《传热学》实验指导书
传热学综合试验指导书
传热学综合实验指导书李长仁富丽新编写沈阳航空工业学院动力工程系2004.01实验一空气纵掠平板时参数的测定流体纵掠平板是对流换热中最典型的问题,总是被优先选作教学中对流换热的对象,是可以分析求解的最简单情况,可以籍此阐明对流换热的原理和基本概念。
本实验应用空气纵掠平板对流换热装置完成以下三个实验:1.空气纵掠平板时局部换热系数的测定;2.空气纵掠平板时流动边界层内的速度分布;3.空气纵掠平板时热边界层内的温度分布。
一空气纵掠平板时局部换热系数的测定1.实验目的1)流体纵掠平板是对流换热中最典型的问题之一,通过空气纵掠平板时局部换热系数的测定,加深对对流换热基本概念和规律的理解。
2)通过对实测数据的整理,了解局部换热系数沿平板的变化规律,分析讨论其变化原因。
3)了解实验装置的原理,学习对流换热实验研究方法和测试技术。
2.实验原理恒热流密度下,沿板长局部换热系数改变,联系着壁温沿板长也变化,因此就存在纵向导热。
同时壁温不同向外界辐射散热也不同。
为了确定对流换热系数,必须考虑纵向导热和辐射的影响。
图1微元片热平衡分析对平板上不锈钢片进行热分析,取其微元长度dx,如图1所示,在稳定情况下的热平衡:电流流过微左侧导入右侧导对流传给辐射散对板体元片的发热 + 热量 = 出的热 + 空气的热 + 失的热 + 的散热量Qδ/Q g Q cdin量Q cdout量Q cv量Q R量Q cd各项可分别写为:dx L VI dx b q Q v g ⎪⎭⎫⎝⎛=⋅⋅⋅=2δx s cdin dxdT b Q |⋅⋅⋅-=δλ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⋅⋅-=⋅⋅⋅-=+dx dx dT dx d dx dT b dx dT b Q s dx x s cdout δλδλ| ()bdx T T Q f x cv -=α()bdx T T Q f b R 44-=εσ0=cd Q式中: b ─片宽,m δ─片厚,m L ─平板长度,m V ─不锈片两端电压降,V I ─流过不锈钢片的电流量,Iq v ─电流产生的体积发热值λs ─不锈钢片的导热系数,w/(m •℃)T ─不锈钢片壁温,K T f ─空气来流温度,Kαx ─离板前缘x 处的局部换热系数,w/(m 2•℃) ε─不锈钢片黑度σb ─斯蒂芬波尔兹曼常数=5.67×10-8,w/(m 2·K 4) 代入微元片热平衡式后得出局部换热系数的表达式:()ff b s x T T T T dx Td bL VI ---+=44222εσδλα (1) 上式中V 、I 、T 、T f 均可由测试得到,但由于壁温T 随x 变化,只能用作图法求d 2T /dx 值。
传热学实验指导书
差和热系统中温度差的比例尺度,C= e1 − e2 ( v / °c )。当两个表面均为对流边界条件时, t1 − t2
C=
e∞1 t ∞1
− e∞2 − t∞2
(v/ °c)
,其中
e1, e2
分别为相应于外墙和内墙壁温的电势值,
e∞1, e∞ 2
为相应流体温度的电动势。也就是图中节点上的电动势。在先定比例系数后就可先定加 在电模型最外层两边界上电动势差值。利用系数可以从测得的电动势值换算相应的温度 值。
图 1-2
模拟墙角的几何尺寸为 L1 = 2.2m, L2 = 3.0m, L3 = 2.0m, L4 = 1.2m ;材料的导热系 数为 λ =0.53W\(m.K,).. 等温边界条件时,墙角外壁面温度 t1 = 30°c ,内壁面温度 t2 =0°c ;模拟墙角两端应
维持 2V 的电压差,电压、温度比例系数 c1
相应的电网络节点上的电动势方程为
ei−1, j − ei, j + ei, j−1 − ei, j + ei+1, j − ei, j + ei, j+1 − ei, j = 0 (1-4)
R1
R2
R3
R4
图 1—1
只要满足 R1 = R2 = R3 = R4 = R
的条件,式( 1-3)和式(1-4 )完全类似。
导热现象和导电现象之间的相似之处可以从他们的数学描写式可以看出。 在导热系统中,二维稳定导热微分方程为:
∂ 2t + ∂ 2t = 0 (1-1) ∂x 2 ∂y 2 在导电系统中,二维稳定导电微分方程为:
∂ 2e + ∂ 2e = 0 (1-2) ∂x 2 ∂y 2
热工“传热学”实验安排与实验指导书
热工“传热学”实验安排与实验指导书12科热工“传热学”实验安排一、时间:2014.12.15下午2:00 学号1-22号2014.12.15上午4:00 学号23-44号二、地点:新校区A4楼411三、内容:实验一球体法粒状材料的导热系数的测定实验二套管换热器液-液换热实验实验三中温辐射黑度的测定四、要求1.实验前应预习与实验有关的教材内容和实验指导书,写出预习报告。
2、按时参加实验。
3.实验时应严肃认真、一丝不苟,并作好记录。
4.实验结束时,经指导教师审阅实验记录后,方可结束实验。
5.按规定格式认真填写实验报告,并按期交出。
《传热学》实验指导书周露亮编20xx年11月1目录实验要求 (3)实验一球体法粒状材料的导热系数的测定 (4)实验二套管换热器液-液换热实验 (8)实验三中温辐射黑度的测定 (11)附录1 铜-康铜热电偶分度表 (15)附录2 精密数字温度温差仪使用方法 (16)2实验要求1.实验前应预习与实验有关的教材内容和实验指导书,了解实验目的、实验原理和实验要求,做到心中有数。
