高考数学重点知识点汇总

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高考数学知识点归纳总结

高考数学知识点归纳总结

高考数学知识点归纳总结
1. 函数与方程
- 函数的定义、性质和表示方法
- 一次函数、二次函数、指数函数和对数函数的性质和图像- 复合函数和反函数的概念
- 方程与不等式的性质和求解方法
2. 数列与数列的表示方法
- 数列的概念和性质
- 等差数列和等比数列的通项公式和求和公式
- 常用数列的性质和求解方法
- 数列极限的定义和性质
3. 三角函数
- 三角函数的概念和性质
- 周期函数和奇偶性
- 三角函数的图像和性质
- 三角函数的和差化积公式和倍角、半角公式
4. 平面几何
- 二维坐标系和向量的表示方法
- 直线和曲线的方程及其性质
- 三角形、四边形和圆的性质和判定方法
- 平面向量的概念、性质和运算方法
5. 空间几何
- 空间直线和平面的方程及其性质
- 空间几何体的性质和判定方法
- 空间向量的概念、性质和运算方法
- 空间平面及其与其它几何体的位置关系
6. 概率统计与数理方法
- 概率的基本概念和性质
- 随机事件的计算方法
- 排列组合与概率的应用
- 统计图表、描述统计量和概率分布的计算
7. 数学建模
- 建模的基本步骤和思维方法
- 数学模型的建立和求解方法
- 模型有效性和实际应用
- 模型的评价和改进方法
以上是高考数学的一些重要知识点和概念,理解和掌握这些内容对于高考数学的学习和考试是非常重要的。

数学高考必考知识点

数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。

数学高考知识点重点

数学高考知识点重点

数学高考知识点重点高考数学知识点重点一、函数及其图像1. 函数与映射函数的概念及性质,映射的概念与判断2. 函数的表示与运算函数的解析式、图像、性质;函数的四则运算、复合与反函数3. 初等函数幂函数、指数函数、对数函数、三角函数、反三角函数等初等函数及其性质二、数列与数学归纳法1. 等差数列与等比数列数列的概念、通项公式、求和公式、性质及应用2. 递推数列与数学归纳法递推数列的概念与性质,利用数学归纳法证明命题三、函数的极限与连续性1. 函数的极限函数的极限定义、性质与计算方法;无穷大与无穷小概念2. 函数的连续性函数连续性的概念、性质与判断条件;间断点的分类与分析四、导数与微分1. 导数的概念与运算法则导数定义、基本性质、四则运算法则、复合函数求导2. 函数的几何意义与应用函数图像的切线与法线,导数在图像研究中的应用;利用导数解分析几何问题3. 微分学基本定理函数的可微性与导数的等价性定理;微分的概念与计算方法五、不等式与线性规划1. 一元二次不等式一元二次不等式的解法及应用2. 线性规划线性规划的基本概念、最优解的确定与图形解法六、概率与统计1. 随机试验与事件随机试验的概念、样本空间、事件及其运算2. 概率的概念与性质概率的定义、性质、计算方法及应用3. 随机变量与分布律随机变量的概念与性质,离散型随机变量的分布律与期望4. 抽样与统计推断样本、抽样的方法与调查法,统计推断中的基本概念七、数与数论1. 整除与同余整数的整除性及性质,同余关系的定义与应用2. 递推与逼近递推数列的构造及性质,实数逼近的基本性质与方法八、向量与立体几何1. 向量的概念与运算向量的定义、运算法则及性质;向量的线性运算与几何应用2. 空间几何中的基本概念平面与直线的方程、位置关系、线面垂直与平行关系的判断以上是数学高考的重点知识点,掌握这些知识将有助于应对高考数学考试。

