动量守恒定律测试题及解析
高考物理动量守恒定律试题经典及解析
5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
4 2
He
___
8 4
Be
γ
。
②
8 4
Be
是一种不稳定的粒子,其半衰期为
2.6×10-16s。一定质量的
8 4
Be
,经
7.8×10-16s
后所剩下的
8 4
Be
占开始时的
械能守恒定律有 m1gh=
1 2
m1 v02
(1
分)v0=
2gh ,解得:v0=4.0 m/s(1 分)
②设物块 B 受到的滑动摩擦力为 f,摩擦力做功为 W,则 f=μm2g(1 分)
W=-μm2gx 解得:W=-1.6 J(1 分)
③设物块 A 与物块 B 碰撞后的速度为 v1,物块 B 受到碰撞后的速度为 v,碰撞损失的机械
关数学知识辅助分析、求解。
4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对 一下简化模型的计算可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止在水平光滑 桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成 厚度均为 d、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同 的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
E
1 2
mv02
1 2
Mv2
M
m mv02
2M
E mc2
解得
m
物理动量守恒定律题20套(带答案)
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
1.3 动量守恒定律 练习题(解析版)
第一章动量守恒定律1.3 动量守恒定律一、单选题:1.如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:根据动量守恒定律的条件,以甲、乙为一系统,系统的动量守恒,A、B错误,C正确;甲、乙的一部分动能转化为弹簧的弹性势能,甲、乙系统的动能不守恒,D错误.答案:C2.2019年1月11日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功将中星2D卫星送入预定轨道.假设将发射火箭看成如下模型:静止的实验火箭,总质量M=2 100 g,当它以对地速度v0=840 m/s喷出质量Δm=100 g的高温气体后,火箭的速度为(喷出气体过程中重力和空气阻力可忽略)()A.42 m/s B.-42 m/sC.40 m/s D.-40 m/s答案:B解析:[取火箭及气体为系统,设火箭的速度为v,则系统在向外喷气过程中满足动量守恒定律,取v0方向为正方向,由动量守恒定律得0=Δmv0+(M-Δm)v,解得v=-Δmv0M-Δm=-42 m/s,选项B正确.]3.如图所示,A、B两个小球在光滑水平面上沿同一直线相向运动,它们的动量大小分别为p1和p2,碰撞后A球继续向右运动,动量大小为p1′,此时B球的动量大小为p2′,则下列等式成立的是()A .p 1+p 2=p 1′+p 2′B .p 1-p 2=p 1′-p 2′C .p 1′-p 1=p 2′+p 2D .-p 1′+p 1=p 2′+p 2答案:D解析:[因水平面光滑,所以A 、B 两球组成的系统在水平方向上动量守恒.取向右为正方向,由于p 1、p 2、p 1′、p 2′均表示动量的大小,所以碰前的动量为p 1-p 2,碰后的动量为p 1′+p 2′,由系统动量守恒知p 1-p 2=p 1′+p 2′,经变形得-p 1′+p 1=p 2′+p 2,D 对.]4.甲、乙两人站在光滑的水平冰面上,他们的质量都是M ,甲手持一个质量为m 的球,现甲把球以对地为v 的速度传给乙,乙接球后又以对地为2v 的速度把球传回甲,甲接到球后,甲、乙两人的速度大小之比为(忽略空气阻力) ( )A.2M M -mB.M +m MC.2(M +m )3MD.M M +m答案:D解析:[甲、乙之间传递球的过程中,不必考虑过程中的细节,只考虑初状态和末状态的情况.研究对象是由甲、乙二人和球组成的系统,开始时的总动量为零,在任意时刻系统的总动量都为零.设甲的速度大小为v 甲,乙的速度大小为v 乙,二者方向相反,根据动量守恒得(M +m )v 甲-Mv 乙=0,则v 甲v 乙=M M +m,选项D 正确.] 5.光滑水平桌面上有P 、Q 两个物块,Q 的质量是P 的n 倍.将一轻弹簧置于P 、Q 之间,用外力缓慢压P 、Q .撤去外力后,P 、Q 开始运动,P 和Q 的动量大小的比值为( )A .n 2B .n C.1nD .1 答案:D解析:[撤去外力后,系统所受外力之和为0,所以总动量守恒,设P 的动量方向为正方向,则有p P-p Q=0,故p P=p Q,因此P和Q的动量大小的比值为1,选项D正确.]6.将一个光滑的半圆形槽置于光滑的水平面上,如图所示,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A点正上方由静止开始落下,从A点落入槽内,则下列说法正确的是()A.小球在半圆槽内运动的过程中,机械能守恒B.小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C.小球在半圆槽内由B点向C点运动的过程中,小球与半圆槽组成的系统动量守恒D.小球从C点离开半圆槽后,一定还会从C点落回半圆槽答案:D解析:[小球在半圆槽内运动,由B到C的过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,A错误;小球在槽内由A到B的过程中,左侧物块对槽有作用力,小球与槽组成的系统动量不守恒,由B到C的过程中,小球有向心加速度,竖直方向的合力不为零,系统的动量也不守恒,B、C错误;小球离开C点以后,既有竖直向上的分速度,又有水平分速度,小球做斜上抛运动,水平方向做匀速直线运动,水平分速度与半圆槽的速度相同,所以小球一定还会从C点落回半圆槽,D正确.]7.