。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题一、选择题(40分)1.在方程4x-y=0, x+1x-2=0,-2x=1,x2-2x+7=0中一元一次方程的个数为(A)A.1个B.2个C.3个D.4个2.解方程x2-1=x-13时,去分母正确的是(B)A.3x-3=2x-2B.3x-6=2x-2C.3x-6=2x-1D.3x-3=2x-1 3.方程x-2=2-x的解是(C)A.x=1B.x= - 1C.x=2 D.x=04.如果等式ax=bc成立,则下列等式成立的是(D)A.abx=abc ;B.x= bca; C.b-ax=a-bc D.b+ax=b+bc5.增加2倍的值比扩大5倍少3,列方程得(D)A.2x=5x+3B.2x=5x-3C.3x=5x+3D.3x=5x-36.方程3a10+2x+42=4(x-1)的解为x=3,则a的值为(C)A.2;B.22;C.10;D.-27.已知a≠1,则关于x的方程(a-1)x=1-a的解是(C)A.x=0B.x=1C.x=- 1D.无解8.对∣x-2∣+3=4,下列说法正确的是(D)A.不是方程;B.是方程,其解为1;C.是方程,其解为3;D.是方程,其解为1、3。

9.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。

若经过x 个月后,两厂库存钢材相等,则x =(A)A.3;B.5;C.2;D.410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(C)。

A.80元;B.85元;C.90元;D.95元二、填空题(48分)11.代数式-2a+1与1+4a 互为相反数,则a= -112.如果 - 3x 2a+1+6=0是一元一次方程,那么a= 0 ,方程的解为x= 2 。

13.若x= -4是方程ax 2-6x-8=0的一个解,则a= -1 。

14.如果5a 2b -3(2m+1)与-3a 2b 2(m+3)是同类项,则m= - 98。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

2.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.3.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。

由已知得15x+35(100-x)=2700解得x=40答:购进甲商品40件,乙商品60件。

(2)解:设:购进甲商品x件,购进乙商品(100-x)件。

利润W=5x+10(100-x)根据题意可得5x+10(100-x)≤760和x≤50;解得48≤x≤50,∴进货方案有三种①甲48件,乙52件,②甲49件,乙51件③甲50件,乙50件(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)第二天:打折,打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)答:购买甲商品10件,乙商品8件或者9件。

