高考物理动量冲量精讲精练爆炸及反冲问题

合集下载

课标通用版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动精练含解析

课标通用版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动精练含解析

课标通用版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动精练含解析第2讲动量守恒定律碰撞爆炸反冲运动A组基础过关1.(2019甘肃兰州月考)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示。

则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒答案 C 动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒。

子弹射入木块瞬间有部分机械能转化为内能,故系统机械能不守恒。

只有选项C正确。

2.(多选)如图所示,在水平光滑地面上有A、B两个木块,A、B之间用一轻弹簧连接。

A靠在墙壁上,用力F向左推B使两木块之间弹簧压缩并处于静止状态。

若突然撤去力F,则下列说法中正确的是( )A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒答案BC 撤去F后,木块A离开墙壁前,竖直方向两木块及弹簧组成的系统所受的重力与支持力平衡,合力为零;而水平方向墙对A有向右的弹力,所以系统所受的合外力不为零,系统的动量不守恒,但系统的机械能守恒,故A错误,B正确。

A离开墙壁后,系统水平方向不受外力,竖直方向外力平衡,所以系统所受的合外力为零,系统的动量守恒,因弹簧弹力属于系统内力,则系统机械能也守恒,故C正确,D错误。

3.如图所示,一质量M=3.0kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。

给A和B以大小均为4.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B。

高三物理碰撞爆炸与反冲

高三物理碰撞爆炸与反冲

碰撞、爆炸与反冲要点一 碰撞即学即用1.如图所示,在光滑水平面上有直径相同的a 、b 两球,在同一直线上运动.选定向右为正方向, 两球的动量分别为p a =6 kg ·m/s 、p b =-4 kg ·m/s.当两球相碰之后,两球的动量可能是( )=-6 kg ·m/s 、p b =4 kg ·m/s =-6 kg ·m/s 、p b =8 kg ·m/s =-4 kg ·m/s 、p b =6 kg ·m/s=2 kg ·m/s 、p b =0答案 C#要点二 爆炸与反冲即学即用2.抛出的手雷在最高点时的水平速度为10 m/s,这时突然炸成两块,其中大块质量300 g 仍按原方向飞行,其速度测得为50 m/s,另一小块质量为200 g,求它的速度的大小和方向. 答案 50 m/s与原飞行方向相反题型1 反冲问题【例1】如图所示(俯视图),一玩具车携带若干质量为m 1的弹丸,车和弹丸的总质量为m 2,在 半径为R 的水平光滑固定轨道上以速率v 0做匀速圆周运动.若小车每运动一周便沿运动方向}相对地面以恒定速度u 发射一枚弹丸.求:(1)至少发射多少颗弹丸后小车开始反向运动(2)小车反向运动前发射相邻两枚弹丸的时间间隔的表达式. 答案 (1)um m 102v(2)Δt=u km m km m R 10212)(π2--v (k=1,2,3,…且k<um m 102v)题型2 碰撞问题【例2】某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示.用完全相同的轻 绳将N 个大小相同、质量不等的小球并列悬挂于一水平面,球间有微小间隔,从左到右,球的编 号依次为1、2、3……N,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正~碰.(不计空气阻力,忽略绳的伸长,g 取10 m/s 2)(1)设与n+1号球碰撞前,n 号球的速度为v n ,求n+1号球碰撞后的速度.(2)若N=5,在1号球向左拉高h 的情况下,要使5号球碰撞后升高16h (16h 小于绳长),问k 值为多少 答案 (1)12+k v n(2)2-1题型3 碰撞模型【例3】如图甲所示,A 球和木块B 用细绳相连,A 球置于平台上的P 点,木块B 置于斜面底端的Q 点上,均处于静止,细绳呈松驰状态.一颗水平射来的子弹击入A 球中没有穿出,在极短时间内细绳被绷紧,A 球继续向右紧贴平台运动,然后滑入半径R 的半圆形槽中,当A 球沿槽壁滑至槽的最低点C 时,木块B 沿斜面向上的位移大小为L,如图乙;设所有接触面均光滑且空气阻力可忽略,平台表面与槽底C 的高度差为H,子弹质量为m,射入A 球前速度为v 0,木块B 的质量为2m,A 球的质量为3m,A 、B 均可视为质点,求:《(1)子弹击入A 球过程,子弹的动能损失了多少 (2)细绳绷紧时,木块具有多少动能 (3)A 球滑至最低点C 时,木块具有多少动能 答案 (1)3215mv 02(2)361mv 02 (3)30)4(1220v m mg L H +-1.如图所示,木块A静止于光滑的水平面上,其曲面部分MN光滑,水平部分NP是粗糙的,现有一物体B自M点由静止下滑,设NP足够长,则以下叙述正确的是()、B物体最终以不为零的速度共同运动~物体先做加速运动,后做减速运动,最终做匀速运动C.物体A、B构成的系统减少的机械能转化为内能物体减少的机械能等于A物体增加的动能答案C2.(2009·岳阳模拟)如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m1和m2.图乙为它们碰撞前后的s-t图象.已知m1= kg.由此可以确定下列正确的是()A.碰前m2静止,m1向右运动B.碰后m2和m1都向右运动—C.由动量守恒可以算出m2= kgD.碰撞过程中系统损失了J的机械能答案AC3.如图所示,在光滑的水平面上,有两块质量均为200 g的木块A、B靠在一起,现有质量为20 g的子弹以700 m/s的速度水平射入木块A,在穿透木块A的过程中,木块A与B是紧靠着的.已知子弹穿出B 后的速度为100 m/s,假定子弹分别穿透A和B时克服阻力做功完全相等.求:(1)子弹穿透A时的速度多大(2)最终A、B的速度各多大答案(1)500 m/s (2)10 m/s 50 m/s4.在光滑水平面上有一质量m1=20 kg的小车,通过一根不可伸长的轻绳与另一质量为m2=25 kg的拖车相连接,拖车的平板上放一质量为m 3=15 kg 的物体,物体与平板间的动摩擦因数为μ=.开始时拖车静止,绳没拉紧,如图所示.$当小车以v 0=3 m/s 的速度前进后,带动拖车运动,且物体不会滑下拖车.求:(1)m 1、m 2、m 3最终的运动速度. (2)物体在拖车平板上滑动的距离. 答案 (1)1 m/s(2)31m1.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上, 底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑 ( )!A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处 答案 C2.如图所示,一根足够长的水平滑杆SS ′上套有一质量为m 的光滑金属圆环,在滑杆的正下方与其平行放置一足够长的光滑水平的绝缘轨道PP ′,PP ′穿过金属环的圆心.现使质量为M 的条形磁铁以水平速度v 0沿绝缘轨道向右运 动,则( )>A.磁铁穿过金属环后,两者将先、后停下来B.磁铁将不会穿越滑环运动C.磁铁与圆环的最终速度nM M +0v D.整个过程最多能产生热量)(2m M Mm+v 02答案 CD3.一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示. 下列说法正确的是( )A.半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B.半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C.半圆槽固定不动时,物体M 在滑动过程中机械能守恒D.半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒【答案 ABC4.矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,如图所示,质量 为m 的子弹以速度v 水平射入滑块,若射击上层,则子弹刚好不穿出;若射击下层,整个子弹刚 好嵌入,则上述两种情况相比较( )A.两次子弹对滑块做的功一样多B.两次滑块受的冲量一样大C.子弹嵌入下层过程中克服阻力做功较少D.子弹射入上层过程中系统产生的热量较多答案 AB5.(2009·常德模拟)如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞.A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 ( )、开始运动时的速度等于v 时 的速度等于零时和B 的速度相等时答案 D6.一小型爆炸装置在光滑、坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是( ) A.总动量守恒B.机械能守恒C.水平方向动量守恒D.竖直方向动量守恒答案 C7.在光滑水平地面上有两个相同的弹性小球A 、B,质量都为m,现B 球静止,A 球向B 球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E p ,则碰前A 球的速度等于( ) A.mE p B.mE p 2mE pmE p 2答案 C。