如图所示,质量为m=0.5 kg的小球在距离车底部一定高度处以初速度v0=15 m/s向左平抛,落在以v=7.5 m/s的速度沿光滑水平面向右匀速行驶的小车中,小车足够长,质量为M=4 kg,g取10 m/s2,则当小球与小车相对静止时,小车的速度大小是()A.4 m/s B.5 m/sC.8.5 m/s D.9.5 m/s答案:B解析:[小球和小车在水平方向上动量守恒,取向右为正方向,有Mv-mv0=(M+m)v′,解得v′=5 m/s.]8.如图所示,轻弹簧的一端固定在竖直挡板上,一质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一质量也为m的小物块从槽上高h处开始下滑,下列说法正确的是()A.在下滑过程中,物块和槽组成的系统机械能守恒B.在下滑过程中,物块和槽组成的系统动量守恒C.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.被弹簧反弹后,物块能回到槽上高h处答案:A解析:[对物块和槽组成的系统,在下滑过程中没有机械能损失,系统的机械能守恒,A正确;在下滑的过程中,物块在竖直方向有加速度,物块和槽组成的系统所受合外力不为零,不符合动量守恒的条件,故系统的动量不守恒,但系统在水平方向上动量守恒,B错误;在压缩弹簧的过程中,对于物块和弹簧组成的系统,由于挡板对弹簧有向左的弹力,所以系统受到的合外力不为零,则系统动量不守恒,C错误;因为物块与槽在水平方向上动量守恒,且两者质量相等,根据动量守恒定律知物块离开槽时物块与槽的速度大小相等、方向相反,物块被弹簧反弹后,与槽的速度相同,即两者做速度相同的匀速直线运动,所以物块不会再滑上弧形槽,D错误.]9.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动答案:B解析:[最终,木箱和小木块都具有向右的动量,并且相互作用的过程中总动量守恒,选项A、D错误;由于小木块与底板间存在摩擦,小木块最终将相对木箱静止,选项B正确,选项C错误.]二、多选题:10.关于动量守恒的条件,下面说法正确的是()A.只要系统内有摩擦力,动量就不可能守恒B.只要系统所受合外力为零,系统动量就守恒C.系统加速度为零,系统动量一定守恒D.只要系统所受合外力不为零,则系统在任何方向上动量都不可能守恒答案:BC解析:[动量守恒的条件是系统所受合外力为零,与系统内有无摩擦力无关,选项A错误,B正确;系统加速度为零时,根据牛顿第二定律可得系统所受合外力为零,所以此时系统动量守恒,选项C正确;系统合外力不为零时,在某方向上合外力可能为零,此时在该方向上系统动量守恒,选项D错误.]11.下列四幅图所反映的物理过程中,动量守恒的是()答案:AC解析:[A图中子弹和木块组成的系统在水平方向上不受外力,竖直方向所受合力为零,该系统动量守恒;B图中在弹簧恢复原长的过程中,系统在水平方向上始终受墙的作用力,系统动量不守恒;C图中木球与铁球组成的系统所受合力为零,系统动量守恒;D图中木块下滑过程中,斜面体始终受到挡板的作用力,系统动量不守恒.]12.如图所示,木块A静置于光滑的水平面上,其曲面部分MN光滑、水平部分NP粗糙,现有一物体B自M点由静止释放,设NP足够长,则以下叙述正确的是()A.A、B最终以同一不为零的速度运动B.A、B最终速度均为零C.A物体先做加速运动,后做减速运动D.A物体先做加速运动,后做匀速运动答案:BC解析:[系统在水平方向不受外力,故系统在水平方向动量守恒,因系统初动量为零,A、B在任一时刻的水平方向动量之和也为零,因NP足够长,B最终与A速度相同,此速度为零,B选项正确,A物体由静止到运动、最终速度又为零,C选项正确.]13.如图所示,小车放在光滑的水平面上,将系着绳的小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中()A.小球向左摆动时,小车也向左运动,且系统水平方向动量守恒B.小球向左摆动时,小车向右运动,且系统水平方向动量守恒C.小球向左摆到最高点,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反答案:BD解析:[以小球和小车组成的系统为研究对象,在水平方向上不受力的作用,所以系统在水平方向上动量守恒,由于初始状态小车与小球均静止,所以小球与小车在水平方向上的动量要么都为零,要么大小相等、方向相反,选项A、C错误,选项B、D正确.]三、非选择题:14.一辆质量m1=3.0×103 kg的小货车因故障停在车道上,后面一辆质量m2=1.5×103 kg的轿车来不及刹车,直接撞入货车尾部失去动力.相撞后两车一起沿轿车运动方向滑行了s=6.75 m停下.已知车轮与路面间的动摩擦因数μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g=10 m/s2)[解析]两车一起运动时,由牛顿第二定律得a=F fm1+m2=μg=6 m/s2v=2as=9 m/s两车碰撞前后,由动量守恒定律(取轿车滑行方向为正方向)得m2v0=(m1+m2)vv0=m1+m2m2v=27 m/s.[答案]27 m/s15.如图所示,甲车质量m1=20 kg,车上有质量M=50 kg的人,甲车(连同车上的人)以v=3 m/s 的速度向右滑行,此时质量m2=50 kg的乙车正以v0=1.8 m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长.