在学习过程中,建议多做相关的练习题,并及时解答疑惑,加深对知识的理解与运用。

高考数学必考知识点归纳

高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。

o运算:交集、并集、补集(相对于全集)。

2.函数o概念:输入与输出之间的对应关系。

o表示法:解析法、列表法、图像法。

o单调性:增函数、减函数。

o奇偶性:奇函数、偶函数、非奇非偶函数。

二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。

o表示法:通项公式、递推公式。

2.等差数列o定义、通项公式、前n项和公式。

o性质:中项性质、等差中项。

3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。

o性质:中项性质、等比中项。

4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。

5.数列的极限o数列极限的概念、性质及简单计算。

三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。

2.诱导公式o角度加减变换公式。

3.同角关系式o基本恒等式、平方关系、商数关系。

4.性质o周期性、奇偶性、单调性、有界性。

5.图像与性质o各三角函数图像特征、相位变换、振幅变换。

6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。

7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。

四、向量1.基本概念o向量的模、方向、坐标表示。

2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。

o模长与夹角的关系、平行与垂直的条件。

五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。

o斜率:定义、公式、倾斜角。

o位置关系:平行、垂直的条件。

2.圆o方程:标准方程、一般方程。

o性质:圆心、半径、切线、弦的性质(如相交弦定理)。

3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。

六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。

2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。

3.三视图o正视图、侧视图、俯视图及其绘制方法。

七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考数学最全知识点

高考数学最全知识点

高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。

祝你成功!。

高考数学最全知识点归纳

高考数学最全知识点归纳

高考数学最全知识点归纳高考数学作为高中阶段数学学习的总结和检验,涵盖了多个知识点,以下是对高考数学最全知识点的归纳:一、代数部分1. 集合与函数:理解集合的概念,包括集合的运算、子集、并集、交集、补集等;掌握函数的定义、性质、单调性、奇偶性、周期性等。