2.在实验室要首先熟悉实验装置的构造特点、性能和使用方法,使用贵重仪器时需得到指导教师的许可,方可动用。
3.实验时应严肃认真、一丝不苟,细致地观察实验中的各种现象,并作好记录,通过实验,训练基本操作技能和培养科学的工作作风。
4.实验结束时,学生先自行检查全部实验记录,再经指导教师审阅后,方可结束实验。
5.学生实验时,如出现实验仪器损坏情况,应及时向指导教师报告。
6.按规定格式认真填写实验报告,并按期交出。
3实验一球体法粒状材料的导热系数的测定一、实验目的1. 巩固稳定导热的基本理论,学习球体法测定物质的导热系数的实验方法;2. 实验测定被测材料的导热系数λ;3. 绘制出材料导热系数λ与温度t的关系曲线。
二、实验原理加热圆球(见图1)由两个壁厚1.2毫米的大小同心圆球(1)组成。
小球内装有电加热器(2)用来产生热量。
传热学实验指导书
[实验一]用球体法测定粒状材料的导热系数一、实验目的1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。
2、确定热导率和温度之间的函数关系。
二、实验原理热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。
对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。
各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。
球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。
设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律:drdtr dr dt Aλπλφ24-=-=(1) 边界条件2211t t r r t t r r ====时时(2)1、若λ=常数,则由(1)(2)式求得122121122121)(2)(4d d t t d d r r t t r r --=--=πλπλφ[W])(2)(212112t t d d d d --=πφλ[W/(m ·K)](3)2、若λ≠常数,(1)式变为drdtt r )(42λπφ-=(4) 由(4)式,得dt t r dr tt r r ⎰⎰-=2121)(42λπφ 将上式右侧分子分母同乘以(t 2-t 1),得)()(4121222121t t t t dtt rdr t t r r ---=⎰⎰λπφ(5)式中1221)(t t dtt t t -⎰λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即1221)(t t dtt t t m -=⎰λλ,工程计算中,材料的热导率对温度的依变关系一般按线性关系处理,即)1(0bt +=λλ。
因此,)](21[)1(21012021t t bt t dtbt t t m ++=-+=⎰λλλ。
传热学实验指导书
《传热学》实验指导书热工教研室编目录实验要求 (2)实验一球体法粒状材料的导热系数的测定 (3)实验二平板法导热系数的测定 (7)实验三套管换热器液-液换热实验 (12)实验四中温辐射黑度的测定 (16)附录1 铜-康铜热电偶分度表 (22)附录2 精密数字温度温差仪使用方法 (23)实验要求1.实验前应预习与实验有关的教材内容和实验指导书,了解实验目的、实验原理和实验要求,做到心中有数。
2.在实验室要首先熟悉实验装置的构造特点、性能和使用方法,使用贵重仪器时需得到指导教师的许可,方可动用。
3.实验时应严肃认真、一丝不苟,细致地观察实验中的各种现象,并作好记录,通过实验,训练基本操作技能和培养科学的工作作风。
4.实验结束时,学生先自行检查全部实验记录,再经指导教师审阅后,方可结束实验。
5.学生实验时,如出现实验仪器损坏情况,应及时向指导教师报告。
6.按规定格式认真填写实验报告,并按期交出。
实验一球体法粒状材料的导热系数的测定一、实验目的1.巩固稳定导热的基本理论,学习球体法测定物质的导热系数的实验方法;2.实验测定被测材料的导热系数λ;3. 绘制出材料导热系数λ与温度t的关系曲线。
二、实验原理加热圆球(见图1)由两个壁厚1.2毫米的大小同心圆球(1)组成。
小球内装有电加热器(2)用来产生热量。
大球内壁与小球外壁各设有三对铜-康铜热电偶(4)。
当温度达到稳定状态后,电加热器产生的热量全部通过中间的测试材料(3)传到外气。
1.大小同心球;2.电加热器;3.颗粒状试材;4.铜康铜热电偶;5.专用稳压电源;6.专用测试仪;7.底盘;8.UJ36a电位差计图1 加热圆球示意图测取小球的温度t1,t2,t3, 取其平均温度:T1=(t1+ t2+ t3)/3;测取大球的温度t4,t5, t6,取其平均温度:T2=(t4+ t5+ t6)/3;根据圆球导热公式:λ=[UI(1/ D1-1/D2)]/[2π(T1+ T2)]-----------(1); 式中:U——加热电压;I——加热电流;D1——小球直径;D2——大球直径;三、实验装置及主要技术指标实验装置YQF-1型导热系数测定仪的面板图见图2专用电源的面板图见图3图2 YQF-1型导热系数测定仪的面板图图3 专用电源的面板图1.电源开关;2.电源指示灯;3. 3.5位数显毫伏表;4.毫伏表调零电位器;5.补偿电压调节电位器;6.补偿按键;7.热电偶测量电压输出端;8.热电偶输入选择开关。
传热学实验指导.