[解析]人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞以人、甲车、乙车组成的系统为研究对象由水平方向动量守恒得:(m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1 m/s以人与甲车为一系统,人跳离甲车过程水平方向动量守恒,得:(m1+M)v=m1v′+Mu解得u=3.8 m/s因此,只要人跳离甲车的速度u≥3.8 m/s就可避免两车相撞.[答案]大于等于3.8 m/s16.如图所示,在光滑的水平杆上套有一个质量为m的滑环,滑环通过一根不可伸缩的轻绳悬挂着一个质量为M的物块(可视为质点),绳长为L.将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定,仍给物块以同样的水平冲量,求物块摆起的最大高度.[解析] 滑环固定时,根据机械能守恒定律,有MgL =12Mv 20,解得v 0=2gL 滑环不固定时,物块的初速度仍为v 0,在物块摆起至最大高度h 时,它们的速度都为v ,在此过程中物块和滑环组成的系统机械能守恒,水平方向动量守恒,则:Mv 0=(m +M )v12Mv 20=12(m +M )v 2+Mgh 由以上各式,可得h =m m +ML . [答案]m m +M L。
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
若小车不动,A、B两个动量相等,由于不知道两个质量大小,所以不能确定两个的速度,A不对。
若小车向左运动,A、B总动量向右,所以A动量大于B动量,故C正确。
若小车向右运动,A、B总动量向左,B动量大于A动量,D错。
【考点】动量守恒2.如图所示,在光滑水平面上,有一质量为M="3" kg的薄板和质量为m="1" kg的物块.都以v="4" m/s的初速度朝相反方向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.4 m/s时,物块的运动情况是( )A.做加速运动B.做减速运动C.做匀速运动D.以上运动都可能【答案】A【解析】开始阶段,m向右减速,M向左减速,根据系统的动量守恒定律得:当m的速度为零时,.规定向右为正方向,根据动量守恒定律得:,代入解得:设此时M的速度为v1.此后m将向右加速,M继续向左减速;当两者速度达到相同时,设共同速度为.规定向右为正方向,由动量守恒定律得:,代入解得:.两者相对静止后,一起向右做匀速直线运动.由此可知当M的速度为时,m处于向右加速过程中.故A正确.【考点】考查了动量守恒定律的应用3.如图所示,质量为m的铅弹以大小为初速度射入一个装有砂子的总质量为M的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)弹和砂车的共同速度;(2)弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为的砂子时砂车的速度【答案】(1) (2)【解析】:(1)以铅球、砂车为系统,水平方向动量守恒,,得球和砂车的共同速度.(2)球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,设当漏出质量为的砂子时砂车的速度为,砂子漏出后做平抛运动,水平方向的速度仍为,由,得.【考点】考查了动量守恒定律的应用4.(6分)如图所示,木板A质量mA =1 kg,足够长的木板B质量mB=4 kg,质量为mC=1kg的木块C置于木板B上,水平面光滑, B、C之间有摩擦,开始时B、C均静止,现使A以v=12 m/s的初速度向右运动,与B碰撞后以4 m/s速度弹回. 求:(1)B运动过程中的最大速度大小.(2)C运动过程中的最大速度大小.【答案】(1)4 m/s.;(2)3.2 m/s.【解析】(1)A与B碰后瞬间, C的运动状态未变, B速度最大. 由A、B系统动量守恒(取向右为正方向)有: mA v+0=-mAvA+mBvB代入数据得: vB=4 m/s.(2)B与C相互作用使B减速、C加速,由于B板足够长,所以B和C能达到相同速度,二者共速后, C速度最大,由B、C系统动量守恒,有mB vB+0=(mB+mC)vC,代入数据得: vC=3.2 m/s.【考点】动量守恒定律的应用。
物理动量守恒定律题20套(带答案)及解析
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高考物理动量守恒定律试题(有答案和解析)
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理动量守恒定律真题汇编(含答案)含解析
高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理《动量守恒定律》真题练习含答案
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
高中物理动量守恒定律试题经典及解析
高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P2向左滑行距离:22222.25m2vsa'==所以P1、P2静止后距离:△S=L-S1-S2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次【解析】解:设小球m的摆线长度为l小球m在下落过程中与M相碰之前满足机械能守恒:①m和M碰撞过程是弹性碰撞,故满足:mv0=MV M+mv1 ②③联立②③得:④说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:mv1=MV M1+mv2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
物理动量守恒定律题20套(带答案)及解析