2. 不等式:包括一元二次不等式的解法,绝对值不等式,分式不等式,以及不等式的应用。

3. 数列:理解等差数列和等比数列的概念、通项公式、求和公式,以及数列的极限问题。

4. 复数:复数的运算,包括加减乘除和共轭复数的概念,复数的几何意义等。

5. 代数式:包括多项式、分式、有理式等的运算,以及代数式的简化和分解。

6. 排列组合与概率:排列组合的基本原理,组合数的计算,以及概率的基本概念和计算方法。

二、几何部分1. 平面几何:包括直线、圆、椭圆、双曲线、抛物线等基本图形的性质和位置关系。

2. 立体几何:空间中点、线、面的位置关系,多面体和旋转体的性质,以及空间图形的计算。

3. 解析几何:坐标系中点、直线、圆、椭圆等图形的方程,以及图形的平移、旋转和对称变换。

三、三角部分1. 三角函数:正弦、余弦、正切等基本三角函数的定义、图像、性质和应用。

2. 三角恒等变换:包括和差化积、积化和差、倍角公式、半角公式等。

3. 解三角形:正弦定理、余弦定理的应用,以及三角形的解法。

四、微积分部分1. 极限:数列极限、函数极限的概念和计算方法。

2. 导数:导数的定义、性质、几何意义,以及基本导数公式。

3. 积分:不定积分和定积分的概念、性质、计算方法,以及在几何和物理中的应用。

五、统计与概率部分1. 统计:数据的收集、整理、描述,包括平均数、中位数、众数、方差、标准差等。

2. 概率:事件的概率计算,包括古典概型、几何概型、条件概率、独立事件等。

结束语高考数学的知识点广泛,要求学生不仅要掌握基础知识,还要能够灵活运用所学知识解决实际问题。

通过系统地复习和练习,相信每位学生都能够在高考中取得优异的成绩。

高考数学知识点全归纳

高考数学知识点全归纳

高考数学知识点全归纳
一、函数与方程
1.一次函数与二次函数的性质及应用
2.指数函数与对数函数的性质及应用
3.三角函数的性质及应用
4.常用函数及其图像
5.函数的定义与性质
6.方程与不等式的解法
7.方程与不等式的应用
二、数列与数学归纳法
1.数列的概念与性质
2.等差数列与等比数列的性质及应用
3.递推数列与通项公式
4.数学归纳法的原理与应用
三、平面几何
1.平面图形的性质与判定
2.平面图形的面积与周长
3.空间几何的基本概念与性质
4.空间几何的体积与表面积
5.空间几何的投影与旋转
四、立体几何
1.空间几何的基本概念与性质
2.空间几何的体积与表面积
3.空间几何的投影与旋转
4.立体几何的组合图形
5.立体几何的体积计算
五、概率与统计
1.概率的基本概念与性质
2.事件与概率的计算
3.概率的应用与问题解决
4.统计的基本概念与性质
5.统计的数据处理与分析
六、解析几何
1.平面直角坐标系与距离计算
2.点、线、平面的位置关系与性质
3.曲线的方程与性质
4.二次曲线的方程及性质
5.解析几何的应用与问题解决
七、数论与离散数学
1.整数与整数运算
2.素数与最大公约数、最小公倍数
3.同余与模运算
4.离散数学的基本概念与性质
5.离散数学的应用与问题解决
八、数学思维与证明
1.数学思维与问题解决方法
2.定理、引理、推论的证明方法
3.逻辑与证明的基本概念与性质
4.数学思想与发展历程。

高考数学 知识点汇总

高考数学 知识点汇总

高考数学知识点汇总一、代数与函数1. 整式与分式a) 同类项与合并同类项b) 四则运算规则c) 分式的基本性质2. 方程与不等式a) 一元一次方程与一元一次不等式的解法b) 一元二次方程与一元二次不等式的解法c) 绝对值方程与不等式的解法3. 函数基本概念a) 函数的定义与性质b) 一次函数与二次函数的图像、性质与应用c) 三角函数的定义、性质及图像4. 幂与指数函数a) 幂函数的性质与图像b) 指数函数的性质与图像c) 对数函数的性质与图像二、空间与几何1. 直线与曲线a) 直线的性质与方程b) 圆的性质与方程c) 椭圆、双曲线、抛物线的性质2. 空间图形a) 空间直角坐标系与三维空间几何体的坐标表示b) 等腰三角形、直角三角形、正方体、棱锥等的性质与计算3. 相似与相等a) 三角形相似的判定与性质b) 直线与平面的相似性质c) 圆的相似性质4. 三角函数a) 三角函数的定义与性质b) 三角函数的图像、周期性与性质c) 三角函数的应用三、概率与统计1. 概率基本概念a) 随机事件与样本空间的定义b) 概率的基本性质与计算c) 条件概率与事件独立性的判定2. 排列与组合a) 排列与组合的基本原理与性质b) 组合恒等式的应用c) 排列与组合在计数问题中的应用3. 随机变量与概率分布a) 随机变量的定义与性质b) 离散型与连续型随机变量的概率分布c) 期望与方差的计算4. 统计基本概念a) 总体与样本的定义b) 参数与统计量的区别与计算c) 样本调查与统计推断的基本原理四、向量与三角恒等式1. 向量的基本概念与运算a) 向量的定义与性质b) 向量的加法、减法与数量乘法c) 向量的模与方向的计算2. 平面向量的坐标表示a) 平面向量的坐标表示方式b) 向量之间的线性运算c) 向量的数量积与夹角的计算3. 三角恒等式与解三角形a) 三角函数的基本关系式b) 特殊角的三角函数值c) 解三角形的基本原理与应用以上是高考数学的知识点汇总,主要涵盖了代数与函数、空间与几何、概率与统计、向量与三角恒等式等内容。

高考数学必考知识点汇总

高考数学必考知识点汇总

高考数学必考知识点汇总高考数学必考知识点一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.2.绝对值不等式的解法及其几何意义是什么?3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

