最新中考二次函数---利润问题教学提纲
人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
二次函数的利润问题讲课稿
例题讲解 已知某商品的进价为每件40元。现在的售价 是每件60元,每星期可卖出300件。市场调 查反映:如调整价格 ,每涨价一元,每星期 要少卖出10件;每降价一元,每星期可多卖 出20件。如何定价才能使利润最大?
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x)
小组竞争
1.某果园有100棵橙子树,每一棵树平均结600个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树, 那么树之间的距离和每一棵树所接受的阳光就会减少. 根据经验估计,每多种一棵树,平均每棵树就会少结5 个橙子.增种多少棵橙子树时,总产量最大?
反思感悟
通过本节课的 学习,我的+x)(300-10x)
=-10x2+100x+6000
=-10(x2-10x ) +6000
=-10[(x-5)2-25 ]+6000
=-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) =(20-x)(300+20x)
怎样确定x 的取值范围
=-20x2+100x+6000
=-20(x2-5x-300)
=-20(x-2.5)2+6125 (0≤x≤20)
所以定价为60-2.5=57.5时利润最大,最大值为6125元.
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.
复习引入
人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计
人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计一. 教材分析《二次函数与最大利润问题》这一节内容,是在学生学习了二次函数的基础上进行的。
教材通过实例引出二次函数在实际问题中的应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。
同时,本题也是中考的热点题型,对于学生来说,理解和掌握二次函数在最大利润问题中的应用,对于提高他们的数学素养和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题中,求最大利润问题,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。
三. 教学目标1.理解二次函数在最大利润问题中的应用。
2.能够列出二次函数表示的生产成本函数,并求出最大利润。
3.培养学生的应用意识和解决问题的能力。
四. 教学重难点1.重点:二次函数在最大利润问题中的应用。
2.难点:如何将实际问题转化为二次函数问题,并求解最大利润。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生主动探究二次函数在最大利润问题中的应用,培养学生的动手能力和解决问题的能力。
同时,辅以小组合作学习,让学生在讨论中加深对知识的理解。
六. 教学准备1.准备相关的实例,用于引导学生探究二次函数在最大利润问题中的应用。
2.准备PPT,用于展示问题和解答过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:某工厂生产一种产品,固定成本为8000元,每生产一件产品的成本为200元,售价为300元,问工厂每月生产多少件产品时,可以获得最大利润?2.呈现(10分钟)引导学生将实际问题转化为数学问题,列出二次函数表示的生产成本函数和利润函数。
设每月生产x件产品,利润函数为:y = 300x - 200x - 8000 = 100x - 8000。
3.操练(10分钟)让学生尝试求解最大利润,引导他们发现这是一个二次函数的最大值问题。
实际问题与二次函数——利润问题
22.3 实际问题与二次函数——利润问题教学目标:1、通过探究商品销售中的变量关系,列出函数关系式;2、学会用二次函数求实际问题中的极值.教学重点:会列出二次函数关系式,并解决利润问题中的最大(小)值.教学难点:会列出二次函数关系式,并解决利润问题中的最大(小)值.教学方法:以问题为载体,引导学生探究新知教学过程:一、导入简单的复习。
将学生分成两大组,分别完成第一题的|(1)、(2)小题。
1、求下列二次函数的最值⑴ y=2x2+8x +13 ; ⑵ y= -x2+4x在第一题的基础上,给出函数图像,完成第二题。