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
(物理)物理动量守恒定律题20套(带答案)及解析
mv0=2mv1,① (2 分) 2mv1=4mv2② (2 分) 联立①②得,v2=0.25v0. (1 分) (2)当 A 在木板 B 上滑动时,系统的动能转化为摩擦热,设木板 B 的长度为 L,假设 A 刚
好滑到 B 的右端时共速,则由能量守恒得,
③ (2 分)
联立①②③得,L=
考点:动量守恒,能量守恒. 【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒
,
解得滑块 a 与车相对静止时与 O 点距离:
;
考点:动量守恒定律、动能定理。 【名师点睛】本题考查了求速度、距离问题,分析清楚运动过程、应用动量守恒定律、动 能定理、能量守恒定律即可正确解题。
6.如图所示,在光滑的水平面上放置一个质量为 2m 的木板 B,B 的左端放置一个质量为
m 的物块 A,已知 A、B 之间的动摩擦因数为 ,现有质量为 m 的小球以水平速度0 飞来
【答案】(1) v1 4 m s , v2 0 ;(2) m2 3kg 。
【解析】
试题分析:(1)由
s—t
图象知:碰前,m1 的速度 v1
s t
16 - 0 4-0
4m
s
,m2 处于静止
状态,速度 v2 0
(2)由 s—t 图象知:碰后两物体由共同速度,即发生完全非弹性碰撞
碰后的共同速度 v s 24 16 1m s t 12 4
略不计,g 取 10 m/s2,求两种模型上升的最大高度之差。 【答案】116.54m
【解析】对模型甲: 0 M mv甲 mv0
h甲 =
v甲2 2g
1085 9
m
200.56m
对模型乙第一级喷气:
0
物理动量守恒定律练习题20篇及解析
物理动量守恒定律练习题20篇及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
物理动量守恒定律各地方试卷集合及解析
物理动量守恒定律各地方试卷集合及解析一、动量守恒定律 选择题1.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量2.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间3.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g4.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 5.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动D.若小球刚好到达C点,则12mh RM M=+6.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:107.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m的小物块从槽上高h处开始下滑,重力加速度为g,下列说法正确的是A.物体第一次滑到槽底端时,槽的动能为3mghB.物体第一次滑到槽底端时,槽的动能为6mghC.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处8.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A.B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块A .落地时的速率相同B .重力的冲量相同C .重力势能的变化量相同D .重力做功的平均功率相同9.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 10.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值11.如图所示,一辆质量M =3kg 的小车A 静止在光滑的水平面上,A 上有一质量m =1kg 的光滑小球B ,将一左端固定于A 上的轻质弹簧压缩并锁定,此时弹簧的弹性势能E p =6J ,B与A 右壁距离为l 。
高考物理动量守恒定律专题训练答案及解析
高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高考物理动量守恒定律真题汇编(含答案)及解析
4.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂.现将 绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性碰 撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次 碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
试题分析:(1)P1
滑到最低点速度为
v1,由机械能守恒定律有:
1 2
mv02
mgR
1 2
mv12
解得:v1=5m/s
P1、P2 碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为 v1 、 v2
则由动量守恒和机械能守恒可得: mv1 mv1 mv2
1 2
mv12
1 2
mv12
1 2
mv22
解得: v1 0 、 v2 5m/s
(2)P2 向右滑动时,假设 P1 保持不动,对 P2 有:f2=μ2mg=2m(向左) 设 P1、M 的加速度为 a2;对 P1、M 有:f=(m+M)a2
a2
f m M
2m 5m
0.4m/s2
此时对 P1 有:f1=ma2=0.4m<fm=1.0m,所以假设成立.