高考数学主要知识点归纳总结

高考数学主要知识点归纳总结

高考数学主要知识点归纳总结高考数学是每个学生都将面临的重要考试科目,掌握数学的主要知识点对于取得好成绩至关重要。

本文将对高考数学的主要知识点进行归纳总结,旨在帮助学生系统地回顾复习与备考。

一、代数与函数1.1 幂次与根式- 幂次运算:指数运算法则、负指数与零指数、幂的乘法与除法、分数指数。

- 根式运算:开平方、指数开方法则、有理指数幂的开方。

1.2 一元一次方程与不等式- 一元一次方程:定义、性质、解法及应用。

- 一元一次不等式:定义、性质、解法及应用。

1.3 二次函数- 二次函数的定义及性质:顶点、对称轴、单调性、最值。

- 二次函数的图像:平移、翻折、压缩与伸缩。

- 二次函数与一元二次方程的关系。

1.4 指数与对数- 指数函数与对数函数:定义与性质。

- 指数方程与对数方程:定义、性质、解法及应用。

二、平面几何2.1 直线与圆- 直线的性质:斜率、截距、平行与垂直、两直线关系(相交、重合、平行)。

- 圆的性质:圆心、半径、圆周、弧长、扇形、圆心角、弦、切线。

2.2 三角形- 三角形的性质:内角和、外角和、角平分线、等腰三角形、等边三角形、直角三角形、勾股定理、正弦定理、余弦定理。

2.3 平面向量- 向量的表示与运算:平移、共线、单位向量、模长。

- 向量的垂直与平行:点积、夹角、投影。

2.4 图形的计算与判定- 图形的面积与体积计算:三角形、平行四边形、圆、椭圆、长方体、正方体、棱柱、棱锥、球。

- 图形的位置判断:平行线、垂直线、直线与平面、圆与直线的位置关系。

三、立体几何3.1 空间几何体- 空间几何体的名称、性质与计算。

3.2 空间向量- 空间向量的基本概念与运算:相等、共线、共面、线性运算。

3.3 空间平面- 平面的性质与判定:角平分线、垂直平分线、相交。

3.4 空间直线- 直线的性质与判定:平行、垂直、夹角。

四、概率与统计4.1 随机试验与事件- 随机试验的定义与性质。

- 事件的定义与性质。

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结一、集合与常用逻辑用语。

1. 集合。

- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。

- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。

- 集合的运算:交集、并集、补集的定义、性质和运算规则。

例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。

2. 常用逻辑用语。

- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。

- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。

- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。

- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。

例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。

二、函数。

1. 函数的概念。

- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应关系。

定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。

2. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。

需要特别注意能够对含有一个量词的全称命题进行否定。

2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。

3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。

第二部分的位置关系侧重于利用空间向量来进行证明和计算。

4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。

5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。

6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。

我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。

7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。

会用基本不等式解决简单的最大(小)值问题。

9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。

10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。

11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。

要想成功就必须付出汗水。

12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。

高考数学必考知识点大全

高考数学必考知识点大全

高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。

高考数学的知识点大全总结

高考数学的知识点大全总结

高考数学的知识点大全总结一、函数与导数1. 函数的概念2. 函数的性质3. 函数的图像4. 函数的运算5. 函数的奇偶性6. 函数的周期性7. 导数的概念8. 导数的计算9. 函数的极值10. 函数的微分与微分中值定理二、平面向量1. 向量的概念2. 向量的加减法3. 向量的数量积4. 向量的夹角5. 向量的方向角6. 向量的共线条件7. 向量的投影8. 向量的线性运算9. 平面向量的运用10. 平面向量的应用题三、三角函数1. 弧度制与角度制2. 三角函数的概念3. 三角函数的性质4. 三角函数图像5. 三角恒等式6. 三角函数的变换7. 三角函数的应用8. 三角函数的周期性9. 三角函数的图像10. 三角函数的导数与积分四、数列与数学归纳法1. 数列的概念2. 等差数列3. 等比数列4. 通项公式与前n项和5. 数学归纳法的概念6. 数学归纳法的应用7. 数列的极限五、集合与不等式1. 集合的概念2. 集合的运算3. 集合的性质4. 不等式的概念5. 不等式的解法6. 不等式的性质7. 不等式的应用8. 绝对值不等式六、概率与统计1. 概率的基本概念2. 随机事件的概念3. 概率的计算4. 条件概率与独立性5. 排列组合6. 概率分布7. 统计参数的估计8. 正态分布9. 抽样调查10. 统计图表分析七、平面几何1. 点、线、面的概念2. 角的性质3. 三角形的性质4. 四边形的性质5. 圆的性质6. 三角形的相似性7. 圆的相似性8. 圆锥曲线的概念9. 平面几何证明10. 平面几何应用题八、空间几何1. 空间点、直线、平面的位置关系2. 空间直角坐标系3. 球、圆柱、锥的性质4. 空间向量的运算5. 空间几何证明6. 空间几何应用题九、解析几何1. 解析几何基本概念2. 直线、圆的方程3. 在直线外一点到直线的距离4. 直线与圆的位置关系5. 直线、圆的参数方程6. 解析几何证明7. 解析几何应用题十、函数与导数1. 函数与导数的基本概念2. 导数的概念与计算3. 复合函数的导数4. 隐函数的导数5. 参数方程的导数6. 函数与导数的应用以上就是高考数学的知识点大全的总结,希望对大家备考有所帮助!。