2、图中所示的二次函数图像的解析式为:y=2x2+8x +13⑴若-3≤x ≤3,该函数的最小值为( ).⑵又若0≤x ≤3,该函数的最小值为( ).通过上两题提出第三个问题:3、求函数的最值问题,应注意什么? 【归纳】一般地,因为抛物线y=ax2+bx+c 的顶点是最低(高)点,所以当________时,二次函数y=ax2+bx+c 有最小(大)值________.二、新授例题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?请同学们带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析:调整价格包括涨价和降价两种情况.先来看涨价的情况:现售价为每件60元,成本40元,每星期可卖300件,如调整价格,每涨价1元,每星期要少卖出10件.⑴设每件涨价x 元,则每星期售出商品的利润y 也随之变化,涨价x 元,则每星期少卖 件,实际卖出_______件,每件利润为_______因此,所得总利润为___________元.带领同学们以表格形式探讨其中的价格和数量的关系,表格如下:根据表格分析再填空,此时y与x的函数关系式就显而易见了.同学们设好未知数并列好函数关系式y=(60+x-40)(300-10x),同时提问:对于自变量x 的范围有没有要求呢?六人一组分小组讨论,然后全班交流答案.得出0≤x≥30.在自变量范围内求最值:发现函数的图象是一条抛物线的一部分,这条抛物线的顶点(5,6250)是函数图象的最高点,而x=5恰好在0≤x≥30范围内,也就是说当x取顶点坐标的横坐标时,这个函数有最大值.展示解题过程:解:设每件涨价x元,每星期售出商品的利润为y元.依题意可得:y=(60+x-40)(300-10x) (0≤x≤30)即y= -10(x-5)2 +6 250∴当x=5时,y最大值=6 250.涨价的情况下,当售价为65元时,每周利润最大,且最大为6250元.此为间接设元,若是直接设元,你会列函数解析式吗?请同学们课后试一试.【归纳】1、切记自变量的取值范围(可从自变量的实际意义考虑,也可从用含自变量来表示的量的实际意义考虑)2、最值可优先考虑抛物线顶点,但要检查顶点的横坐标是否在自变量取值范围内.接下来看看降价的情况:某商品现售价为每件60元,成本40元,每星期卖300件,如调整价格,每降价1元,每星期可多卖出20件.在降价的情况下,最大利润是多少?在涨价的基础上,同学们自行求解降价的最值,并请一名同学在黑板上展示结果,再由全班同学一起批改.【归纳】解决这类题目的一般步骤(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最大值或最小值.(3)检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。
《二次函数中的利润问题》教学设计
二次函数中的利润问题教学目标:通过探究二次函数中的利润问题,让学生经历将实际问题转化为数学问题的过程,从而掌握二次函数中利润问题的解题方法,渗透数形结合、建模、分类讨论以及方程与函数思想,提高学生解决实际问题的能力.教学重点:利用方程及函数模型解决利润问题.教学难点:实际利润问题中的自变量范围及函数值的确定.教学过程:一、复习导入问题:学校商店销售某种文具盒,若文具盒进价为20元/个,售价为x 元/个,则每个文具盒可获利 元,若每天可卖出()x 60-个,则每天的利润为 元.设计意图:从简单生活实际出发,回顾与利润有关的量之间的关系,为解决本节探究二次函数利润问题做铺垫。
二、典例探究例1 丰融超市引进一批进价为20元/件的日用商品,经过一段时间的试销发现,每件商品的销售单价x (元/件)与月售量y (件)之间满足的关系如下图:(1)求y 与x 的函数关系式;(2)设每月获得利润为w 元,当销售价为多少时,每月获得的利润最大?最大利润是多少?(3)试销期间,若物价部门规定,该商品销售单价不得高于34元/件,且不低于成本价,那么售价定为多少元,每月利润最大?最大利润是多少?设计意图:通过本例学习,让学生进一步熟练运用待定系数法求函数解析式,体会建模思想、数形结合思想和分类讨论思想在解决数学实际问题中的价值,提升学生分析和解决实际问题的能力.三、类比训练九年级某班数学兴趣小组经过市场调查整理出某种商品在第x 天(190x ≤≤,且x 为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y (单位:元/件),每天的销售量为p (单位:件),每天的销售利润为w (单位:元).(1)求出w 与x 的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.设计意图:通过当堂训练,及时巩固解决二次函数利润问题的方法与技巧,提升学生解决实际问题的能力.四、巩固练习某商店销售一种商品,经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,时间x (天) 1 3060 90 每天销售量p (件) 198140 80 20销售价格、周销售量、周销售利润w(元)的三组对应值如下表:(1)求(2)该商品应如何确定销售价格,才能使周销售利润w最大?最大值为多少?(3)由于某种原因,该商品进价提高了m元/件(0)m ,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.设计意图:留作课后练习,强化数学思想方法和应用意识,进一步提升学生的学科素养..五、小结反思通过本节课的学习,你在知识、技能和思想方法等方面有哪些收获?还存在哪些困惑?设计意图:通过梳理本节学习内容,积累解决二次函数实际问题的方法与经验,构建自我知识体系.六:课后作业:完成巩固练习.附板书设计:课题: 二次函数中的利润问题基本关系式: 单件利润= 总利润=思想方法: 1.待定系数法2.数学建模思想及二次函数图象与性质3.数形结合思想4.分类讨论思想。
二次函数与最大利润问题教案
1销售额是多少?
