GR地质雷达介绍

GR地质雷达介绍
GR地质雷达介绍

GR-III地质雷达产品介绍

1 技术指标

1.1 主机:

(1)数据采集方式:点测、连续测量、测距轮控制

(2) 触发方式:时间触发、键盘触发、测距轮触发

(3) A/D转换:16位

(4) 采样率: 10ps采样间隔

(5) 扫描速度:200KHz脉冲频率

(6) 测量时窗:5-3000ns

(7) 功耗:35W

(8)最大系统动态范围:156 dB

1.2 天线

(1)天线种类:屏蔽式地面耦合TE极化天线。

(2)天线频率:50MHz/100MHz/200MHz/400MHz/750MHz/1000MHz

(3)天线前端模控噪声放大器:+20dB~- 60dB

1.3 软件基本功能

软件系统包括以下八大功能:

(一) 项目管理

采用文件项目管理模式:

●用户可以将测区所用测线导入该测区的项目中。

●通过下拉选择框,用户可以方便选取测区的任何测线。

●对任何测线的任何处理在测线列表中保留其处理过程,在测线列表中,用户

可以方便选择任意处理文件,并方便对任意处理文件进行删除和叠加操作。

●用户可以输入测区所有测线坐标位置,可以在平面图上观察所有测线的分布,

同时可以直接在测线平面分布图上选取测线。

(二) 输入输出

●雷达剖面的打印输出。

●雷达剖面的图像文件输出。

●将当前数据转换为SEGY等地震格式

(三) 标记管理

既可以在屏幕上直接删除和插入标记,也可以通过对话框编辑标记实现。

(四) 里程管理

可以进行标记控制里程管理,也可以进行道间距里程管理。这两种里程管理模式可以相互转换。

(五) 处理功能

处理功能很多,主要参见如下:

(六) 数据分析

●速度分析

●各种谱值分析

(七) 解释系统

解释系统是本软件具有独特功能的研究成果

●层位自动识别和追踪,与里程结合起来自动解释。

●公路评价系统:自动评价公路厚度的合格率等重要参数。

●异常图形编辑解释:自动统计异常的里程深度等信息。

●病害解释:对回填不密实空洞等给出判定依据

●三维解释系统

●地形校正

(八) 编辑

●可以任意删除无用的道数据

●可以压缩道间剖面

●可以压缩时间间隔剖面

可以扩展任意时间段剖面。

1.4 应用指标

(1)连续工作时间:≥12小时

(2)温度范围: -10 0C ~﹢60 0C

(3)供电条件: DC12V

1.5 产品照片

地质雷达三代主机

GR-III地质雷达主机与100MHz屏蔽天线

系列屏蔽天线

处理软件

3 高速多通道雷达简单介绍

多通道雷达快速处理解释系统

根据道路隐伏病害对不同电磁波时间响应和频率响应的特征、隐伏病害信号快速增强处理和识别算法、多通道信息综合解释方法、解释资料(包括图件、表格等)快速提取方法等开发出适合城市道路病害检测的处理解释软件。并与硬件一起,构成城市道路病害多通道雷达快速检测系统

应用指标:1~5雷达通道;脉冲频率达到800KHz;探测深度达到15米;隐患解释准确率达到85%以上;隐患横向误差控制在0.3米;纵向误差控制在1/4波长范围;车载速度可以达到80公里/小时。

技术性能及参数

●主机控制通道数:主机通过USB进行网络扩展连接。连接通道数可以按照用

户需求设定。

●脉冲重复频率:50~800KHz可调

●最小步进:2ps

●接收机带宽:3000MHz

●10ns(100MHz天线)发射极脉冲响应频率:200KHz

●2.5ns(400MHz天线)和5ns(200MHz天线)发射极脉冲响应频率:400KHz

●1ns(1000MHz天线)和0.5ns(2000MHz天线)发射极脉冲响应频率:800KHz

●时变低噪声放大器放大器增益:-30dB~20dB

●采样点数:256~2048可选

●每秒最快扫描道数:以256样点计算,可达3200扫描/S。

●采样时间窗:5~2048ns。

技术水平

采用USB控制网络与FPGA(CPLD)数字控制系统结合,实现雷达的网络式高速采集。与当前模拟控制快速雷达采集系统相比具有如下优点:

●通道控制具有动态可扩展性:目前GSSI开发的2通道和IDS开发的3通道

快速雷达系统其通道数固定,不能进行扩展。而本项目研制仪器采用USB网络控制模式,极大方便了通道的扩展功能。

●发射机的高速响应:脉冲重复频率预示雷达采集速度大小。目前国外地质雷

达最新产品均达到400KHz脉冲频率,但是,这只能应用于400MHz以上信号发射系统。对100MHz天线,由于需要较高发射脉冲幅度,在使用过程中,国外产品均在100KHz以下脉冲扫描速度,本系统达到800KHz脉冲扫描速度,即使是100MHz发射系统,也突破200KHz界限。因此在相同测试速度的前提下,横向精度提高了2倍以上。

●超高速的脉冲频率。本系统脉冲发射频率为50~800KHz,目前国内外最高脉

冲频率为400KHz。

地质雷达 原理

地质雷达是目前分辨率最高的工程地球物理方法,在工程质量检测、场地勘察中被广泛采用,近年来也被用于隧道超前地质预报工作。地质雷达能发现掌子面前方地层的变化,对于断裂带特别是含水带、破碎带有较高的识别能力。在深埋隧道和富水地层以及溶洞发育地区,地质雷达是一个很好的预报手段。 1、基本原理 探地雷达是一种用于确定地下介质分布情况的高频电磁技术,基于地下介质的电性差异,探地雷达通过一个天线发射高频电磁波,另一个天线接收地下介质反射的电磁波,并对接收到的信号进行处理、分析、解译。其详细工作过程是:由置于地面的天线向地下发射一高频电磁脉冲,当其在地下传播过程中遇到不同电性(主要是相对介电常数)界面时,电磁波一部分发生折射透过界面继续传播,另一部分发生反射折向地面,被接收天线接收,并由主机记录,在更深处的界面,电磁波同样发生反射与折射,直到能量被完全吸收为止。反射波从被发射天线发射到被接收天线接收的时间称为双程走时t,当求得地下介质的波速时,可根据测到的精确t值折半乘以波速求得目标体的位置或埋深,同时结合各反射波组的波幅与频率特征可以得到探地雷达的波形图像,从而了解场地内目标体的分布情况。

一般,岩体、混凝土等的物质的相对介电常数为4—8,空气相对介电常数为1,而水体的相对介电常数高达81,差异较大,如在探测范围内存在水体、溶洞、断层破碎带,则会在雷达波形图中形成强烈的反射波信号,再经后期处理,能够得到较为清晰的波形异常图。 在众多地质超前预报手段中,使用探地雷达预报属于短期预报手段,预报距离与围岩电性参数、测试环境干扰强弱有关。一般,探地雷达预报距离在15~35米。 2、探地雷达在勘查中的基本参数 ①数电磁脉冲波旅行时

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

SIR-3000作业指导书

GSSI公司SIR-3000仪器参数 顺序系统参数Parameters 1500MHz 900MHz 400MHz 270MHz 100MHz 1* 系统调用SYSTEM->SETUP->RECALL 1500GrayCart 1500BlueCart 900met 400mhzTime 400mhz623Cart 400mhz620SW 270_SW 100met 2 显示刻度(竖直方向) SYSTEM->UNITS->VSCALE Time/Depth Time/Depth Time/Depth Time/Depth Time/Depth 天线COLLECT->RADAR->ANTENNA 1500mhz 900mhz 400mhz 270mhz 100mhz 发射率COLLECT->RADAR->T_RA TE 100KHz 100KHz 100KHz 100KHz 50KHz 6 测量模式(水平方向) COLLECT->RADAR->MODE Time/Distance Time/Distance Time/Distance Time/Distance Time/Point GPS COLLECT->RADAR->GPS None None None none None 采样点数COLLECT->SCAN->SAMPLES 512 512 512 512 512/1024 数据位COLLECT->SCAN->FORMA T(bits) 16 16 16 16 16 4* 记录长度(纳秒)COLLECT->SCAN->RANGE(ns) 12 15-20-25-30 40-50-80-100 50-80-100-120 100-200-300 介电常数COLLECT->SCAN->DIEL 6 6 6 6 6 7 扫描速度(扫描/秒) COLLECT->SCAN->RA TE 60-120 60-120 60-120 60-120 16 8 测点(扫描/单位)距离COLLECT->SCAN->SCN/UNIT 20-50-100-200 10-20-50-100 10-20-50 10-20-50 10 5* 增益:类型-点数COLLECT->GAIN->AUTO-POINTS Y-1 Y-2--3-4-5 Y-5 Y-5 Y-5 3-1 信号位置:模式COLLECT->POSTION->MODE MANUAL MANUAL MANUAL MANUAL MANUAL 3-2 信号位置:延时COLLECT->POSTION-> OFFSET 0 0 -14 3-3 信号位置:地面COLLECT->POSTION->SURFACE(%) 0 0 0 0 0 滤波COLLECT->FILTERS 低通-无限响应滤波器-> LP_IIR (mhz) 0 2500 800 700 300 高通-无限响应滤波器-> HP_IIR (mhz) 10 225 100 75 25 低通-有限响应滤波器-> LP_FIR (mhz) 3000 0 0 0 0 高通-有限响应滤波器-> HP_FIR (mhz) 250 0 0 0 0 叠加(扫描) COLLECT->FILTERS ->STACKING 0 0 0 0 3-64 背景去除(扫描) COLLECT->FILTERS->BGR_RMVL 0 0 0 0 0 9-1 颜色表OUTPUT->DISPLAY->C_TABLE 9-2 颜色变换表OUTPUT->DISPLAY->C_XFORM 10 保存参数SYSTEM->SETUP->SA VE SETUP15 SETUP09 SETUP04 Setup03 SETUP01 11* 数据采集RUN/SETUP 12* 数据传输OUTPUT->TRANSFER->FLASH Y Y Y Y Y