故滑块的加速度为 0.4m/s2;
滑板碰后,P1 向右滑行距离: s1
v2 2a1
0.08m
P2 向左滑行距离: s2
v22 2a2
2.25m
所以 P1、P2 静止后距离:△S=L-S1-S2=1.47m
考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能
守恒定律.
【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正
高中物理动量守恒定律专项训练100(附答案)及解析
高中物理动量守恒定律专项训练100(附答案)及解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.如图,质量分别为、的两个小球A 、B 静止在地面上方,B 球距地面的高度h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i )B 球第一次到达地面时的速度; (ii )P 点距离地面的高度. 【答案】4/B v m s =0.75p h m = 【解析】试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有212B B B m gh m v =可得B 球第一次到达地面时的速度24/B v gh m s =(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s == 设B 球的速度为'B v , 则有碰撞过程动量守恒'''A A B B B B m v m v m v +=碰撞过程没有动能损失则有222111'''222A AB B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==所以P 点的高度220'0.752B p v v h m g-== 考点:动量守恒定律 能量守恒4.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞。
高考物理动量守恒定律试题经典及解析
高考物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m 【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x xm M t t=,x 1+x 2=L 代入数据联立解得:24Lx ==0.1m 考点:动量守恒定律;能量守恒定律.2.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.3.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】 【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.4.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
【物理】物理动量守恒定律题20套(带答案)含解析
【物理】物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.5.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图所示,在光滑水平面上有一个长为L 的木板B ,上表面粗糙,在其左端有一个光滑的14圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上,现有滑块A 以初速度v 0从右端滑上B 并以02v滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)滑块与木板B 上表面间的动摩擦因数μ; (2)14圆弧槽C 的半径R 【答案】(1)20516v gL μ=;(2)2064v R g=【解析】由于水平面光滑,A 与B 、C 组成的系统动量守恒和能量守恒,有:mv 0=m (12v 0)+2mv 1 ① μmgL =12mv 02-12m (12v 0) 2-12×2mv 12 ②联立①②解得:μ=2516v gL.②当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等.A 、C 组成的系统水平方向动量守恒和系统机械能守恒: m (12v 0)+mv 1=(m +m )v 2 ③ 12m (12v 0)2+12mv 12=12(2m )v 22+mgR ④ 联立①③④解得:R =264v g点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.8.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R 【解析】 【分析】 【详解】两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则212mgR mv =女演员刚好能回到高处,机械能依然守恒:222112m gR m v =女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:122112m m v m v m v +=-+()③根据题意:12:2m m = 有以上四式解得:222v gR =接下来男演员做平抛运动:由2142R gt =,得8 t g R 因而:28s v t R ==; 【点睛】两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.9.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.10.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v 解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh ==(2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =11.