实验一 稳态平板法测定绝热材料导热系数一、实验目的1.巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的实验方法和技能;2.学会如何测定实验材料的导热系数;3.了解确定实验材料导热系数与温度的关系。
二、实验内容1.利用稳态平板法测定绝热材料导热系数;2.确定实验材料导热系数与温度的关系。
三、仪器设备稳态平板法测定绝热材料导热系数的实验装置如图1-1所示。
被实验材料做成二块方形薄壁平板试件,面积为300×300[mm 2],实际导热计算面积A 为200×200[mm 2],板的厚度为δ[mm]。
平板试件分别被夹紧在加热器的上下热面和上下水套的冷面之间。
加热器的上下面和水套与试件的接触面都设有铜板,以使温度均匀。
利用薄膜式加热片实现对上、下试件热面的加热,而上下导热面积水套的冷却面是通过循环冷却水(或通以自来水)来实现。
在中间200×200[mm 2]部位上安设的加热器为主加热器。
为了使主加热器的热量能够全部单向通过上下两个试件,并通过水套的冷水带走,在主加热器四周(即200×200[mm 2]之外的四侧)设有四个辅助加热器(1~4),利用专用的温度跟踪控制器使主加热器以外的四周保持与中间主加热器的温度相一致,以免热流量向傍侧散失。
主加热器的中心温度1t (或2t )和水套冷面的中心温度3t (或4t )用4个热电偶(埋没在铜板上)来测量;辅助加热器1和辅助加热器2的热面也分别设置两个辅热电偶5t 和6t (埋没在铜板的相应位置上),其中一个辅热电偶(5t )(或6t )接到温度跟踪控制器上,与主加热器中心接来的主热电偶2t (或1t )的温度讯号相比较,通过跟踪器使全部辅加热器都跟踪到与主加热器的温度相一致。
而在实验进行时,可以通过热电偶1t (或2t )和热电偶3t (或4t )测量出一个试件的两个表面的中心温度。
也可以再测量一个辅热电偶的温度,以便与主热电偶的温度相比较,从而了解主、辅加热器的控制和跟踪情况。
南昌大学传热学实验指导书1
传热学实验指导书南昌大学机电学院热能与动力工程系目录实验一稳态平板法测定绝热材料导系数 (2)实验二自由对流横管管外放热系数的测定 (5)实验三中温法向辐射时物体黑度的测定 (9)实验一 绝热材料稳态平板法导热系数测定一、 测试目的1 巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的实验方法和技能。
2 测定实验材料的导热系数。
3 确定实验材料导热系数与温度的关系。
二、 测试原理导热系数是表征材料导热能力的物理量。
对于不同的材料,导热系数是各不相同的;对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。
各种材料的导热系数都用实验方法来测定,如果要分别考虑不同因素的影响,就需要针对各种因素加以试验,往往不能只在一种实验设备上进行。
稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定实验,测定材料的导热系数及其和温度的关系。
实验设备是根据在一维稳态情况下通过平板的导热量Q 和平板两面的温差Δt 成正比,和平板的厚度δ成反比,以及和导热系数λ成正比的关系来设计的。
我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热量为:F t Q ⋅∆⋅=δλ[W] 测试时,如果将平板两面的温差Δt =T R -T L 、平板厚度δ、垂直热流方向的导热面积F 和通过平板的Q 测定以后,就可以根据下式得出导热系数: Ft Q ⋅∆=δλ [ W/(m 。
℃)] 需要指出,下式所得的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为: )(21L R t t t +=-[℃] 在不同的温度和温差条件下测出相应的λ值。
然后将λ值标在λ--t 坐标图内,就可以得出λ=f(-t )的关系曲线。
三、 实验装置及测量仪表稳态平板法测定绝热材料的实验装置如图1-1所示。
被实验材料作成二块方形薄壁平板试件,面积为300×300[mm 2],实际导热计算面积F 为 200×200 [mm 2] , 板的厚度δ为20[mm]。
南昌大学传热学实验指导书1
1.实验目的、原理、步骤、数据整理; 2.作出直线,写出准则方程式; 3.误差分析.
七、思考题
1.怎样才能使本实验管的加热条件成为常壁温? 2.管子表面的热电偶应沿长度和圆周均匀分布,目的何在? 3.如果室内空气温度不平静,会导致什么后果? 4.本实验的 范围有多大,是否可达到紊流状态?
实验二 自由对流横管管外放热系数的测
定
一、实验目的和要求
1. 了解空气沿管表面自由放热的实验方法,巩固课堂上学过的知识; 2. 测定单管的自由运动放热系数;
3. 根据对自由运动放热的相似分析,整理出准则方程式。
二、实验原理
对铜管进行电加热,热量应是以对流和辐射两种方式来散发的,所以对 换热量为总热量与辐射换热量之差,即:
t3(或t4)。进行实验时,可以通过热电偶t1(或t3)和t2(或t4)测量出 一个试件的两个表面的中心温度。如图1-2所示。
温度是利用温度数显表和转换开关来测量的。主加热器的电功率是 数字电压表指示值与主加热器阻值乘积计算(该加热器冷阻和热阻一 致),即P=Q=U2/R(W),R为主加热器阻值。 [附]实验台的主要参数 1.试验材料 2.试件外型尺寸:260×260 mm2 3.导热计算面积F:200 ×200 mm2(即主加热器面积) 4.试件厚度δ:20mm 5.主加热器电阻值:100Ω 6.辅加热器(每个)电阻值:50Ω 7.热电偶材料:镍铬-镍硅 8.试件最高加热温度:≤80℃
3.整理数据; 根据所测热电势算出平均值查出对应的温度,计算加热器的热量 a、 求对流放热系数 b、 查出物性参数 定性温度取空气边界层平均温度,在书的附录中查得空气的导热系 数、 热膨胀系数、运动粘度 导温系数、和普朗特数。 c、 用标准公式计算对流换热系数Nu和。