2成本是多少?
3利润y与每件涨价x元之间的函数关系式是什么?
4变量x的取值范围如何确定?
5如何求解最值?
教师引导学生确定变量x的范围的方法:300-10x≥0,x≥0
教师利用多媒体展示解答过程,指导学生进行比对:
解:设每件涨价x元,利润为y元,根据题意得:
y=(60+x)(300-10x)-40(300-10X)
(1)求y与x之间的函数解析式;
(2)当销售定价为多少时,每天的销售利润最大,最大利润是多少?
教师对学生的测评结果进行批阅、点评、讲解。
学生进行当堂检测,完成后,教师进行批阅、点评、讲解。
针对本课时的主要问题,从多个角度、分层进行检验,达到学有所成、了解课堂学习效果的目的。
课堂小结
2分钟
课堂小结:
1、谈一谈你在本节课中有哪些收货?哪些进步?
教学设计
基本信息
名称
二次函数与最大利润问题
执教者
赵娜
课时
1
所属教材目录
实际问题与二次函数
教材分析
最大利润问题是实际问题与二次函数这一部分内容中的一类典型的关于二次函数的实际应用问题,,二次函数的应用本身是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题。而最大利润问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生也比较感兴趣,目的在于让学生通过最大利润这一类题学会用建模的思想去解决其它和函数有关的应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多的函数打下坚实的理论的思想方法的基础。
二次函数与最大利润问题 教学案例
二次函数与最大利润问题教学案例=-0.6(x-180)2+19440。
因此,每间客房的日租金提高到 180 元时,客房总收入最高,最高收入为 19440 元。
(续表)五:变式拓展(2010•武汉)某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时,房间会全部住满.当每个房间每天的房价每增加 10 元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出 20元的各种费用.根据规定,每个房间每天的房价不得高于 340 元.设每个房间的房价增加 x 元(x 为 10的正整数倍)。
(1)设一天订住的房间数为 y,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围;(2)设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?分析:本题是二次函数的应用,特别容易出现的错误是在求最值时不考虑自变量 x 的取值范围,直接求顶点坐标。
(1)理解每个房间的房价每增加 x 元,则减少房间x间,则可以得到 y 与x 之间的关系;10(2)每个房间订住后每间的利润是房价减去 20元,每间的利润与所订的房间数的积就是利润;(3)求出二次函数的对称轴,根据二次函数的增减性以及 x 的范围即可求解。
解题过程:解:(1)由题意得: y = 50 -x,且(0≤x≤160,且 x10为 10 的正整数倍)(2) w =(180 - 20 +x)(3) w =-1x2 + 34x +8000 =-1 (x -170)2 +1089010 10抛物线的对称轴是: x =-b= 170 ,抛物线的开口向2a下,当 x<170 时,w 随x 的增大而增大,但0≤x≤160,因而当 x=160 时,即房价是 340 元时,利润最本题是对上一题的变式,其易错点在于没能充分考虑自变量x 的取值范围(x为 10 的正整数倍)。
分析题目中的每个问题,理清思路,整理出解题过程。
二次函数的实际应用(利润问题)
建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。
初中数学_二次函数的应用复习(利润问题)教学设计学情分析教材分析课后反思
《二次函数应用复习——利润问题》教学设计一.学生课前学习活动设计【复习诊断】(要求:请独立完成,可借助课本,体会实际问题的转化!)1.把二次函数2245=--+化成顶点式为,其图像开y x x口方向是,顶点坐标,当x=时,函数y有最值是。
当x 时,y随x的增大而增大,当x 时,y随x的增大而减小。
2.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)当销售单价定为x元时,销售单价提高了元,销售量减少件,销售量y= ,即y= .销售利润P= ,即P= .(2)当销售单价定为多少时,销售利润最大?(3)请同学们根据以上信息提出四个应用二次函数相关知识解决的问题:①②③④想一想:你解决这些问题的策略.二.教师课堂教学活动设计与学生课堂学习活动设计《二次函数应用复习——利润问题》学情分析对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
《二次函数应用复习——利润问题》效果分析该题的变化主要是单件成本成为变量,是对二次函数利润问题的巩固与提高,学生要在深刻理解各种量关系的基础上,通过较为复杂的计算和分析解决问题,检测反馈当堂所学。