地质雷达操作规程

地质雷达法检测操作规程 1、地质雷达法适用范围 地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。 2、地质雷达主机技术指标: (1)系统增益不低于150dB; (2)信噪比不低于60dB; (3)采样间隔一般不大于、A/D模数转换不低于16位; (4)计时误差小于1ns; (5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒; (6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能; (7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。 3、地质雷达应符合下列要求: (1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。 (2)测线经过的表面相对平缓、无障碍、易于天线移动。 (3)避开高电导屏蔽层或大范围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为: (1)具有屏蔽功能; (2)最大探测深度应大于2m; (3)垂直分辨率应高于2cm。 5、现场检测 (1)测线布置 1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。 2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。 3、三线隧道应在隧道拱顶部位增加2条测线。 4、测线每5~10m应有一历程标记。 (2)介质参数的标定: 检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

GR地质雷达介绍

GR-III地质雷达产品介绍 1 技术指标 1.1 主机: (1)数据采集方式:点测、连续测量、测距轮控制 (2) 触发方式:时间触发、键盘触发、测距轮触发 (3) A/D转换:16位 (4) 采样率: 10ps采样间隔 (5) 扫描速度:200KHz脉冲频率 (6) 测量时窗:5-3000ns (7) 功耗:35W (8)最大系统动态范围:156 dB 1.2 天线 (1)天线种类:屏蔽式地面耦合TE极化天线。 (2)天线频率:50MHz/100MHz/200MHz/400MHz/750MHz/1000MHz (3)天线前端模控噪声放大器:+20dB~- 60dB 1.3 软件基本功能 软件系统包括以下八大功能: (一) 项目管理 采用文件项目管理模式: ●用户可以将测区所用测线导入该测区的项目中。 ●通过下拉选择框,用户可以方便选取测区的任何测线。 ●对任何测线的任何处理在测线列表中保留其处理过程,在测线列表中,用户 可以方便选择任意处理文件,并方便对任意处理文件进行删除和叠加操作。 ●用户可以输入测区所有测线坐标位置,可以在平面图上观察所有测线的分布,

同时可以直接在测线平面分布图上选取测线。 (二) 输入输出 ●雷达剖面的打印输出。 ●雷达剖面的图像文件输出。 ●将当前数据转换为SEGY等地震格式 (三) 标记管理 既可以在屏幕上直接删除和插入标记,也可以通过对话框编辑标记实现。 (四) 里程管理 可以进行标记控制里程管理,也可以进行道间距里程管理。这两种里程管理模式可以相互转换。 (五) 处理功能 处理功能很多,主要参见如下: (六) 数据分析 ●速度分析 ●各种谱值分析 (七) 解释系统 解释系统是本软件具有独特功能的研究成果 ●层位自动识别和追踪,与里程结合起来自动解释。 ●公路评价系统:自动评价公路厚度的合格率等重要参数。