传热学实验指导书最终版
辽宁工业大学土木建筑工程学院 建筑环境与设备工程教研室 2010 年 11 月
实验一 一、实验目的和任务:
稳态平板法测定材料的导热系数λ
1、巩固和深化稳定导热过程的基本理论,学习用平板法测定材料导热系数的实验方法和技 能。 2、设计测定材料导热系数的方法。 3、确定导热系数与温度的关系。 4、学会用电位差计及热电偶测量温度,用电位差计及标准电阻精确测定电功率。 二、实验原理: 导热系数是表征材料导热能力的物理量。对于不同的材料导热系数是各不相同的,对于同 一材料,导热系数还随着温度、压力、物质的结构和重度等因素而异。各种保温材料的导热系 数都用实验的方法来测定。稳态平板法就是一种应用一维稳态导热过程的基本原理,测定保温 材料导热系数的方法。 在稳态情况下,一维导热过程可直接由下面傅立叶定律求解:
θ 0 ,t 1 =
2q
λ
at1 iθ 1 fc(0) =
2q
λ
δ1
at1
1
π
(2-4)
在 t1 时刻,由式(2-3) ,θδ1,t1 应为
θt 2 ierfc(
2 at 2
)
(2-5)
以式(2-4)除式(2-5) ,并消去 q 及 整理后得
ierfc(
δ1
2 at 2
)=
按下电子秒表的记时按钮,记下加热时间 t1 并继续启动电子秒表。 (注意时间是累计时间) ,把 电位差计读数拨到比 t0,0 高一些的 tδ,t1 的读数(比 t0,t1 小些) ,记下这些读数。当检流计指零时, 按下电子秒表的记时按钮,记下加热时间 t2,并继续启动秒表。用同样的方法测出几组 t0,t1, t1 和 tδ1,t2 t2。各组数值应选择在时间间隔为 40~120 秒内。 在记录最后一个实验时间 t2 的同时,按停电子秒表,记下加热总时间。整个试验应在 20 分 钟内完成。 5、测出标准电阻 R1 和 R2 上的压降 V1 和 V2,计算出平面热的热功率。
《传热学》实验指导书
《传热学》实验指导书建筑环境与设备工程教研室实验一 强迫对流换热实验一、实验目的1、了解热工实验的基本方法和特点;2、学会翅片管束管外放热和阻力的实验研究方法;3、巩固和运用传热学课堂讲授的基本概念和基本知识;4、培养学生独立进行科研实验的能力。
二、实验原理1、翅片管是换热器中常用的一种传热元件,由于扩展了管外传热面积,故可使光管的传热热阻大大下降,特别适用于气体侧换热的场合。
2、空气(气体)横向流过翅片管束时的对流换热系数除了与空气流速及物性有关以外,还与翅片管束的一系列几何因素有关,其无因次函数关系可表示如下:N u =f(R e 、P r 、、、、、、olo t o o o D P D P D B D D H /δn) (1) 式中:N u =γD h •为努谢尔特数;R e =γm o u D •=ηmo G D • 为雷诺数;P r =h ν=λμ•C 为普朗特数; H 、δ、B 分别为翅片高度、厚度、和翅片间距;P t 、P l 为翅片管的横向管间距和纵向管间距;n 为流动方向的管排数; D o 为光管外径,u m 、G m 为最窄流通截面处的空气流速(m/s )和质量流量 (kg/m 2s ), 且G m =u m •ρ。
λ、ρ、μ、γ、α为气体的特性值。
此外,换热系数还与管束的排列方式有关,有两种排列方式,顺排和叉排,由于在叉排管束中流体的紊流度较大,故其管外换热系数会高于顺流的情况。
对于特定的翅片管束,其几何因素都是固定不变的,这时,式(1)可简化为:N u =f (R e 、P r ) (2)对于空气,P r 数可看作常数,故N u =f (R e ) (3)式(3)可表示成指数方程的形式N u =CR e n (4)式中,C 、n 为实验关联式的系数和指数。
这一形式的公式只适用于特定几何条件下的管束,为了在实验公式中能反映翅片管和翅片管束的几何变量的影响,需要分别改变几何参数进行实验并对实验数据进行综合整理。
传热学综合性实验指导书
《传热学》实验指导书黄金张国庆广东工业大学材料与能源学院实验指导书实验项目名称:两种传热方式性能参数的综合测定 实验项目性质:专业基础课实验(综合性实验) 所属课程名称:传热学 实验计划学时:4一、 实验目的1.熟悉在稳定热流条件下,用平板法测定导热系数的方法。
2.掌握在不同温度条件下,试材导热系数的测定。
3.了解确定导热系数与温度的变化关系。
4.了解对流换热的实验研究方法。
5.测定空气横向流动管簇表面时的平均放热系数α,并将实验数据整理成准则方程式。
6.学习测量风速、温度、热量的基本技能。
二、 实验内容和要求实验测试内容分两部分进行,分别为平板法测定材料的导热系数、强迫对流管簇管外换热系数测定及中温物体辐射黑度测定。
1.第一部分测试内容-平板法测定材料的导热系数平板法是应用一维稳定导热过程的基本原理,测定绝热材料导热系数的实验测定方法之一。
本装置由的中心为一发热板,通电后发出热量Q=IV (W )向两侧导热,如测得中心发热板和两侧冷板之间的温差t ∆,又已知试材厚度δ和试材的传热面积F F ,则可得试材的导热系数:t F VI ∆=2/δλ。
本实验装置由实验装置本体1~5,硅整流电源6,转换开关7,电位差计8等组成,见附图一所示。
热源板见附图二所示,为两块180×180mm 直接通电的薄膜发热板对称复合而成(可以视为均匀板),每块板对称复合而成可以分成9个60×60mm 的发热区。
以中心部位为测试区。
其余部分为保证一维导热的辅助加热区。
在热源板上装有铜—康铜电偶,以测出其温度。
冷侧均温板为附有二平行布置的蛇形冷却管的铜板。
二蛇形管内水流方向相反,以使冷侧板温度分布均匀。
在板上装有铜—康铜热电偶,以测出该处温度。
所有热电偶的电势、中心热源板的电压、通过标准电阻的电压降,都经过转换开关后由电位差计测量。
线路见附图三。
表1列出转换开关位置相对应的测量值。