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
数学人教版九年级上册二次函数与最大利润问题教案
22.3实际问题与二次函数一、教学内容:二次函数的应用——最大利润问题二、教材分析二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。
而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受。
让学生通过掌握求最大利润这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
我把它分为面积、利润最大、运动中的二次函数,本节是第二课时。
三、学情分析对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值。
四、教学目标1、知识与技能:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大利润,发展解决问题的能力。
2、过程与方法:应用已有的知识,经过自主探索和合作交流尝试解决问题。
3、情感态度与价值观:在经历和体验数学发现的过程中,提高思维品质,在勇于创新的过程中树立人生的自信心。
五、教学重难点重点:探究利用二次函数的最大值(或最小值)解决实际问题的方法.难点:如何将实际问题转化为二次函数的问题.六、教学方法和手段讲授法、练习法七、教学过程(一)复习旧知导入新课1、几个量之间的关系(1)总价=单价×数量(2)利润=售价-进价(3)总利润=单件利润×数量2、复习知识点(1)二次函数y=ax2+bx+c(a≠0)的顶点坐标、对称轴和最值;(2)抛物线在什么位置取最值?(二)学习新知(走进商场)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况。
人教版九年级上册数学教案:22.3二次函数的实际应用:利润问题
1.理论介绍:首先,我们要了解二次函数在利润问题中的基本概念。二次函数是描述变量间二次关系的数学表达式,它在商业决策中起着重要作用,尤其是在求解最优化问题时。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过建立二次函数模型来解决实际问题,以及它如何帮助我们找到最大利润的售价。
五、教学反思
今天我,整个教学过程让我有了以下几点思考。
首先,我发现同学们在建立二次函数模型时,对于一些关键信息的提取和处理还存在一定的困难。比如在确定二次项系数、一次项系数和常数项时,容易混淆。这让我意识到,在今后的教学中,需要更加注重培养学生提取信息、处理信息的能力。
在实践活动方面,我发现同学们在分组讨论和实验操作中,能够将所学知识应用到实际问题中,这让我感到很欣慰。但同时,我也注意到有些小组在操作过程中,对于一些细节问题处理得不够到位。为了提高同学们的实际操作能力,我计划在后续的教学中,增加一些针对性的练习和指导。
最后,今天的课堂总结环节,同学们能够较好地回顾所学内容,并提出自己的疑问。这表明大家在课堂上能够认真听讲,积极思考。但在回答问题时,有些同学的语言表达能力还有待提高。在今后的教学中,我会多关注这一点,并尝试通过一些课堂活动来提高同学们的表达能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在利润问题中的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对二次函数解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
实际问题与二次函数------最大利润问题
22.3.2实际问题与二次函数------最大利润问题一、教学目标:1、知识与技能:通过探究实际问题与二次函数关系,能用配方法或公式法求二次函数最值,并由自变量的取值范围确定实际问题的最值。
2、过程与方法:(1)、通过研究生活中实际问题,体会建立数学建模的思想. (2)、通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法.3、情感态度:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。
二、学情分析:学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模能力,但运用二次函数的知识解决实际问题要求学生能比较灵活的运用知识,对学生来说要完成这一建模过程难度较大。
三、教学重难点:教学重点:1、理解数学建模的基本思想,能从实际问题中抽象出二次函数的数学模型。
2、能根据实际问题,确立二次函数解析式,并用配方法或公式法求最值教学难点:从实际情景中抽象出函数模型。
四、教学过程:【活动1】小视频导入本节课的探究内容:某运动服的进价为每套40元,售价是每套60元时,每星期可卖出300套,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10套,每降价1元,每星期可多卖出20套,问:如何定价才能使利润最大?(设计说明:教师通过小视频将这个实际问题呈现给学生,但本问题是一道较复杂的市场营销问题,不能直接建立函数模型,需要分类讨论,初中学生分类讨论的思想较薄弱,这给解题造成了障碍,造成学习上的困难,因此,并没有马上去处理这个问题而是先进行一下知识储备。