高考数学重要知识点归纳总结

高考数学重要知识点归纳总结

高考数学重要知识点归纳总结一、函数与方程1. 函数的概念和性质- 定义:函数是一种关系,每个自变量都对应唯一的因变量。

- 性质:可逆性、奇偶性、周期性等。

2. 四则运算与复合函数- 加法、减法、乘法、除法的运算规则。

- 复合函数的构成和求值方法。

3. 一次函数和二次函数- 一次函数:形如y = kx + b的函数,其特点和图像。

- 二次函数:形如y = ax^2 + bx + c的函数,其特点和图像。

4. 指数与对数函数- 指数函数:形如y = a^x的函数,指数规律和图像特点。

- 对数函数:形如y = loga(x)的函数,对数规律和图像特点。

5. 三角函数- 正弦、余弦、正切函数的定义和性质。

- 周期性、图像特点和恒等式。

二、空间几何1. 平面与立体图形- 二维平面图形:三角形、四边形、圆等的性质和计算公式。

- 三维立体图形:长方体、正方体、圆柱体等的性质和计算公式。

2. 空间直线和平面- 空间直线的方程和性质。

- 平面方程的表示方法和性质。

3. 空间向量- 向量的定义和表示方法。

- 向量的加法、减法和数量积的计算方法。

4. 空间几何应用- 距离公式和角度计算。

- 位置关系、相交关系和投影关系的判定方法。

三、概率与统计1. 随机事件与概率- 随机事件的定义和性质。

- 概率的定义和计算方法。

2. 概率统计- 频率和概率的关系和计算方法。

- 抽样调查和数据分析的基本概念。

3. 正态分布和抽样分布- 正态分布的特点和应用。

- 抽样分布的概念和统计推断方法。

4. 统计图表和误差分析- 数据的整理和统计图表的绘制方法。

- 误差来源和误差分析方法。

四、解析几何1. 平面直角坐标系与曲线方程- 坐标系的建立和曲线方程的表示。

- 直线、圆、抛物线、椭圆、双曲线方程的特点和图像。

2. 参数方程与极坐标方程- 参数方程的概念和表示方法。

- 极坐标方程的概念和性质。

3. 弧长、曲率和切线方程- 弧长的计算方法和性质。

高考重点的数学知识点总结

高考重点的数学知识点总结

高考重点的数学知识点总结一、基本概念和运算1.数的基本概念2.数的分类及数的性质3.四则运算4.分数与分数的加减乘除5.无理数与实数6.绝对值7.等式与不等式8.整式的加减乘除9.方程的基本概念10.一元二次方程11.函数的概念二、平面几何1.平面直角坐标系2.直线和圆的方程3.向量4.平面向量的数量积和数量积的性质5.平面向量的应用6.三角形的性质7.多边形的性质8.圆的性质三、立体几何1.空间直角坐标系2.直线和平面的方程3.三棱锥与四棱锥4.三棱柱与四棱柱5.棱台与棱锥6.球的性质7.空间向量四、解析几何1.直线的方程2.圆的方程3.双曲线、抛物线与椭圆4.极坐标系五、数列和数学归纳法1.数列的概念与性质2.等差数列和等比数列3.数学归纳法六、集合与常用逻辑命题1.集合的概念与基本运算2.集合的关系与集合的运算3.命题及其连接词4.充分条件与必要条件5.充要条件七、概率与数理统计1.概率的概念、性质及计算方法2.事件的概率及事件的关系3.排列组合4.基本统计概念5.频率分布6.统计图八、三角函数1.角度的概念2.三角函数的概念及性质3.常用三角函数的计算4.三角函数图象及性质九、导数与微积分1.导数与微分的概念2.导数与微分的计算3.函数的求导法则4.不定积分的计算5.定积分的计算6.微分方程的基本概念以上是高考数学的主要知识点,希望考生在备考过程中着重复习理解这些知识点,提高数学水平,取得优异的成绩。

高考数学高考必备知识点总结精华版

高考数学高考必备知识点总结精华版

高考前重点知识回顾第一章-集合(一)、集合:集合元素的特征:确定性、互异性、无序性。

1、集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;①n个元素的子集有2n个。

n个元素的真子集有2n-1个。

n个元素的非空真子集有2n-2个。

[注]①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题。

②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题。