热电偶冷端放于冰水瓶中。
传热学实验指导书
传热学实验指导书材料与冶金学院工程热物理实验室二O一一年六月三日实验1 平板法测定绝热材料导热系数实验一、实验目的1. 巩固稳态导热的基本理论;2. 掌握测定导热系数的平板稳态导热法;3. 测定保温材料的导热系数及随温度变化的关系。
二、实验原理导热系数是衡量物质导热能力的重要指标,其值与材料的几何形状无关,而与材料的成分、内部结构、密度和温度等有关。
在温度变化不大的范围内,对大多数材料可以认为其导热系数与温度成线性关系,如()λλ=+01bt (6-1-1)式中 λ0—材料在0℃时的导热系数,[W/m ⋅℃]; b —实验常数,取决于材料的性质; t —导热材料的温度,[℃]。
本实验采用平板稳态导热法测定材料的导热系数,其导热为一维稳态导热,如图1所示。
若用平壁的热面与冷面的平均温度()t t h c +2代入式(6-1-1)中的t ,则所得的导热系数就是在此温度范围内的平均导热系数⎺,即图1 通过平板的导热λλλ=++=+00121[()]()b t t bt h c(6-1-2) 另一方面,根据傅里叶定律,面积为F 的平壁的导热量Q 可表示为:Q t x F bt dtdxF =-=-+λ∂∂λ01() (6-1-3) 分离变量后积分,并整理得Q b t t t tFt tF h c h c h c=++-=-λδλδ12[()] (6-1-4)或⎺λ=QF t th cδ()-(6-1-4a)式中Q—导热量,[W];δ—平壁壁厚,[m];F—导热壁的计算面积,[m2];t th c,—平壁的热面和冷面的温度,[℃]。
在实验中,δ和F是已知的,可见只要测定Q、th 和tc,就可确定平均导热系数λ。
测出不同平均温度t所对应的平均导热系数λ,就可确定λ和t 的关系曲线。
三、实验装置及本实验的导热系数计算式本实验装置是由两部分组成:1.炉体部分;2.测量和控制部分。
实验装置简图如图2所示。
本实验装置为具有主、辅两个加热器,采用双试件双冷却器进行测定材料的导热系数。
传热学实验导书2
[实验一]用球体法测定粒状材料的导热系数一、实验目的1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。
2、确定热导率和温度之间的函数关系。
二、实验原理热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。
对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。
各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。
球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。
设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律:drdtr dr dt Aλπλφ24-=-= (1) 边界条件2211t t r r t t r r ====时时 (2)1、若λ= 常数,则由(1)(2)式求得122121122121)(2)(4d d t t d d r r t t r r --=--=πλπλφ[W])(2)(212112t t d d d d --=πφλ [W/(m ·K)] (3)2、若λ≠ 常数,(1)式变为drdtt r )(42λπφ-= (4) 由(4)式,得dt t r dr tt r r ⎰⎰-=2121)(42λπφ 将上式右侧分子分母同乘以(t 2-t 1),得)()(4121222121t t t t dtt rdr t t r r ---=⎰⎰λπφ (5) 式中1221)(t t dtt t t -⎰λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即1221)(t t dtt t t m -=⎰λλ,工程计算中,材料的热导率对温度的依变关系一般按线性关系处理,即)1(0bt +=λλ。
因此,)](21[)1(21012021t t bt t dtbt t t m ++=-+=⎰λλλ。
《传热学》课程实验指导书
《传热学》课程实验指导书袁守利编汽车工程学院2013年10月前言1.实验总体目标、任务与要求培养本科生对涉及到热传播现象的工程问题进行实验研究的兴趣,并能对实验技术、数据采集系统、基本数据处理方法有所了解。
学习实验研究和整理实验数据的理论基础及其应用于传热实验的基本技能;初步掌握测温、测热、测流量的基本方法。
2.适用专业热能与动力工程3.先修课程《传热学》相关章节。
4.实验项目与学时分配5. 实验改革与特色根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。
实验一 稳态球体法测粒状材料的导热系数球体法测材料的导热系数是基于等厚度球状壁的一维稳态导热过程,它特别适用于粒状松散材料。
球体导热仪的构造依球体冷却的不同可分为空气自由流动冷却和恒温液体强制冷却两种。
本实验属后一种恒温水冷却液套球体方式。
一、实验原理图1所示球壁的内径直径分别为d 1和d 2(半径为r 1和r 2)。
设球壁的内外表面温度分别维持为t 1和t 2,并稳定不变。
将傅里叶导热定律应用于此球壁的导热过程,得dr dtF Q λ-=drdt r 24πλ∙-= W (1)边界条件为r=r 1 t=t 1r=r 2 t=t 2 图 1原理图由于在不太大的温度范围内,大多数工程材料的导热系数随温度的变化可按直线关系处理,对式(1)积分并代入边界条件,得)(2121t t d d Q m -=δλπ W (2)或 )(2121t t d d Q m -=πδλ W/m ·℃ (3)式中 δ——球壁之间材料厚度,δ=(d 2-d 1)/2,m ;λm ——t m =(t 1+t 2)/2时球壁之间材料的导热系数。