高三物理 动量冲量精讲精练 爆炸及反冲问题

高三物理 动量冲量精讲精练 爆炸及反冲问题

爆炸及反冲问题1.爆炸现象的三条规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于系统受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位置不变:爆炸和碰撞的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.2.反冲的两条规律(1)总的机械能增加:反冲运动中,由于有其他形式的能量转变为机械能,所以系统的总机械能增加.(2)平均动量守恒若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m 1错误!1-m 2错误!2=0,得m 1x 1=m 2x 2。

该式的适用条件是:①系统的总动量守恒或某一方向的动量守恒.②构成系统的m 1、m 2原来静止,因相互作用而运动.③x 1、x 2均为沿动量守恒方向相对于同一参考系的位移.例题1.我国发现的“神舟十一号"飞船与“天宫二号"空间站实现了完美对接.假设“神舟十一号"到达对接点附近时对地的速度为v ,此时的质量为m ;欲使飞船追上“天宫二号”实现对接,飞船需加速到v 1,飞船发动机点火,将质量为Δm 的燃气一次性向后喷出,燃气对地向后的速度大小为v 2。

这个过程中,下列各表达式正确的是( )A .mv =mv 1-Δmv 2B .mv =mv 1+Δmv 2C .mv =(m -Δm )v 1-Δmv 2D .mv =(m -Δm )v 1+Δmv 2解析:选C.飞船发动机点火喷出燃气,由动量守恒定律,mv =(m -Δm )v 1-Δmv 2,选项C 正确.例题2.在静水中一条长l 的小船,质量为M ,船上一个质量为m 的人,当他从船头走到船尾,若不计水对船的阻力,则船移动的位移大小为( )A.错误!lB .错误!lC 。