)【活动2】小组合作探究解决自主学习中存在的问题:1、与利润有关的几个等式:(1)总价、单价、数量的关系;(2)单件利润、售价、进价的关系;(3)总利润、单件利润、数量的关系。
2、如何求2(0)y ax bx c a=++≠的最值?你有几种方法?3、二次函数2=-+的对称轴是直线,顶点坐标是y x2(3)5当x= 时,y有最值,是。
《中考数学疑难问题---利润问题》教学设计
《中考数学疑难问题---利润问题》教学设计一、疑难点分析二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是中考的热点之一。
学习二次函数,对于学生数形结合、函数方程等重要数学思想方法的培养,对扩宽学生解题思路、发展智力、培养能力具有十分重要意义。
本节课把一元二次方程和二次函数紧密联系在一起,并在自变量的取值范围内,根据函数的单调性求 y 的最大值。
让学生体会数学建模思想和数形结合的方法解决实际问题。
二、学情分析学生的知识技能基础:学生已经掌握了一元二次方程解决实际问题,二次函数的图像与性质,能用性质解决简单的实际问题。
学生的活动经验基础:学生对简单的利润问题能够解决,较复杂的问题无法入手,急需要对利润问题有个突破。
三、教学目标1.知识与能力:能正确列出函数关系,知道最大值就是顶点的纵坐标;根据题意会用二次函数顶点坐标及非顶点求出实际问题中的最大利润;2.过程与方法:经历从实际问题中建立函数模型,并应用二次函数的性质解决实际问题的过程,体会数学来源于生活,服务于生活的本质,探索并解决不同情况之下的最大值问题,进而提高学生分析问题、解决问题的能力;3.情感、态度与价值观培养学生认真参与、积极交流意识和乐于探索、勇于创新的科学精神。
让学生体验数学活动中充满着探索和创造,增强学好数学的信心。
四、重难点教学重点:能正确列出函数关系,知道最大值就是顶点的纵坐标;教学难点:根据题意会用二次函数顶点坐标及非顶点坐标,在自变量的定义域内根据函数的单调性求实际问题中的最大利润;七、教学反思①[授课流程反思]本节课紧密的把一元二次方程和二次函数联系起来,通过一个一元二次方程的实际问题派生出二次函数问题,在二次函数的背景下,结合实际生活派生出在自变量X 的取值范围内,根据函数的单调性及数形结合求函数的最大值,体现数学的建模思想.本节课采用“研学后教”和“生态课堂”的教学模式,充分发挥学生的积极性,针对难题采用合作探究、小组讨论的方式,效果较好。
二次函数利润应用教学设计
二次函数利润应用教学设计第一篇:二次函数利润应用教学设计二次函数与实际问题利润的最大化问题——教学设计教学目标:1、探究实际问题与二次函数的关系2、让学生掌握用二次函数最值的性质解决最大值问题的方法3、让学生充分感受实际情景与数学知识合理转化的过程,体会如何遇到问题—提出问题—解决问题的思考脉络。
教学重点:探究利用二次函数的最大值性质解决实际问题的方法教学难点:如何将实际问题转化为二次函数的数学问题,并利用函数性质进行决策教学过程 : 情境设置:水果店售某种水果,平均每天售出20千克,每千克售价60元,进价20元。
经市场调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量减少1千克;若每降价1元,日销售量将增加2千克。
现商店为增加利润,扩大销售,尽量减少库存,决定采取适当措施。
(1)如果水果店日销水果要盈利1200元,那么每千克这种水果应涨价或降价多少元?解:设每千克这种水果降价x元。
(60-20-x)(20+2x)=1200解得x=10或x =20 水果店扩大销售,尽量减少库存x=10不合题意,舍 x=20 答:每千克这种水果应降价20元。
(2)如果水果店日销水果要盈利最多,应如何调价?最多获利多少元?设计:问题1是利用一元二次方程解决问题,引导学生先根据题意判断出应只选择降价,只是一种可能。
通过分析“降价”让学生自主完成,教师点评,强调验根。
因学生已经学习过一元二次方程,困难不会太大。
问题2,引导学生由一元二次方程过度到二次函数,并想到利用二次函数最值的性质去解决问题。
给学生空间时间去思考。
老师问两个问题;1 怎样设?2什么方法去解决?解:设每千克这种水果降价x元。
y=(60-20-x)(20+2x) =-2 x²+60x+800 (0< x≤40) a=-2<0 y有最大值当x= 15时,y最大此时,y=1250答:每千克应降价15元,使获利最多,最多可获利1250元。
初中数学人教九年级上册(2023年新编)第二十二章 二次函数商品利润最大问题教案
商品利润最大问题教学目标1.知识与技能:掌握利润问题的相关数量关系,会根据数量关系列出函数关系式,利用二次函数的性质,求出利润的最大值.2.过程与方法:在经历探究,分析,讨论,解决问题的过程中,巩固二次函数的相关性质,体会如何利用二次函数解决商品利润最大问题.3.情感态度与价值观:感受到数学知识与生活实际问题的紧密联系,体会到数学来源于生活,并用于生活.教学重点:利用二次函数求出最大利润.教学难点:根据实际问题得到函数关系,求出最值.学情分析:商品利润最大问题是利用二次函数解决实际问题的第二课时,经过前面几节的学习,学生已经掌握了二次函数的性质,对利用二次函数解决实际问题有一定的知识基础和技能储备。