因此,实验时应测出内外球壁的温度t 1和t 2,然后可由式(3)得出t m 时材料的导热系数λm 。
测定不同t m 下的λm 值,就可获得导热系数随温度变化的关系式。
二、实验设备导热仪本体结构及量测系统示意图如图2所示。
传热学试验指导书
3.稳态双平板法测量非金属的导热系数一、实验目的1.巩固导热理论知识,了解建立较严格的一维稳态导热的实际方法。
2.用稳态双平板法测定非金属材料的导热系数,确定导热系数与温度之间的关系:0(1)btλλ=+或A Btλ=+。
3.学习实际问题的实验研究方法和有关测试技术。
二、实验装置本实验装置主要包括实验本体、电源、恒温水浴和测试系统。
图3.1 实验装置原理示意图实验本体为对称的双平板结构,本体中央为圆形主加热器及其周围的环形辅助加热器,由电阻带均匀绕成的薄片型电热器。
主、辅加热器共平面,之间有一个小的环形隔缝。
在主、辅加热器两侧,各放置由导热系数较大的黄铜做成的方形主均热板和方形辅助均热板,主、辅均热板同厚度共平面,二者之间有5mm的方形隔缝。
两块边长等于辅助均热板边长的等厚度的同种试件分别置于两侧的均热板上。
并在每块试材另一面各安置一个方形冷却器,最后用机械方法从两个方向将它们压紧以减小存在于各交界面上的接触热阻。
冷却器内有盘旋形小槽,恒温水在其中沿槽盘旋流动,使试件的冷却面温度均匀一致。
超级恒温水浴向两个冷却器并联供给恒温水,使得两块试材的冷却面等温。
由双路直流稳压器分别对主、辅加热器单独供电。
在实验时,对于已设定的主加热器功率,可以调节辅助加热器的功率,使得在热稳定时主、辅均热板间的隔缝在径向上无温差,这意味着它们之间无热量传递,主均热板表面是等温面,以主加热器功率的一半对试件的中央部分供应一维导热热流。
这样就达到了实验原理的要求。
必须特别指出,试件的厚度不宜过大,否则,由于试件侧向散热及其径向温度梯度引起的径向导热,使得主均热板和冷却器间的试件内各等温面不再是互相平行的平面,不能满足一维导热实验原理的要求。
为了减少实验本体的侧面散热,其周围被良好保温。
在主、辅均热板面和冷却器冷却面内共埋设8对镍铬—镍硅热电偶。
通过多点切换开关由电位差计测量各热电偶的输出热电势,查表确定各点温度。
三、实验原理双平板法是以无限大平板的导热规律为基础。
《传热学》实验指导书
XX学院实验指导书课程编号:课程名称:传热学实验学时: 6 适用专业:能源与动力工程制定人:制(修)订时间: 2020年8月专业负责人审核:专业建设工作组审核:2020年8月实验纪律要求1.请按照时间安排准时进入实验室。
2.请不要带入与实验无关的各类用具及杂物。
请保持安静、整洁的实验环境。
3.请自觉遵守实验室的各项规章制度,听从实验室管理人员和教师的安排。
4.实验过程中设备出现故障时,请不要擅自处理,并请立即报告实验室管理人员。
5.实验完毕时,请按指定位置摆放实验物品,把工作凳排列整齐,有序地离开实验室。
6.学生操作实验过程中,请不要随意更换实验配置,坚决杜绝盗取配件等行为。
7.请爱护实验室的各种设备。
第一部分实验大纲一、实验教学目的与基本要求通过《传热学》实验,使学生掌握基本操作技能,增强感性认识,加深对基本概念的理解、学会整理、分析实验数据的方法,为今后专业学习和从事科学研究奠定良好基础。
要求:(1)了解实验装置,熟悉空气流速及管壁温度的测量方法,掌握测试仪器、仪表的使用方法;(2)掌握实验基本原理、实验装置结构,学会使用实验仪器与设备;(3)通过测定空气横掠单管时的表面传热系数,掌握将实验数据整理成准则方程式的方法。
(4)掌握对数据进行处理和误差分析的方法。
二、实验课程内容与学时分配三、主要仪器设备四、实验报告与考核方式1.实验报告每个实验均撰写实验报告,实验报告按统一格式,采用统一的报告纸、统一的原始数据记录纸。
报告内容包括:实验名称、实验目的、实验仪器、实验原理、实验内容及简要步骤、数据处理、讨论与小结、原始记录单。
学生要认真书写,字迹整洁、清晰。
2.考核方式(1)实验课程的考核方式:考试以笔试或操作等形式进行;(2)实验课考核成绩按百分制评定,实验考核由实验出勤、实验操作和实验报告组成。
某个实验未出勤则不得分。
在实验出勤的前提下,单个实验得分=实验操作得分×50% + 实验报告得分×50%。
传热学换热器实验指导书(修改版1)
《传热学》换热器综合实验指导书实验名称:换热器综合实验 实验类型: 综合性实验 学 时:2适用对象: 热动、集控、建环、制冷专业一、实验目的1、熟悉换热器性能的测试方法,了解影响换热器性能的因素。
2、掌握间壁式换热器传热系数的测定方法。
3、了解套管式换热器、板式换热器和列管式换热器的结构特点及其性能的差别。
4、加深对顺流和逆流两种流动方式换热器换热能力差别的认识。
5、熟悉流体流速、流量、压力、温度等参数的测量技术。
二、实验要求1、以传热系数为纵坐标,冷(热)水流量为横坐标绘制换热器传热性能曲线。
2、对三种不同型式的换热器传热性能进行比较。
3、分析影响换热器性能的因素。
4*、根据实验结果,计算冷热流体与管壁的表面传热对流换热热阻,管壁的导热热阻,进而计算传热过程的传热系数,比较在传热过程中各个热阻所占的比例。
(选作)三、实验原理换热器为冷热流体进行热量交换的设备。
本次实验所用到的均是间壁式换热器,热量通过固体壁面由热流体传递给冷流体。
实验原理如图1所示。
电加热水箱套管式换热器列管式换热器板式换热器冷水顺逆流换向阀门组热水浮子流量计冷水浮子流量计冷水泵热水泵热水箱冷水箱图1 换热器综合实验台原理图通过测量冷热流体的流量,进出口温度,可以由式(1)~(3)计算换热器的换热量,由式(5)计算换热器的温差,因此可以计算出换热器的传热系数(6)。
换热器的传热系数综合反映了传热过程的难易程度,表示单位传热温差传热面积下传热过程所传递的热量。
另外结合换热器的结构数据,由式(7)~(8)计算冷热流体与管壁的表面传热对流换热系数和传热系数,进而比较三个环节的热阻相对大小。