2、集合运算:交、并、补.(三)简易逻辑构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p ∧q”);非p(记作“┑q”) .1、“或”、“且”、“非”的真假判断4、四种命题的形式及相互关系:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p。

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。

若pq且qp,则称p是q的充要条件,记为p⇔q。

第二章-函数一、函数的性质(1)定义域:(2)值域:(3)奇偶性:(在整个定义域内考虑)①定义:①偶函数:,②奇函数:②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求;d。

比较或的关系。

(4)函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,⑴若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数;⑵若当x1<x2时,都有f(x1)〉f(x2),则说f(x) 在这个区间上是减函数.二、指数函数与对数函数指数函数的图象和性质对数函数y=log a x(a>0且a1)的图象和性质:⑴对数、指数运算:⑵()与()互为反函数。

第三章数列1。

⑴等差、等比数列:(2)数列{}的前项和与通项的关系:第四章-三角函数一.三角函数1、角度与弧度的互换关系:360°=2 ;180°= ;1rad=°≈57。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学重点知识点汇总
高考,意味着什么?那是一座窄窄的桥,千军万马将要从这里挤过,要发挥的优势和能力,来保证自己不被淘汰。

下面就是给大家带来的高考数学知识点总结,希望能帮助到大家!
高考数学知识点总结1
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=q,则我们称p为q 的充分条件,q是p的必要条件。

这里由p=q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?
事实上,与“p=q”等价的逆否命题是“非q=非p”。

它的意思是:若q不成立,则p一定不成立。

这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”
若有p=q,同时q=p,则p既是q的充分条件,又是必要条件。

简称为p是q的充要条件。

记作p=q
回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A 成立,那么称A等价于B,记作A=B。

“充要条件”的含义,实际上与“等价于”的含义完全相同。

也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。

如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。

“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高考数学知识点总结2
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。

等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。

古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m 个等可能基本事件,那么事件A发生的概率为。

古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。

求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。

高考数学知识点总结3
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。

若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin 〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。

若a、b共线,则a×b=0。

向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);。

相关文档
最新文档