高考物理动量冲量精讲精练爆炸反冲碰撞动量能量综合练习题

高考物理动量冲量精讲精练爆炸反冲碰撞动量能量综合练习题

爆炸反冲碰撞动量能量1.如图所示,在光滑水平面上质量分别为的A、B 两小球沿同一直线相向运动( )A.它们碰撞前的总动量是B.它们碰撞后的总动量是C.它们碰撞前的总动量是D.它们碰撞后的总动量是18 kg ·m/s,方向水平向右18 kg ·m/s,方向水平向左2 kg · m/s,方向水平向右2 kg · m/s,方向水平向左解析:选 C.它们碰撞前的总动量是 2 kg ·m/s,方向水平向右,A、B相碰过程中动量守恒,故它们碰撞后的总动量也是 2 kg ·m/s,方向水平向右,选项C正确.2. 一枚火箭搭载着卫星以速率v0 进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2 沿火箭原方向飞行,若忽略空气阻力及分离要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即选项正确.4.(多选) 如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球 a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确m A=2 kg 、m B=4 kg ,速率分别为v A=5 m/s 、v B=2 m/s 前后系统质量的变化,则分离后卫星的速率v1 为()A.v0-v2 B.v0+v2m2C.v0-v2mm2D.v0+m(v 0-v)解析:选 D. 由动量守恒定律得(m1+m2)v 0=m1v1+m2v2得v1=v0+(v0-v2).3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p1= 5 kg· m/s,p2=7 kg· m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg ·m/s,则二球质量m1与m2 间的关系可能是下面A.m1=m2 B.2m1=m2C.4m1=m2 D.6m1=m2解析:选 C. 甲、乙两球在碰撞过程中动量守恒,所以有:p1+p2=p1′+p2′,即:p1′= 2 kg·m/s. 由于在碰撞过程中,不可能有其它形式的能量转化为机械能,分机械能转化为内能,因此系统的机械能不会增加.所以有只能是系统内物体间机械能相互转化或一部222m1+2m2≥22p1′ p2′1+2,所以有:212m1 m1≤51m2,为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有pm1> p m2,即m1<57m2;同时还p1m′<p2m′,所以m1> 15m2.因此 C的是 ( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置解析:选 AD.两球在碰撞前后,水平方向不受外力,故水平两球组成的系统动量守恒,由动量守恒定v 2 = 2 ,可见第一次碰撞后的瞬间,两球的速度大小相等,选项 A 正确;因两球质量不相等,故两球碰后 的动量大小不相等,选项 B 错;两球碰后上摆过程,机械能守恒,故上升的最大高度相等,因摆长相等, 故两球碰后的最大摆角相同,选项 C 错;两球摆动周期相同,故经半个周期后,两球在平衡位置处发生第二次碰撞,选项 D 正确.5. ( 多选 )在质量为 M 的小车中挂有一单摆,摆球的质量为 m 0,小车和单摆以恒定的速度 v 沿光滑水平地面运动,与位于正对面的质量为 m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪 些情况说法是可能发生的 ( )A .小车、木块、摆球的速度都发生变化,分别变为 v 1、v 2、v 3,满足 (M + m 0)v =Mv 1+mv 2+m 0v 3B .摆球的速度不变,小车和木块的速度变化为 v 1和 v 2,满足 Mv =Mv 1+mv 2C .摆球的速度不变,小车和木块的速度都变为 v 1,满足 Mv = (M +m )v 1D .小车和摆球的速度都变为 v 1,木块的速度变为 v 2,满足 (M +m 0)v =(M +m 0)v 1+mv 2 解析:选 BC.在小车 M 和木块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起 以共同速度 v 匀速运动时,摆线沿竖直方向,摆线对球的拉力和球的重力都与速度方向垂直,因而摆球未 受到水平力作用,球的速度不变,可以判定A 、 D 项错误;小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能 发生,即 B 、 C 选项正确.6.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量 M =3.0kg ,质量 m =1.0 kg 的铁块以水平速度 v 0= 4.0 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端,则在上述过程中弹簧具有的最大弹性势能为 ( )A .4.0 J律有: mv 0= mv 1+ 3mv 2;又两球碰撞是弹性的,故机械能守恒,即 1 2 1 2 1 22mv 0= 2mv 1+ 23mv 2,解两式得:B .6.0 Jv 0C .3.0 JD .20 J解析:选 C. 设铁块与木板速度相同时,共同速度大小为 大路程为 L ,摩擦力大小为 F f ,根据能量守恒定律得铁块相对于木板向右运动过程1 2 1 22mv 0= F f L + 2(M + m)v +E p铁块相对于木板运动的整个过程1 2 1 22mv 02= 2F f L + 2(M + m)v 2又根据系统动量守恒可知, mv 0= (M +m)v 联立得到: E p =3.0 J ,故选 C.7.如图所示 A 、 B 两个物体粘在一起以 v 0=3 m/s 的速度向右 间有少量炸药,经过 O 点时炸药爆炸,假设所有的化学能全部转化 物体的动能且两物体仍然在水平面上运动,爆炸后A 物体的速度依变为 v A =2 m/s , B 物体继续向右运动进入半圆轨道且恰好通过最高圆轨道光滑无摩擦,求:(1) 炸药的化学能 E ;(2) 半圆弧的轨道半径 R.解析: (1)A 、 B 在爆炸前后动量守恒,得 2mv 0= mv A + mv B ,解得 v B =4 m/s 根据系统能量守恒有:1 2 1 2 1 22(2m)v 02+ E = 2mv 2A + 2mv 2B , 解得 E =1对 O 到 D 的过程根据动能定理可得:1212-μmgx OC -mg ·2R = 2mv D - 2mv B联立解得 R =0.3 m. 答案: (1)1 J (2) 0.3 m8.冰球运动员甲的质量为 80.0 kg. 当他以 5.0 m/s 的速度向前运动时,与另一质量为 100 kg 、速度 为 3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1) 碰后乙的速度的大小; (2) 碰撞中总机械能的损失.解析:(1) 设运动员甲、 乙的质量分别为 m 、M ,碰前速度大小分别为 v 和 v 1,碰后乙的速度大小为v 1′, 由动量守恒定律得mv - Mv 1= Mv 1′①代入数据得 v 1′= 1.0 m/s ②v ,铁块相对木板向右运动时,相对滑行的最 物体的质量 m A = m B =1 kg , O 点到半圆最低点 C 的距离 x OC =0.25 m ,水平轨道的动摩擦因数 μ= 0.2 ,半J.(2) 由于 B 物体恰好经过最高点,故有2 vDmg = mR运动,物体中 为 A 、B 两个 然向右,大小 点 D ,已知两(2) 设碰撞过程中总机械能的损失为ΔE,有1 2 1 2 1 22mv2+2Mv12=2Mv1′2+ΔE③联立②③式,代入数据得ΔE=1 400 J.答案:(1)1.0 m/s (2)1 400 J9.如图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m ,A 球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t =0.3 s 时,刚好与B球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:弹簧拴接静止在水平面上,弹簧右端固定.质量为3m的物块A从圆弧轨道上距离水平面高h 处由静止释放,与 B 碰撞后推着 B 一起运动但与 B 不粘连.求:(1) 弹簧的最大弹性势能;(2)A 与 B 第一次分离后,物块A沿圆弧面上升的最大高度.解析:(1)A 下滑与 B 碰撞前,根据机械能守恒得123mgh=2× 3mv1A 与B 碰撞,根据动量守恒得3mv1=4mv2弹簧最短时弹性势能最大,系统的动能转化为弹性势能1 2 9根据能量守恒得E pmax=2× 4mv21 2 3 4 5 6 7 8=4mgh(2) 根据题意, A 与 B 分离时 A 的速度大小为v2A与B分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh′=21× 3mv22解得h′=196h99答案:(1) 4mgh (2) 16h11. 如图所示,质量为M的平板车P高为h,质量为m的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量为m的小球(大小不计) .今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无机械能损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P 之1 小物块Q 离开平板车时,二者速度各为多大?2 平板车P 的长度为多少?3 小物块Q落地时与小车的水平距离为多少?解析:(1) 设小球与Q 碰前的速度为v0,小球下摆过程机械能守恒:12mgR(1-cos 60 °) =2mv0v0=gR小球与Q进行弹性碰撞,质量又相等,二者交换速度.小物块Q在平板车P上滑动的过程中,Q与P 组成的系统动量守恒:间的动摩擦因数为μ,已知质量M∶m=4∶1,重力加速度为g,求:mv 0= mv 1+ Mv 2解得: v 1= 3gR ,v 2= 6gR .(2) 对系统由能量守恒:Q 落地时二者相距: s =(v 1-v 2)t = 2Rh .6其中 v 2= 12v 1,M = 4m ,1212122mv 0= 2mv 1+2Mv 2+ μ mgL ,解得:7RL =18μ.(3)Q 脱离 P 后做平抛运动,由答案: (1) 3gR 6gR (2) 7R18μ(3)2Rh 6高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

高考物理总复习 第六章 02 第2讲 动量守恒定律 碰撞 爆炸 反冲运动精练(含解析)

高考物理总复习 第六章 02 第2讲 动量守恒定律 碰撞 爆炸 反冲运动精练(含解析)

第2讲动量守恒定律碰撞爆炸反冲运动A组基础过关1.(2019甘肃兰州月考)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示。

则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒答案 C 动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒。

子弹射入木块瞬间有部分机械能转化为内能,故系统机械能不守恒。

只有选项C正确。

2.(多选)如图所示,在水平光滑地面上有A、B两个木块,A、B之间用一轻弹簧连接。

A靠在墙壁上,用力F向左推B使两木块之间弹簧压缩并处于静止状态。

若突然撤去力F,则下列说法中正确的是( )A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒答案BC 撤去F后,木块A离开墙壁前,竖直方向两木块及弹簧组成的系统所受的重力与支持力平衡,合力为零;而水平方向墙对A有向右的弹力,所以系统所受的合外力不为零,系统的动量不守恒,但系统的机械能守恒,故A错误,B正确。