【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可4.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅行社,这家旅行社报价为4000元/人,但根据具体报名情况推出了优惠举措:人数10人及以下(含10人)超过10人不超过20人的部分超过20人的部分收费标准原价(不优惠)3500元/人3000元/人(2)在(1)问前提下,后来又有部分同学要求参加,设这部分同学加入后总共参与旅游的人数为人,若总人数还是不超过20人,则总费用为________元;若总人数超过了20人,则总费用为________元;(结果均用含的代数式表示)(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游?【答案】(1)50500(2);(3)解:,显然 .①若,则;(不合题意,舍去)②若,则;答:共有25人参加了本次旅游【解析】【解答】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2)根据题意得,①若总人数x还是不超过20人,则总费用为:4000×10+3500(x-10)=3500x+5000(元);②若总人数x超过了20人,则总费用为:4000×10+3500(20-10)+3000(x-20)=3000x+15000(元)故答案为:(3500x+5000);(3000x+15000)【分析】(1)根据优惠措施,旅游13人的总费用为:其中10人按4000元/人算,另3人按3500元/人计算;(2)分两种情况解答:①不超过20人时,总费用=10×400+3500×(x-10);②超过20人时总费用=10×4000+3500×10+3000×(x-20);(3)先判断出x>10,然后分两种情况解答:①当时,②当时,5.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?【答案】(1)解:设两厂同时处理每天需xh完成,根据题意,得(55+45)x=700,解得x=7.答:甲、乙两厂同时处理每天需7 h.(2)解:设安排甲厂处理y h,根据题意,得550y+495× ≤7370,解得y≥6.∴y的最小值为6.答:至少安排甲厂处理6 h.【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.6.定义:若一个关于x的方程的解为,则称此方程为“中点方程”.如:的解为,而;的解为,而 .(1)若,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;(2)若关于x的方程是“中点方程”,求代数式的值.【答案】(1)解:没有符合要求的“奇异方程”,理由如下:把代入原方程解得:x= ,若为“中点方程”,则x= ,∵≠ ,∴不符合“中点方程”定义,故不存在(2)解:∵,∴(2a-b)x+b=0.∵关于x的方程是“中点方程”,∴x= =a.把x=a代入原方程得:,∴ =【解析】【分析】(1)把代入原方程解得:x= ,若为“中点方程”,则x=,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到, = ,整体代入即可. 7.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.若 ,则 ________;若 ,则 ________;(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.【答案】(1)0;4(2)解:点表示的数是,理由如下:设点表示的数是,则点表示的数是则由题意解得(3)或【解析】【解答】(1)∵由题意得a-1=1-b,∴当a=2, 则2-1=1-b, 解得b=0;当a=-2,则-2-1=1-b, 解得b=4.(3)解:设点表示的数是,则点表示的数是则由题意表示的数是,表示的数是,表示的数是,表示的数是,…又表示的数是,表示的数是,表示的数是,表示的数是=m+8-4×1 ,…,,即,解得【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.8.如图,面积为30的长方形OABC的边OA在数轴上,O为原点,OC=5.将长方形OABC 沿数轴水平移动,O,A,B,C移动后的对应点分别记为O1, A1, B1, C1,移动后的长方形O1A1B1C1与原长方形OABC重叠部分的面积记为S(1)当S恰好等于原长方形面积的一半时,数轴上点A1表示的数是多少?(2)设点A的移动距离AA1=x①当S=10时,求x的值;②D为线段AA.的中点,点E在线段OO1上,且OE= OO1,当点D,E所表示的数互为相反数时,求x的值.【答案】(1)解:∵S长方形OABC=OA·OC=30,OC=5,∴OA=6,∴点A表示的数是6,∵S=S长方形OABC=×30=15,①当向左移动时,如图1:∴OA1·OC=15,∴OA1=3,∴A1表示的数是3;②当向右移动时,如图2:∴O1A·AB=15,∴O1A=3,∵OA=O1A1=6,∴OA1=6+6-3=9,∴A1表示的数是9;综上所述:A1表示的数是3或9.(2)解:①由(1)知:OA=O1A1=6,OC=O1C1=5,∵AA1=x,∴OA1=6-x,∴S=5×(6-x)=10,解得:x=4.②如图1,∵AA1=x,∴OA1=6-x,OO1=x,∴OE=OO1=x,∴点E表示的数为-x,又∵点D为AA1中点,∴A1D=AA1=x,∴OD=OA1+A1D=6-x+x=6-x,∴点D表示的数为6-x,又∵点E和点D表示的数互为相反数,∴6-x-x=0,解得:x=5;如图2,当原长方形OABC向右移动时,点D、E表示的数都是正数,不符合题意.【解析】【分析】(1)根据长方形的面积可得OA长即点A表示的数,在由已知条件得S=15,根据题意分情况讨论:①当向左移动时,②当向右移动时,根据长方形面积公式分别计算、分析即可得出答案.(2)①由(1)知:OA=O1A1=6,OC=O1C1=5,由AA1=x得OA1=6-x,由长方形面积公式列出方程,解之即可.②当向左移动时,由AA1=x得OA1=6-x,OO1=x,根据题意分别得出点E、点D表示的数,由点E和点D表示的数互为相反数列出方程,解之即可;当向右移动时,点D、E表示的数都是正数,不符合题意.9.某服装厂计划购进某种布料做服装,已知米布料能做件上衣,米布料能做件裤子.(1)一件上衣的用料是一条裤子用料的多少倍;(2)这种布料是按匹购买的,每匹布料是将这种厚度为布料卷在直径为的圆柱形轴上,卷完布后的圆柱直径为D=20cm,其形状和尺寸如图所示,为使一匹布料所做的上衣和裤子刚好配成套,应分别用多少米的布料生产上衣和裤子(π取3)? (3)在(2)的条件下,一件上衣用料1米,服装厂要生产1000套,则需采购这样的布料多少匹?【答案】(1)解:由题意可得:• 1.5.答:一件上衣的用料是一条裤子用料的1.5倍(2)解:一匹布的长度=100π+100.8π+101.6π+...+200π≈3×(100+100.8+101.6+...+200)=3×=56700mm=56.7m.设应用x米的布料生产上衣,则用(56.7-x)米的布料生产裤子,根据题意得:x=1.5 (56.7-x)解得:x=34.02(米)≈34(米)当x=34时,56.7-x=22.7(米)答:应用34米的布料生产上衣,则用22.7米的布料生产裤子.(3)解:1000÷34≈29.4≈30(匹)答:需采购这样的布料30匹.【解析】【分析】(1)求一件上衣的用料是一条裤子用料的多少倍,应先把各自的用料多少表示出来.一件上衣的用料是:;一条裤子用料是:;将两个式子相除即可;(2)先求出一匹布的长度,然后根据一件上衣的用料是一条裤子用料的 1.5倍列方程求解即可;(3)由(2)可得一匹布生产衣服裤子的套数,用总套数÷一匹布生产衣服裤子的套数即可得到答案.10.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为________.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由。

相关文档
最新文档