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O 点为弹簧原长位置,O 点左侧水平面光滑,水平段OP 长L=1m ,P 点右侧一与水平方向成的足够长的传送带与水平面在P 点平滑连接,皮带轮逆时针转动速率为3m/s ,一质量为1kg 可视为质点的物块A 压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP 段动摩擦因数,另一与A 完全相同的物块B 停在P 点,B 与传送带的动摩擦因数,传送带足够长,A 与B 的碰撞时间不计,碰后A .B 交换速度,重力加速度,现释放A ,求:(1)物块A .B 第一次碰撞前瞬间,A 的速度(2)从A .B 第一次碰撞后到第二次碰撞前,B 与传送带之间由于摩擦而产生的热量 (3)A .B 能够碰撞的总次数 【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m ,A 与B 第一次碰前的速度为,则:解得:(2)设A.B 第一次碰撞后的速度分别为,则,碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为, 则:,解得:运动的时间,位移此过程相对运动路程此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,加速时间为位移为此过程相对运动路程全过程生热(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度12.如图所示,物块质量m=4kg,以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g=10m/s2),求:(1)物块相对平板车静止时,物块的速度;(2)物块在平板车上滑行的时间;(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长?【答案】(1)0.4m/s(2)(3)【解析】解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。
物理动量守恒定律专题练习(及答案)含解析
①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1
+
1 2
mV
2 1
=
1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律测试题及解析1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。
初始时,人、车、锤子都静止。
假设水平地面光滑,关于这一物理过程,下列说法正确的是( )A .连续敲打可使小车持续向右运动B .人、车和锤子组成的系统机械能守恒C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零D .人、车和锤子组成的系统动量守恒解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。
2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( )A .4 m /sB .5 m/sC .6 m /sD .7 m/s解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。
已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。
3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。
若不计球与桌面间的摩擦,则( )A .碰后瞬间白球的速度为2vB .两球之间的碰撞属于弹性碰撞C .白球对黄球的冲量大小为3m vD .两球碰撞过程中系统能量不守恒解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为2v ,故A 正确。
碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。
由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =3m v -0=3m v ,故C 正确。
两球碰撞过程中系统能量守恒,损失的动能以其他形式释放,故D 错误。
4.如图甲所示,物块A 、B 的质量分别是m A =4.0 kg 和m =3.0 kg ,用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触,另有一物块C 从t =0时以一定速度向右运动在t =4 s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图像如图乙所示,墙壁对物块B 的弹力在4 s ~12 s 的时间内对B 的冲量I 的大小为( )A .9 N·sB .18 N·sC .36 N·sD .72 N·s解析:选C 由题图乙知,C 与A 碰前速度为v 1=9 m /s ,碰后速度为v 2=3 m/s ,物块C 与A 碰撞过程动量守恒,以C 的初速度方向为正方向,由动量守恒定律得:m C v 1=(m A +m C )v 2,12 s 末A 和C 的速度为v 3=-3 m/s,4 s 到12 s ,墙对B 的冲量为:I =(m A +m C )v 3-(m A +m C )v 2,代入数据解得:I =-36 N·s ,方向向左,故墙壁对物块B 的弹力在4 s ~12 s 的时间内对B 的冲量I 的大小为36 N·s ,故C 正确,A 、B 、D 错误。
5.如图,立柱固定于光滑水平面上O 点,质量为M 的小球a 向右运动,与静止于Q 点的质量为m 的小球b 发生弹性碰撞,碰后a 球立即向左运动,b 球与立柱碰撞能量不损失,所有碰撞时间均不计,b 球恰好在P 点追到a 球,Q 点为OP 间中点,则a 、b 球质量之比M ∶m =( )A .3∶5B .1∶3C .2∶3D .1∶2解析:选A 设a 、b 两球碰后速度大小分别为v 1、v 2。