A离开墙壁后,系统水平方向不受外力,竖直方向外力平衡,所以系统所受的合外力为零,系统的动量守恒,因弹簧弹力属于系统内力,则系统机械能也守恒,故C正确,D错误。

3.如图所示,一质量M=3.0kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。

给A和B以大小均为4.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B。

2020年高考物理一轮复习专题6.2 碰撞、反冲与动量守恒定律的应用(精讲)(解析版)

2020年高考物理一轮复习专题6.2 碰撞、反冲与动量守恒定律的应用(精讲)(解析版)

专题6.2 碰撞、反冲与动量守恒定律的应用1.理解动量守恒定律的确切含义,知道其适用范围。

2.掌握动量守恒定律解题的一般步骤。

3.会应用动量守恒定律解决一维运动有关问题。

知识点一 动量守恒定律及其应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.(2)动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′或Δp 1=-Δp 2.2.系统动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.知识点二 碰撞1.概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类 种类动量是否守恒 机械能是否守恒 弹性碰撞守恒 守恒 非弹性碰撞守恒 有损失 完全非弹性碰撞守恒 损失最大 【拓展提升】1.弹性碰撞后速度的求解根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ②解得v 1′=1212212()2m m v m v m m -++ v 2′=2121112()2m m v m v m m -++ 2.弹性碰撞分析讨论当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度。

当碰前物体2的速度为零时,v 2=0,则:v 1′=12112()m m v m m -+,v 2′=2m 1v 1m 1+m 2, (1)m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度。

高二物理 爆炸、碰撞和反冲专题

高二物理 爆炸、碰撞和反冲专题

爆炸、碰撞和反冲专题●1.碰撞过程是指:作用时间很短,作用力大.碰撞过程两物体产生的位移可忽略.●2.爆炸、碰撞和反冲动量近似守恒:有时尽管合外力不为零,但是内力都远大于外力,且作用时间又非常短,所以合外力产生的冲量跟内力产生冲量比较都可忽略,总动量近似守恒. ●3.三种碰撞的特点:(1)弹性碰撞——碰撞结束后,形变全部消失,末态动能没有损失.所以,不仅动量守恒,而且初、末动能相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '222221122112211112222''+=+m v m v m v m v (2)一般碰撞——碰撞结束后,形变部分消失,动能有部分损失.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '2222211212211112222''+=+m v m v m v m v +ΔE K 减 (3)完全非弹性碰撞——碰撞结束后,两物体合二为一,以同一速度运动;形变完全保留,动能损失最大.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=(m 1+m 2)v222112212111()222+=m v m v m +m v +ΔE k max ●4.“一动一静”弹性正碰的基本规律如图5—32所示,一个动量为m 1v 1的小球,与一个静止的质量为m 2的小球发生弹性正碰,这种最典型的碰撞,具有一系列应用广泛的重要规律(1)动量守恒,初、末动能相等,即(2)根据①②式,碰撞结束时,主动球(m 1)与被动球(m 2)的速度分别为(3)判定碰撞后的速度方向当m 1>m 2时;v ′1>0,v ′2>0——两球均沿初速v 1方向运动.当m 1=m 2时;v ′1=0,v ′2=v 1——两球交换速度,主动球停下,被动球以v 1开始运动.当m 1<m 2时;v ′1<0,v ′2>0——主动球反弹,被动球沿v 1方向运动. ●5.“一动一静”完全非弹性碰撞的基本计算关系如图5—33所示,在光滑水平面上,有一块静止的质量为M 的木块,一颗初动量为mv 0的子弹,水平射入木块,并深入木块d ,且冲击过程中阻力f 恒定.(1)碰撞后共同速度(v )根据动量守恒,共同速度为v =mv m+M……① (2)木块的冲击位移(s)设平均阻力为f ,分别以子弹,木块为研究对象,根据动能定理,有 fs =12Mv 2………②f (s +d )=12m 20v -12mv 2……③ 由①、②和③式可得 s =+mm Md <d 在物体可视为质点时:d =0,s =0——这就是两质点碰撞瞬时,它们的位置变化不计的原因 (3)冲击时间(t )以子弹为研究对象,根据子弹相对木块作末速为零的匀减速直线运动,相对位移d =12v 0t ,所以冲击时间为 t =02d v (4)产生的热能Q在认为损失的动能全部转化为热能的条件下 Q =ΔE K =f ·s 相=fd =12m 20v ()+MM m【例题1】质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7kg ·m/s ,B 球的动量是5kg ·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是: A .p A =6kg ·m/s ,p B =6kg ·m/s ; B .p A =3kg ·m/s ,p B =9kg ·m/s ; C .p A =-2kg ·m/s ,p B =14kg ·m/s ; D .p A =-4kg ·m/s ,p B =17kg ·m/s .【例题2】锤的质量是m 1,桩的质量为m 2,锤打桩的速率为一定值.为了使锤每一次打击后桩更多地进入土地,我们要求m 1m 2.假设锤打到桩上后,锤不反弹,试用力学规律分析说明为什么打桩时要求m 1m 2.训练题(1)甲、乙两个小球在同一光滑水平轨道上,质量分别是m 甲和m 乙.甲球以一定的初动能E k 0向右运动,乙球原来静止.某时刻两个球发生完全非弹性碰撞(即碰撞后两球粘合在一定),下面说法中正确的是:A.m甲与m乙的比值越大,甲球和乙球组成的系统机械能的减少量就越小;B.m甲与m乙的比值越小,甲球和乙球组成的系统机械能的减少量就越小;C.m甲与m乙的值相等,甲球和乙球组成的系统机械能的减少量最小;D.m甲与m乙的值相等,甲球和乙球组成的系统机械能的减少量最大.(2)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是:A.甲球的速度为零而乙球的速度不为零;B.乙球的速度为零而甲球的速度不为零;C.两球的速度均不为零;D.两球的速度方向均与原方向相反,两球的动能不变.(3)如图5—38所示,质量为m的子弹以速度v从正下方向上击穿一个质量为M的木球,击穿后木球上升高度为H,求击穿木球后子弹能上升多高?。

《爆炸、反冲问题》 知识清单

《爆炸、反冲问题》 知识清单

《爆炸、反冲问题》知识清单一、爆炸问题1、定义与特点爆炸是指在极短时间内,释放出大量能量,产生高温、高压气体,并迅速膨胀的过程。

爆炸过程具有以下特点:(1)内力远大于外力,系统动量守恒。

(2)爆炸过程时间极短,通常可以忽略重力、摩擦力等外力的冲量。

2、动量守恒在爆炸过程中,由于内力远大于外力,所以系统在爆炸前后的总动量保持不变。

即:m1v1 + m2v2 = m1v1' + m2v2' (其中 m1、m2 分别为爆炸前两部分的质量,v1、v2 为爆炸前的速度,v1'、v2' 为爆炸后的速度)3、能量变化爆炸过程中,化学能或其他形式的能量转化为机械能,系统的总能量增加。