其中,(7)式中的物性参数可由定性温度查取,而特征尺寸由结构数据确定。
(8)式中的导热系数根据管材查取。
热流体放热量 )(11111"-'=t t m c φ (1)冷流体吸热量)(22222'-"=t t m c φ (2)平均换热量221φφφ+=(3)热平衡误差%10021⨯-=∆φφφ (4) 换热器温差minmax minmax lnt t t t t m ∆∆∆-∆=∆ (5)传热系数mt A k ∆=φ(6)内部流动对流换热4.08.0Pr Re 023.0=Nu (7)传热过程传热系数 21111h h k ++=λδ (8)四、实验所需仪器、设备、材料(试剂)本实验主要对应用较广的三种换热器进行实验:套管式换热器、板式换热器和列管式换热器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热学实验指导书XX大学XX学院XX系二〇一X年X月一、导热系数的测量导热系数是反映测量热性能的物理量,导热是热交换三种基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各研究领域的课题之一。
要认识导热的本质特征,需要了解粒子物理特性,而目前对导热机理的理解大多数来自固体物理实验。
材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。
因此,材料的导热系数不仅与构成材料的物质种类有关,而且与它的微观结构、温度、压力及杂质含量相联系。
在科学实验和工程设计中所采用材料导热系数都需要用实验方法测定。
1882年法国科学家J ·傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律的基础上,从测量方法来说,可分为两大类:稳态法和动态法,本实验是稳态平板法测量材料的导热系数。
【实验目的】1、了解热传导现象的物理过程2、学习用稳态平板法测量材料的导热系数3、学习用作图法求冷却速率4、掌握一种用热电转换方式进行温度测量的方法【实验仪器】1、YBF-3导热系数测试仪 一台2、冰点补偿装置 一台3、测试样品(硬铝、硅橡胶、胶木板) 一组4、塞尺 一把5、游标卡尺(量程200mm ) 一把6、天平(量程1kg ,分辨率0.1g ) 一台【实验原理】为了测定才材料的导热系数,首先从热导率的定义和它的物理意义入手。
热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0,处取一个垂直截面A (如图1)以dt/dz 表示Z 处的温度梯度,以dQ/d τ表示该处的传热速率(单位时间通过截面积A 的热量),那么传导定律可表示为:()0z z dz dt d dQ A =-==Φλτ 1-1式中的负号表示热量从高温向低温区传导(即热传导的方向与温度梯度的方向相反)。
式中的λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时间内通过单位截面面积的热量。
利用1-1式测量测量的导热系数,需解决的关键问题有两个:一个是在材料中造成的温度梯度dt/dz ,并确定其数值;另一个是测量材料内由高温区向低温区的传热速率dQ/d τ。
1、温度梯度dt/dz 的测量为了在样品内造成一个温度梯度分布,可以把样品加工成平板状,并把它夹在两块良导体——铜板之间(图2),使两块铜板分别保持在恒定温度t 1和t 2,就可能在垂直样品方向上形成温度的梯度分布。
样品的厚度可做成h 《D (样品直径)。
这样,由于样品侧面积比平板面积小得多,由侧面散去的热量可以忽略不计,可以认为热量是沿垂直于样品方向传导,即只在此方向有温度梯度。
由于铜板是热的良导体,在达到平衡时,可以认为同一铜板各处的温度相同,样品内同一平行平面上各处的温度相同。
这样只要测出样品的厚度h 和两块铜板的温度t 1和t 2,就可以确定样品内的温度梯度为:ht t dz dt21-=当然,这需要铜板与样品表面要紧密接触(无缝隙),否则中间的空气层将产生热阻,使得温度梯度测量不准确。
为了保证样品中温度场的分布具有良好的对称性,把样品及两块铜板都加工成等大的圆形。
2、传热速率dQ/d τ的确定单位时间内通过一个截面积的热量dQ/d τ是一个无法直接测量的,我们只有设法将这个量转化为容易测量的量。
为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断向周围环境散发出。
当加热速率、传热速率、散热速率相等时,系统就达到一个动态平衡状态,我们称之为稳态。
此时低温侧铜板的散热速率就是样品的传热速率。
这样,只要测出低温侧铜板在稳态t 2下的散热速率,也就测量出了样品内的传热速率。
但是,铜板的散热速率也不易测量,还需要作进一步的参量转换。
我们知道,铜板的散热速率与其冷却速率(温度变化率dt/d τ有关),其表达式为:22t d dt t d dQmc ττ-= 1-2式中m 为铜板的质量,c 铜板的比热容。
因为质量容易直接测量,c 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。
铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳定稳定t 2(大约10℃),再让下铜板在空气中自然冷却,直到温度低于t 2,测出温度从大于t 2到小于t 2区间随时间变化关系,并绘制出t —τ曲线,此曲线在t 2处的斜率就是铜板在稳态温度t 2的冷却速率。
应该注意的是,这样得出的dt/d τ是铜板全部表面暴露于空气中的冷却速率,其散热面积为 p p p h R R ππ222+(R p 和h p 分别为下铜板半径和厚度),然而在实验时的稳态传热时,铜板的上表面是被样品覆盖的,由于物体的散热速率与它们的面积成正比,所以在实验稳态时,铜板的散热速率的表达式应修正为:pp p p p ph R R h R R d dt d dQmc ππππττ22222++-= 1-3 根据前面分析,这个表达式就是样品的传热速率计算式。