在上一章一元二次方程与实际问题中学生对商品利润问题有一定的学习经历,知道相关的数量关系,获得了一部分分析和解决商品利润问题的经验,这里再加以巩固和深入,以便学生能够正确分析和把握商品利润问题的数量关系,构建出二次函数模型,利用其性质,求出最大利润。
教学过程1.情境引入在日常生活中存在着许许多多的与数学知识有关的实际问题。
商品买卖过程中,作为商家利润最大化是永恒的追求。
如果你是商场经理,如何定价才能使商场获得最大利润呢?2.问题探究某商品现在的售价为每件60元,已知商品的进价为每件40元,则每件商品利润为________ 元,每星期可卖出300件,销售总利润_________ 元.数量关系:利润=售价-进价总利润=单件利润×销售量3.利用二次函数解决实际问题的步骤(1)列出函数关系式;(2)结合实际意义,确定自变量的取值范围;(3)计算对称轴,判断对称轴在不在自变量的取值范围内;(4)计算最值:对称轴在自变量的取值范围内,在顶点处取最值;对称轴不在范围内,利用二次函数的增减性取最值。
4.探究商品利润问题例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件,已知商品的进价为每件40元,如何定价才能使利润最大?问题1:怎样列函数关系式?解:设每件涨价x 元,则定价为 60+x 元 ,每星期售出商品的利润y 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二次函数利润问题
题型一、与一次函数结合
1、某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150
元的销售利润,销售价应定为多少元?
2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.
(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
题型二、寻找件数之间的关系
(一)售价为未知数
1、某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。
根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少?
2、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。
在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个。
考虑了所有因素后该零售店每个面包的成本是5角。
设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)。
⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
⑵求y与x之间的函数关系式;
⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?
3、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?
(二)涨价或降价为未知数
1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。
不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元
(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
4、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
三、考虑二次函数的范围
1、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利
不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65
时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
2、某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x 元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?
3、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件. (1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)设每月的销售利润为w,请直接写出w与x的函数关系式;
(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?。