但需要注意的是,增加的机械能是由爆炸过程中释放的能量转化而来,并非是内力做功的结果。

4、速度关系由于爆炸后两部分的速度方向具有不确定性,需要根据具体情况进行分析。

但可以通过动量守恒定律和能量守恒定律来确定速度的范围。

5、实例分析例如,一枚炮弹在炮筒中爆炸,炮弹壳分裂成两部分向相反方向飞出。

在这个过程中,炮弹壳在爆炸瞬间内力远大于炮筒对炮弹的摩擦力和空气阻力,系统动量守恒。

但爆炸后两部分的速度大小和方向需要根据炮弹的质量、爆炸释放的能量等因素来计算。

二、反冲问题1、定义与现象反冲是指当一个物体向某一方向射出(或抛出)一部分物质时,剩余部分将向相反方向运动的现象。

2、反冲原理根据动量守恒定律,系统在没有外力作用或外力的冲量可以忽略时,系统的总动量保持不变。

当一部分物质以一定速度射出时,这部分物质具有一定的动量,为了保持系统总动量不变,剩余部分将向相反方向运动。

3、常见的反冲现象(1)火箭发射:火箭向后喷出高温高压的燃气,从而获得向前的推力。

(2)喷气式飞机:通过向后喷气获得向前的动力。

(3)人在船上行走:人向前走时,船会向后退。

4、反冲运动中的动量守恒以火箭发射为例,设火箭发射前的总质量为 M,速度为 v0;燃料燃烧后向后喷出的气体质量为Δm,速度为 v1(相对火箭),则火箭的剩余质量为M Δm,速度为 v2。

2017高考物理碰撞与动量守恒专题03爆炸与反冲含解析

2017高考物理碰撞与动量守恒专题03爆炸与反冲含解析

专题03 爆炸与反冲1. 一个连同装备总质量为M=100kg的宇航员,在距离飞船x=45m处与飞船处于相对静止状态,宇航员背着装有质量为m0=0.5 kg氧气的贮气筒。

筒上装有可以使氧气以v=50 m/s的速度喷出的喷嘴,宇航员必须向着返回飞船的相反方向放出氧气,才能回到飞船,同时又必须保留一部分氧气供途中呼吸用,宇航员的耗氧率为Q=2.5×10-4kg/s,不考虑喷出氧气对设备及宇航员总质量的影响,则:(1)瞬时喷出多少氧气,宇航员才能安全返回飞船?(2)为了使总耗氧量最低,应一次喷出多少氧气?返回时间又是多少?(2)当总耗氧量最低时,宇航员安全返回,共消耗氧气△m,则△m=m+Qt④由①②④可得△m=QxMmv+m=22.2510m-⨯+m当m=22.2510m-⨯,即m=0.15 kg时,△m有极小值,故总耗氧量最低时,应一次喷出m=0.15kg的氧气。

将m=0.15 kg代入①②两式可解得返回时间:t=600 s。

【点评】若向前瞬时喷出微量气体,根据动量定理,则受到一个向后的瞬时作用力,具有一个瞬时加速度,获得一个速度后退。

若向前持续喷出气体,则速度一个向后的持续力,具有持续的加速度。

2.一火箭喷气发动机每次喷出m=200 g的气体,喷出的气体相对地面的速度v=1 000 m/s。

设此火箭初始质量M =300 kg ,发动机每秒喷气20次,在不考虑地球引力及空气阻力的情况下,火箭发动机1 s 末的速度是多大?【名师解析】:以火箭和它在1 s 内喷出的气体为研究对象,系统动量守恒。

设火箭1 s 末的速度为v ′,1 s 内共喷出质量为20m 的气体,以火箭前进的方向为正方向。

由动量守恒定律得(M -20m )v ′-20mv =0,解得v ′=20mv M -20m =20×0.2×1 000300-20×0.2m/s≈13.5 m/s。

答案:13.5 m/s3.如图5-4所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A 。

高中物理-爆炸、碰撞及反冲现象

高中物理-爆炸、碰撞及反冲现象
能的是( C )
A.4/3m·s-1,4/3m·s-1
B.-1m·s-1,2.5m·s-1
C.1m·s-1,3m·s-1
D.-4m·s-1,4m·s-1
3.在光滑水平面上动能为E0,动量大小为p0的小钢球1与静止 小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰后球1 的动能和动量大小分别记为E1、p1,球2的动能和动量的大小
Mv-m2v0=(M+m2)v′乙……② 恰不发生相撞的条件为:v′甲=±v′乙……③
从①得:v′甲=[(M+m1)v甲-Mv]/m1, 从②得:v′乙=[Mv-m2v0]/(M+m2). 当v′甲=v′乙时, (Mv-m2v0)/(M+m2)=-[(M+m1)v甲-m乙]/m1时,
得v=3.8m/s; 当v′甲=-v′乙时,有 [(m+m2)v甲-Mv]/m1=(m2V0-mv)/(M+m2),
止的,如图5-4-2所示,现突然给铝板一 个水平冲量,大小为△I=1.5N·s,方向沿 着A端到B端的方向,设铁球与小墙碰撞过
程中没有动能损失,且碰撞时间很短,求
从铝板开始运动到铁球与铝板均又恢复静
止的过程中,铁球与铝板两端的小墙一共
碰撞了多少次?
【解析】当铝板获得速度向右运动时,由于铁球与铝板间 无摩擦,铁球保持静止状态,而铝板由于受地面的摩擦力 作用,将做匀减速运动.当铝板的A端与铁球相碰时,由于 时间极短,它们之间的相互作用力远大于铝板与地面间的 滑动摩擦力,故可认为系统动量守恒,又由于此过程中无 动能损失,所以,碰后铁球和铝板互换速度.即铝板静止、 铁球向B端运动.铁球运动过程中,由于水平方向不受外力 作用,速度恒定,到B端时与B板相碰,同理,碰后铁球又 静止,铝板又开始运动,重复上述过程.当某次铁球与B碰 后静止,而铝板运动过程中,A板与铁球碰前速度为0时, 整个过程结束.