将上式代入1-1式,并考虑到A=πR 2可以得到导热系数计算式:22121222t t d dt t t h R R h R h p p p p mc =-++=τπλ 1-4式中R 为样品的半径,h 为样品高度,m 为下铜板质量,c 为铜板比热容,R p 和h p 分别为下铜板半径和厚度。
都是为常量或可以测量的。
【实验步骤】1、导热系数测定装置的信号通道的接线见上图三所示。
2、用游标卡尺、天平等量具测量样品、下铜板的几何尺寸和质量的必要的物理量,多次测量,然后取平均值。
其中铜板的比热容c=0.385kJ/K ·kg 。
3、加热温度的设定:①按一下温控器面板上的设定键(S ),此时设定值(SV )后一位数码管开始闪烁。
②根据实验所需温度的大小,再按设定键(S )左右移动到所需设定的位置,然后通过加(▲)键和减(▼)键来设定所需加热温度。
③设定好温度后8秒显示将返回到测定温度状态显示。
3、圆筒发热盘侧面和散热盘P 侧面,都有供安装热电偶的小孔,安放时此两小孔都一个与冰点补偿器在同一侧,以免线路错乱。
热电偶插入小孔时,要抹上些硅脂,并插到孔洞底部,保证接触良好,热电偶冷端接到冰点补偿器的信号输入端。
将温度控制方式打到“自动”,“手动控制”开关打到高档,PID 控温仪表将会使发热盘的温度自动加热到设定值。
每隔2分钟读一下温度指示值,如果在一段时间内样品上下表面温度t 1、t 2示值不变,就可认为达到稳定状态。
记录下稳态时的t 1、t 2值。
4、移去样品,将上下铜板贴合后,继续对下铜板加热,当下铜板温度比t 2高出10℃左右时,将上铜盘移开,让下铜盘所有表面均暴露于空气中,使下铜盘自然冷却。
5、每隔30秒记录一次下铜盘的温度示值并记录,直到温度下降到t 2以下的一定值(10℃左右)。
作铜盘的t —τ冷却速率曲线(选取临近t 2的测量数6、根据1-4式计算样品的导热系数λ。
7、本实验选用铜—康铜热电偶,温差100℃时,其温差电动势约4.0mV 。
由于热电偶冷端温度为0℃,对一定材料的热电偶而言,当温度变化不大时,其温差电动势与待测温度是一个常数。
由此,用1-4式计算时,可以直接以电动势值代表温度值。
【实验注意事项】1、稳态法测量时,要使温度稳定约需40分钟左右。
当温度示值在3分钟内不变时,即可认为已达稳态,记下此时的毫伏表读数V1和V2,以及温度读数t 1、t 2值。
2。
测量金属的稳态导热系数时,热电偶应该插到金属样品上两端的小孔中;测量散热速率时,热电偶要重新插到铜散热盘P 的小孔中。
t 1、t 2值为稳态时金属样品上下两侧的温度,此时散热盘P 的温度为t 3,因此测量P 的冷却速率应为:3t t t=∆∆τ,所以:32211t t t R t t h mc =∆∆-⨯⨯⨯=τπλ 测t 3值时要在t 1、t 2达到稳定时,将上面测t 1或t 2的热电偶移下来插到散热盘小孔中进行测量。
高度h 按金属样品上的小孔中心距离计算。
3、每次实验只能测量一种材料。
当出现异常报警时,温控器测量值显示:HHHH ,设置值显示:Err 。
思考题:1、测导热系数λ要满足哪些条件?在实验中如何保证?2、测冷却速率时,为什么要在稳态温度T2(或T3)附近选值?如何计算冷却速率?3、讨论本实验的误差因素,并说明导热系数可能偏小的原因。
二、非稳态导热试验本实验属于综合性试验,它主要涉及工程数学、传热学及其材料测试技术。
因此,学生在试验前必须先掌握以上相关知识,在此基础上根据实验目的和要求操作实验,处理数据,分析结果。
【实验目的】通过本实验,不但可使学生加深对传热全过程,及导热、对流等基础知识的掌握,同时,也可使学生对强化传热概念、数据处理方法等有时刻的了解。
其次通过本实验,还可以使学生了解非稳态传热系统的组成、实验方法及仪表使用。
【实验内容】1、了解材料加热及冷却过程中表面与中心温度的变化;2、加深不同传热系数冷却介质对冷却温度场的影响;3、掌握实验基本原理、实验装置结构,学会使用实验仪器与设备;4、掌握对实验结果数据进行处理和误差分析的方法。
【实验仪器】有温度自动控制系统的SX2-8-10电阻炉 1台ZJ16A多点温度测试仪 1台直径2mm的K型热电偶 2根45钢试样:φ50mm×100mm(中心钻φ3深30孔) 1块【实验原理】材料在加热冷却过程中的温度场分布不仅取决于材料的性能(密度、导热系数、比热容),而且与材料和周围环境的热交换密切相关。
本实验通过对试样在炉中的加热及在不同冷却介质中的冷却,采用一组热电偶的热端固定于试样表面的不同位置,利用多点温度记录仪测量和记录任意时刻试样各测点的温度——时间曲线,根据所测的温度——时间曲线,可以计算出该位置是冷却速度,观察分析不同冷却介质对试样冷却结果的影响,并和计算结果进行比较。
温度场计算可采用叠加法,即将短圆柱体的温度场分布分解成直径为50mm 的无限长圆柱体的温度场分布的解与厚度为100mm无限大平板的温度场解的乘积,如下图所示。
【实验步骤设计要求】1、阅读相关的加工原理和成型工艺的文献和书籍;2、将热电偶分别安装在试样表面和中心的钻孔中,并将热电偶与温度记录仪接好;3、关上炉门,并将温度控制仪温度读数调整到2-500℃,并将炉子加热开关打开,同时打开温度记录仪开关,将记录仪调整到记录状态;4、炉温升到2-500℃,并保温5min以使炉内温度均匀、恒定,再开启温度记录仪记录开关,将固定在试架上是试样放入炉内;5、将试样加热20—25min,然后拿出炉外并在冷却介质中(水或大气)中冷却20——25min,而后关闭温度记录仪开关;6、分别将温度记录仪所记录的加热和冷却数据填写在下表中(每分钟一次);7、绘出加热和冷却曲线:以时间为横坐标,温度为纵坐标;8、对试样按无量纲准则进行加热/冷却计算,确定在4min时中心和表面温度。