由题意可知:b 球与挡板发生弹性碰撞后恰好在P 点追上甲,则从碰后到相遇a 、b 球通过的路程之比为:s 1∶s 2=1∶3根据s =v t 得:v 2=3v 1以水平向右为正方向,两球发生弹性碰撞,由动量守恒定律得:M v 0=M (-v 1)+m v 2由机械能守恒定律得:12M v 02=12M v 12+12m v 22 解得M ∶m =3∶5,故A 正确。
6.(2019·内江一模)如图所示,将一质量为m 的小球,从放置在光滑水平地面上、质量为M 的光滑半圆形槽的槽口A 点,由静止释放经过最低点B 运动到C 点,下列说法中正确的是( )A .从A →B ,半圆形槽运动的位移一定大于小球在水平方向上运动的位移B .从B →C ,半圆形槽和小球组成的系统动量守恒C .从A →B →C ,C 点可能是小球运动的最高点D .小球最终在半圆形槽内做往复运动解析:选D 小球与半圆形槽水平方向动量守恒,m v 1=M v 2,则m v 1t =M v 2t ,mx 1=Mx 2,若m <M ,则x 1>x 2,故A 错误;从B →C ,半圆形槽和小球组成的系统水平方向受外力为零,水平方向上动量守恒,故B 错误;从A →B →C ,小球和半圆形槽组成的系统机械能守恒,小球到达C 点时,速度不为零,小球运动的最高点应与A 点等高,故C 错误;小球从右边最高点滑下运动到左边最高点A 时,速度又减到零,如此反复,做往复运动,故D 正确。
7.如图所示,在光滑的水平面上,有两个质量均为m 的小车A 和B ,两车之间用轻质弹簧相连,它们以共同的速度v 0向右运动,另有一质量为m 的黏性物体,从高处自由落下,正好落在A 车上,并与之粘合在一起,粘合之后的运动过程中,弹簧获得的最大弹性势能为( )A.14m v 02 B.18m v 02 C.112m v 02 D.115m v 02 解析:选C 黏性物体落在A 车上,由动量守恒有m v 0=2m v 1,解得v 1=v 02,之后整个系统动量守恒,当系统再次达到共同速度时,有2m v 0=3m v 2,解得v 2=2v 03,此时弹簧获得的弹性势能最大,最大弹性势能E p =12m v 02+12×2m ⎝⎛⎭⎫v 022-12×3m ⎝⎛⎭⎫23v 02=112m v 02,所以C 正确。
8.(2020·青岛模拟)质量m =260 g 的手榴弹从水平地面上以v 0=14.14 m /s 的初速度斜向上抛出,上升到距地面h =5 m 的最高点时炸裂成质量相等的两块弹片,其中一块弹片自由下落到达地面,落地动能为5 J 。
重力加速度g =10 m/s 2,空气阻力不计,火药燃烧充分,求:(1)手榴弹爆炸前瞬间的速度大小;(2)手榴弹所装弹药的质量;(3)两块弹片落地点间的距离。
解析:(1)设手榴弹上升到最高点时的速度为v 1,根据机械能守恒有12m v 02=12m v 12+mgh 解得:v 1=10 m/s 。
(2)设每块弹片的质量为m 1,爆炸后瞬间其中一块速度为零,另一块速度为v 2,有m 1gh =5 J设手榴弹装弹药的质量为Δm ,有Δm =m -2m 1代入数据解得:Δm =0.06 kg 。
(3)另一块做平抛运动时间为t ,两块弹片落地点间距离为Δx ,有m v 1=m 1v 2Δx =v 2th =12gt 2 解得:Δx =26 m 。
答案:(1)10 m/s(2)0.06 kg(3)26 m9.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。
某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度)。
已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动。
取重力加速度的大小g=10 m/s2。
(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?解析:(1)规定向右为速度正方向。
冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3。
由水平方向动量守恒和机械能守恒有m2v20=(m2+m3)v12m2v202=12(m2+m3)v2+m2gh式中v20=-3 m/s为冰块推出时的速度解得m3=20 kg。
(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0解得v1=1 m/s设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒定律和机械能守恒定律有m2v20=m2v2+m3v312m2v202=12m2v22+12m3v32解得v2=1 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩。
答案:(1)20 kg(2)见解析10.光滑水平面上放有一上表面光滑、倾角为α的斜面体A,斜面体质量为M、底边长为L,如图所示。
将一质量为m可视为质点的滑块B从斜面的顶端由静止释放,滑块B经过时间t刚好滑到斜面底端。
此过程中斜面对滑块的支持力大小为F N,则下列说法中正确的是()A.F N=mg cos αB.滑块下滑过程中支持力对B的冲量大小为F N t cos αC.滑块B下滑的过程中A、B组成的系统动量守恒D.此过程中斜面体向左滑动的距离为mm+ML解析:选D当滑块B相对于斜面加速下滑时,斜面体A水平向左加速运动,所以滑块B相对于地面的加速度方向不再沿斜面方向,即沿垂直于斜面方向的合外力不再为零,所以斜面对滑块的支持力F N 不等于mg cos α,故A错误;滑块B下滑过程中支持力对B的冲量大小为F N t,故B错误;由于滑块B有竖直方向的分加速度,所以系统竖直方向合外力不为零,系统的动量不守恒,故C 错误;系统水平方向不受外力,水平方向动量守恒,设A 、B 两者水平位移大小分别为s 1、s 2,取水平向左为正方向,由动量守恒定律得M s 1t -m s 2t =0,即有Ms 1=ms 2,又s 1+s 2=L ,解得s 1=m m +ML ,故D 正确。