2020届高考物理二轮复习能量与动量微专题突破 爆炸问题和反冲问题(带解析)

2020届高考物理二轮复习能量与动量微专题突破   爆炸问题和反冲问题(带解析)

爆炸问题和反冲问题1、一个人在地面上立定跳远的最好成绩是(m)s ,假设他站立在船的右端处于静止状态要跳到距离(m)L 的岸上(设船与岸边同高,忽略水的阻力),则( ) A.L s <,他一定能跳上岸 B.L s <,他有可能跳上岸 C.L s =,他有可能跳上岸D.L s =,他一定能跳上岸2、将质量为1.00 g 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A .30/kg m s gB .5.7102/kg m s ⨯gC .6.0102/kg m s ⨯gD .6.3102/kg m s ⨯g3、质量为m 的炮弹以一定的初速度发射,其在水平地面上的射程为d ,若当炮弹飞行到最高点时炸裂成质量相等的两块,其中一块自由下落,则另一块的射程为( ) A.1. 5d B.2d C. d D.3d4、如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员在船尾,相对小船静止。

若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A.0mv v M+B.0mv v M-C.()00m v v v M ++ D.()00mv v v M+-5、向空中发射一炮弹,不计空气阻力,当炮弹的速度恰好沿水平方向时,炮弹炸裂为质量相等的a b、两块。

若a的速度方向仍沿原来的方向,且速度小于炸裂前瞬间的速度,则( )A.b的速度方向一定与炸裂前瞬间的速度方向相反B.从炸裂到落地这段时间内,a飞行的水平距离一定比b的大C.a b、一定同时到达地面D.炸裂的过程中,a b、动量的变化量大小一定不相等6、如图所示,一枚手榴弹开始时在空中竖直向下落,到某位置时爆炸成a、b两块同时落地,其中a落地时飞行的水平距离OA大于b落地时飞行的水平距离OB,下列说法正确的是()A.爆炸瞬间a、b两块的速度大小相等B.爆炸瞬间a、b两块的速度变化量大小相等C. a、b两块落地时的速度大小相等D.爆炸瞬间a、b两块的动量变化大小相等7、一弹丸在飞行到距离地面5m高时仅有水平速度2m/sv ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3:1,不计质量损失,重力加速度g取210m/s,则下列图中两块弹片飞行的轨迹可能正确的是()A. B.C. D.8、“世界航天第一人”是明朝的士大夫万户,他把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝,设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆。

051动量守恒之爆炸与反冲(火箭)模型 精讲精练-2022届高三物理一轮复习疑难突破微专题

051动量守恒之爆炸与反冲(火箭)模型 精讲精练-2022届高三物理一轮复习疑难突破微专题

一.必备知识精讲 1.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.(3)规律:遵从动量守恒定律.(1)火箭加速的原理设火箭飞行时在极短的时间Δt 内喷射燃气的质量是Δm ,喷出的燃气相对喷气前火箭的速度是u ,喷出燃气后火箭的质量是m ,火箭在这样一次喷气后增加的速度为Δv 。

以喷气前的火箭为参考系。

喷气前火箭的动量是0,喷气后火箭的动量是m Δv ,燃气的动量是Δmu 。

根据动量守恒定律,喷气后火箭和燃气的总动量仍然为0,所以m Δv +Δmu =0, 解出Δv =-Δmmu 。

上式表明,火箭喷出的燃气的速度u 越大、火箭喷出物质的质量与火箭本身质量之比Δmm越大,火箭获得的速度Δv 越大。

(2)现代火箭的发射原理由于现代火箭喷气的速度在2000~4000 m/s ,近期内难以大幅度提高;火箭的质量比(火箭起飞时的质量与火箭除燃料外的箭体质量之比)一般要小于10,故为使火箭达到发射人造地球卫星的7.9 km/s 的速度,采用多级火箭,即把火箭一级一级地接在一起,第一级燃料用完之后就把箭体抛弃,减轻负担,然后第二级开始工作,这样一级一级地连起来,不过实际应用中一般不会超过四级。

(3)火箭获得的最终速度设火箭发射前的总质量为M 、燃料燃尽后的质量为m ,以地面为参考系,火箭燃气的喷射速度大小为v 1,燃料燃尽后火箭的飞行速度大小为v ,在火箭发射过程中,由于内力远大于外力,所以动量守恒。

发射前的总动量为0,发射后的总动量为(M -m )v 1-mv (以火箭的速度方向为正方向),则:(M -m )v 1-mv =0,所以v =⎝ ⎛⎭⎪⎫M m-1v 1,燃料燃尽时火箭获得的最终速度由喷气速度及质量比M m决定。

3.爆炸问题二.典型例题精讲:题型一:爆炸类例1:(2018·全国卷Ⅰ)一质量为m 的烟花弹获得动能E 后,从地面竖直升空。

高考物理动量定理:碰撞与反冲运动技巧

高考物理动量定理:碰撞与反冲运动技巧

高考物理动量定理:碰撞与反冲运动技巧在高考物理中,动量定理是一个非常重要的知识点,而碰撞与反冲运动则是动量定理应用的常见情境。

掌握好这部分内容的解题技巧,对于提高物理成绩至关重要。

首先,让我们来了解一下动量定理的基本概念。

动量定理指出,合外力的冲量等于物体动量的变化。

用公式表示就是:$I =\Delta p$,其中$I$表示合外力的冲量,$\Delta p$表示动量的变化量。

在碰撞问题中,分为完全弹性碰撞、非完全弹性碰撞和完全非弹性碰撞三种情况。

完全弹性碰撞是一种理想的情况,在这种碰撞中,系统的动能守恒。

我们可以通过动量守恒和动能守恒联立方程组来求解碰撞前后物体的速度。

非完全弹性碰撞中,系统的动能有损失,但动量仍然守恒。

解决这类问题时,我们通常先根据动量守恒定律列出方程,再结合能量损失的条件来计算。

完全非弹性碰撞是动能损失最大的情况,碰撞后两物体以相同的速度运动。

对于碰撞问题的解题技巧,关键在于明确碰撞的类型,以及正确运用动量守恒定律。

同时,要注意碰撞前后速度的方向和大小关系。

接下来,我们说一说反冲运动。

反冲运动是指在系统内力作用下,系统内一部分物体向某一方向运动,而另一部分物体向相反方向运动的现象。

比如火箭的发射就是典型的反冲运动。

在解决反冲运动问题时,我们同样要以动量守恒定律为基础。

由于反冲运动中,内力远大于外力,所以系统的动量近似守恒。

例如,一个静止的物体分裂成两部分,已知其中一部分的质量和速度,求另一部分的速度。

我们就可以设另一部分的速度为未知数,然后根据动量守恒定律列出方程求解。

再比如,一个装有气体的容器,当气体从容器的一端喷出时,容器会向相反的方向运动。

我们需要分析气体和容器组成的系统在喷出前后的动量变化,从而求出容器的运动速度。

为了更好地理解和应用碰撞与反冲运动的技巧,我们来看一些具体的例题。

例1:在光滑水平面上,质量为$m_1$的物体以速度$v_1$向右运动,质量为$m_2$的物体以速度$v_2$向左运动,两物体发生正碰后,$m_1$的速度变为$v_1'$,$m_2$的速度变为$v_2'$。

2020版高考物理总复习第十二章2第2节动量守恒定律碰撞爆炸反冲练习(含解析)

2020版高考物理总复习第十二章2第2节动量守恒定律碰撞爆炸反冲练习(含解析)

动量守恒定律 碰撞 爆炸 反冲【随堂检测】1.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,取重力加速度g =10 m/s 2.则下列图中两块弹片飞行的轨迹可能正确的是( )解析:选B.弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t = 错误!=1 s ,取向右为正,由水平速度v =错误!知,选项A 中,v 甲=2.5 m/s ,v 乙=-0。

5 m/s;选项B 中,v 甲=2。

5 m/s ,v 乙=0。

5 m/s ;选项C 中,v 甲=1 m/s,v 乙=2 m/s ;选项D 中,v 甲=-1 m/s ,v 乙=2 m/s.因爆炸瞬间动量守恒,故mv =m 甲v 甲+m 乙v 乙,其中m 甲=34m ,m 乙=错误!m ,v =2 m/s ,代入数值计算知选项B 正确.2.(2019·金华质检)如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4。

5 m/s,乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为4。

25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)( )A.1 m/s B.0。

5 m/sC.-1 m/s D.-0。

5 m/s解析:选D.两车碰撞过程动量守恒m1v1-m2v2=(m1+m2)v得v=错误!=错误!m/s=-0。

5 m/s,故D正确.3.(2019·绍兴联考)如图所示,两小车A、B置于光滑水平面上,质量分别为m和2m,一轻质弹簧两端分别固定在两小车上,开始时弹簧处于拉伸状态,用手固定两小车.现在先释放小车B,当小车B的速度大小为3v时,再释放小车A,此时弹簧仍处于拉伸状态;当小车A的速度大小为v时,弹簧刚好恢复原长.自始至终弹簧都未超出弹性限度.求:(1)弹簧刚恢复原长时,小车B的速度大小;(2)两小车相距最近时,小车A的速度大小;(3)求两小车相距最近时,弹簧弹性势能大小.解析:(1)设弹簧刚恢复原长时,小车B速度为v B,以A、B两车和弹簧为研究对象,小车B速度为3v开始到小车A速度为v过程,此系统动量守恒,列方程有:2m·3v=2m·v B+m(-v)解得v B=3.5v;(2)两小车相距最近时速度相同,由动量守恒定律有:2m×3v=(2m+m)v A解得v A=2v;(3)从弹簧刚恢复原长到两小车相距最近过程用能量守恒定律有E弹=错误!×2mv错误!+错误!mv2-错误!×3m·v错误!解得E弹=错误!mv2。

高三物理复习11_动量守恒定律、碰撞、反冲_知识点解析、解题方法、考点突破、例题分析、达标测试

高三物理复习11_动量守恒定律、碰撞、反冲_知识点解析、解题方法、考点突破、例题分析、达标测试

【本讲主要内容】动量守恒定律、碰撞、反冲动量守恒的条件和表达,用动量守恒定律解决碰撞、反冲、爆炸问题。

【知识掌握】【知识点精析】1、动量守恒定律的推导在光滑水平面上做匀速运动的两个小球,质量分别是m 1 和m 2,沿着同一直线向相同的方向运动,速度分别是v 1和v 2,且v 2>v 1,经过一段时间后,m 2追上了m 1,两球发生碰撞,碰撞后的速度分别是v 1′和v 2′。

思考:①两个小球在碰撞过程中所受到的平均作用力F 1和F 2有什么关系?②写出碰撞过程中小球各自所受到的合外力的冲量和每个小球动量的变化。

③结合动量定理,推导得到一个什么表达式。

证明:第一个小球和第二个小球在碰撞中所受的平均作用力F 1和F 2是一对相互作用力,大小相等,方向相反,作用在同一直线上,作用在两个物体上;第一个小球受到的冲量是: F 1t =m 1v 1'-m 1v 1第二个小球受到的冲量是: F 2t =m 2v 2'-m 2v 2又F 1和F 2大小相等,方向相反,所以F 1t = - F 2t∴m 1v 1'-m 1v 1=-(m 2v 2'-m 2v 2)由此得:m 1v 1+m 2v 2=m 1v 1'+m 2v 2'即 p 1+p 2=p 1'+p 2',两个小球碰撞前的总动量等于碰撞后的总动量。

2、动量守恒定律的内容(1)定律一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:'22'112211v m v m v m v m +=+(2)表达形式'22'112211v m v m v m v m +=+,即p 1+p 2=p 1'+p 2' 还有:Δp 1+Δp 2=0,Δp 1= -Δp 2 即: m 1•(v 1'-v 1) = -m 2•(v 2'-v 2)1221v v m m ∆∆-= (3)意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。

动量守恒定律的应用之爆炸、反冲及“人船模型”(解析版)

动量守恒定律的应用之爆炸、反冲及“人船模型”(解析版)

动量守恒定律的应用之爆炸、反冲及“人船模型”1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,发生爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒。

(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加。

(3)位置不变:爆炸的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动。

2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动的现象。

(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向上动量守恒。

反冲运动中机械能往往不守恒。

(3)实例:喷气式飞机、火箭等都是利用反冲运动的实例。

3.“人船模型” (1)模型的适用条件物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0. (2)模型特点1)遵从动量守恒定律,如图所示.2)两物体的位移满足: m x 人t -M x 船t =0 x 人+x 船=L即x 人=M M +m L ,x 船=m M +m Lmv 人-Mv 船=0(3)利用人船模型解题需注意两点 1)条件①系统的总动量守恒或某一方向上的动量守恒。

②构成系统的两物体原来静止,因相互作用而反向运动。

③x 1、x 2均为沿动量方向相对于同一参考系的位移。

2)解题关键是画出草图确定初、末位置和各物体位移关系。

【典例1】如图所示,光滑水平面上有三个滑块A 、B 、C ,质量关系是m A =m C =m 、m B =m2.开始时滑块B 、C 紧贴在一起,中间夹有少量炸药,处于静止状态,滑块A 以速度v 0正对B 向右运动,在A 未与B 碰撞之前,引爆了B 、C 间的炸药,炸药爆炸后B 与A 迎面碰撞,最终A 与B 粘在一起,以速率v 0向左运动.求:(1)炸药爆炸过程中炸药对C 的冲量; (2)炸药的化学能有多少转化为机械能? 【答案】 (1)52mv 0,方向向左 (2)758mv 20【典例2】将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出,在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【答案】 A【解析】 燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -mv 0=0,解得p =mv 0=0.050 kg×600 m/s =30 kg·m/s ,选项A 正确.【典例3】如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上,现把小球从与O点等高的地方释放,小车向左运动的最大位移是()A.2LMM+m B.2Lm M+mC.MLM+mD.mLM+m解题指导小球和小车在水平方向上不受外力作用,整个过程中在水平方向系统动量守恒,总动量始终为零,满足“人船模型”.【答案】B【典例4】载人气球静止于高h的空中,气球的质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?【答案】M+mM h。

动量、冲量及动量守恒定律、碰撞、反冲现象知识点归纳总结汇编

动量、冲量及动量守恒定律、碰撞、反冲现象知识点归纳总结汇编

知识点一动量、冲量、动量定理一、动量概念及其理解(1 )定义:物体的质量及其运动速度的乘积称为该物体的动量p=mv (2)特征:①动量是状态量,它与某一时刻相关;②动量是矢量,其方向与物体运动速度的方向相同。

(3)意义:速度从运动学角度量化了机械运动的状态,动量则从动力学角度量化了机械运动的状态。

二、冲量概念及其理解(1 )定义:某个力与其作用时间的乘积称为该力的冲量l=F △ t ( 2)特征:①冲量是过程量,它与某一段时间相关;②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。

(3)意义:冲量是力对时间的累积效应。

对于质量确定的物体来说,合外力决定着其速度将变多快;合外力的冲量将决定着其速度将变多少。

对于质量不确定的物体来说,合外力决定着其动量将变多快;合外力的冲量将决定着其动量将变多少。

三、动量定理: F • t = m v2 - m v1F • t是合外力的冲量,反映了合外力冲量是物体动量变化的原因.(1)动量定理公式中的F• t是合外力的冲量,是使研究对象动量发生变化的原因;(2)在所研究的物理过程中,如作用在物体上的各个外力作用时间相同,求合外力的冲量可先求所有力的合外力,再乘以时间,也可求出各个力的冲量再按矢量运算法则求所有力的会冲量;(3)如果作用在被研究对象上的各个外力的作用时间不同,就只能先求每个外力在相应时间内的冲量,然后再求所受外力冲量的矢量和.(4 )要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量”等于动量的变化量(注意)。

知识点二动量守恒定律、碰撞、反冲现象知识点归纳总结一.知识总结归纳1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。

2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爆炸及反冲问题
1.爆炸现象的三条规律
(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于系统受到的外力,所以在爆炸过程中,系统的总动量守恒.
(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.
(3)位置不变:爆炸和碰撞的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.2.反冲的两条规律
(1)总的机械能增加:反冲运动中,由于有其他形式的能量转变为机械能,所以系统的总机械能增加.
(2)平均动量守恒
若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1-m2v2=0,得m1x1=m2x2.该式的适用条件是:
①系统的总动量守恒或某一方向的动量守恒.
②构成系统的m1、m2原来静止,因相互作用而运动.
③x1、x2均为沿动量守恒方向相对于同一参考系的位移.
例题1.我国发现的“神舟十一号”飞船与“天宫二号”空间站实现了完美对接.假设“神舟十一号”到达对接点附近时对地的速度为v,此时的质量为m;欲使飞船追上“天宫二号”实现对接,飞船需加速到v1,飞船发动机点火,将质量为Δm的燃气一次性向后喷出,燃气对地向后的速度大小为v2.这个过程中,下列各表达式正确的是( ) A.mv=mv1-Δmv2
B.mv=mv1+Δmv2
C.mv=(m-Δm)v1-Δmv2
D.mv=(m-Δm)v1+Δmv2
解析:选 C.飞船发动机点火喷出燃气,由动量守恒定律,mv=(m-Δm)v1-Δmv2,选项C正确.
例题2.在静水中一条长l的小船,质量为M,船上一个质量为m的人,当他从船头走到船尾,若不计水对船的阻力,则船移动的位移大小为( )
A.m
M
l B.
m
M+m
l
C.
M
M+m
l D.
m
M-m
l
解析:选B.船和人组成的系统水平方向动量守恒,人在船上行进,船将后退,即mv 人
=Mv 船,人从船头走到船尾,设船后退的距离为x ,则人相对地面行进的距离为l -x ,有m l -x
t
=M x t ,则m (l -x )=Mx ,得x =
ml
M +m
,故选项B 正确. 例题3.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2
,则下列图中两块弹片飞行的轨迹可能正确的是( )
解析:选B.弹丸爆炸过程遵守动量守恒,若爆炸后甲、乙同向飞出,则有 2m =34mv 甲+1
4
mv 乙①
若爆炸后甲、乙反向飞出,则有 2m =34mv 甲-1
4mv 乙②
或2m =-34mv 甲+1
4
mv 乙③
爆炸后甲、乙从同一高度做平抛运动,由选项A 中图可知,爆炸后甲、乙向相反方向飞出,下落时间t =2h
g

2×510 s =1 s ,速度分别为v 甲=x 甲t =2.5
1
m/s =2.5 m/s ,v 乙=
x 乙t =0.5
1
m/s =0.5 m/s ,代入②式不成立,A 项错误;同理,可求出选项B 、C 、D 中甲、乙的速度,分别代入①式、②式、③式可知,只有B 项正确.
例题4.以初速度v 0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别为m 和2m 的两块.其中质量大的一块沿着原来的方向以2v 0的速度飞行.求:
(1)质量较小的另一块弹片速度的大小和方向; (2)爆炸过程有多少化学能转化为弹片的动能.
解析:(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v 1=
v 0cos 60°=12
v 0.设v 1的方向为正方向,如图所示,由动量守恒定律得:
3mv 1=2mv 1′+mv 2
其中爆炸后大块弹片速度v 1′=2v 0,
解得v 2=-2.5v 0,“-”号表示v 2的速度与爆炸前速度方向相反.
(2)爆炸过程中转化为动能的化学能等于系统动能的增量,ΔE k =12×2mv 1′2
+12mv 22-
12(3m )v 2
1=274
mv 20.
答案:(1)2.5v 0 方向与爆炸前速度的方向相反 (2)274
mv 20。

相关文档
最新文档