地质雷达的应用

地质雷达的应用领域 探地雷达(Ground Penetrating Radar,简称GPR),又称地质雷达,是近些年发展起来的高效的浅层地球物理探测新技术,它利用主频为数十兆赫至千兆赫兹波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。与传统的地球物理方法相比,探地雷达最大的优点就是具有快速便捷、探测精度高以及对原物体无破坏作用。因此,探地雷达在道路建设和公路质量检测领域已逐渐被认识到并广泛应用起来。 地质雷达自上世纪70年代开始应用至今将近30年了,其应用领域逐渐扩大,在考古、建筑、铁路、公路、水利、电力、采矿、航空各领域都有重要的应用,解决场地勘查、线路选择、工程质量检测、病害诊断、超前预报、地质构造研究等问题。在工程地球物理领域有多种探测方法,包括反射地震、地震CT、高密度电法、地震面波和地质雷达等,其中地质雷达的分辨率最高,而且图象直观,使用方便,所以很受工程界信赖和欢迎。 1.1 工程场地勘察 地质雷达最早用于工程场地勘查,解决松散层厚度分布,基岩风化层分布,以及节理带断裂带等问题。有时也用于研究地下水分布,普查地下溶洞、人工洞室等。在粘土补发育的地区,探查深度可达20m以上,效果很好。 1.2 埋设物与考古探察 考古是地质雷达应较早的领域,在欧洲有成功的实例,如意大利罗马遗址考古、中国长江三峡库区考古等项目都应用了雷达技术。利用雷达探测古建筑基础、地下洞室、金属物品等。在现今城市改造中,有时也需要了解地下管网,如电力管线、热力管线、上下水管线、输气管线、通信电缆等,这对于地质雷实是很容易的。目前地质雷达为地下管线探测发展了

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

探地雷达操作规程

探地雷达操作规程 (文件编号:****-010) 共1页第1页版本/版次:D/ 0 生效日期:2016-01-01 1. 目的 为了使检测员更好地熟悉和掌握检测仪器的操作方法,保证检测数据的科学、公正和准确性,特制定本规程。 2. 适用范围 适用于探地雷达仪器 3 操作步骤 3.1测试前的安装准备 检查所有部件是否带齐,包括:电池、雷达主机、数据线、处理器电源线、信号线、工具箱、备件、固定用绑扎带、记录本; 3.2试验/检测的工作程序 (1)测试连接。将地质雷达天线通过支架安装。 (2)在扫描前调试主机并对主机进行参数设置。 (3)打开电源,控制天线移动的人员根据操作主机的人员口令,将天线紧贴待测界面上匀速移动。 (4)测试结束。按下stop结束测试点,保存文件并退出; (5)拆除信号线,拆除天线,支架。 3.3扫描之前的仪器调试和参数设置 (1)菜单系统—>设置—>调用,选择所用的天线。 (2)系统—>单位垂直刻度设为时间,单位为ns (3)测程:900M天线探测混凝土的量程约为15纳秒,为使所有有效信号完全显示,一般设置为20ns (4)采样点数:一般设为512或1024 采样点数越多,扫描曲线越光滑,垂直分辨率越好。但是采样点数增大,使得扫 描速率下降 (5)每秒扫描数:64 (6)增益点数:2 (7)垂向高通滤波器:225MHz

(8)垂向低通滤波器:2500MHz (9)数据位:16位 (10)发射率:100 KHz,发射功率越高,采集速度越快,但若采集过高,易损坏雷达系统 (11)信号位置设为手动 (12)表面设为0 (13)调出完整的直达波(首波),调整延时参数 若检测结构与上次相同,可不再次设置以上参数,系统默认上次检测参数。 (14)增益设置为自动,增益函数手动设置,可以改变增益点数多少、并且可以调整各增益点的函数大小,进而调整信号强度。增益函数调整过大,在探测资料中可能 人为造成假象。设置方法为先设为手动,再设为自动。 编制/日期:批准/日期:

地质雷达在工程中的应用

地质雷达在工程中的应用 李勃 (辽宁省有色地质局一0八队,沈阳 110121) 摘 要:探地雷达是近年来发展起来的一种物探新技术新方法。本文介绍了其基本原理及在岩溶地质勘探、地下管线探测、高速公路检测中应用的实例分析,重点阐述了雷达图像的推断解释,同时表明地质雷达具有快速经济、灵活方便、剖面直观等优点,具有良好的实用性。 关 键 词:地质雷达 实例分析 实用性 1 前 言 地质雷达,全称地质勘探雷达系统(Ground Penetrating Radar )(简称GPR)。它是通过向所探测地面下方发射高频电磁波束、并接受来自地下的介质界面的反射波来探测地下介质分布的地球物理勘探设备。其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、矿产资源研究、生态环境检测、城市地下管网普查等众多领域,取得了显著的探测效果和社会经济效益,本文以三个实例,说明探地雷达技术在工程中的应用效果。 2 基本原理 地质雷达是一种使用高频电磁波探测地下介质分布的非破坏性探测仪器。它 通过剖面扫描的方式获得地下剖面的扫描图像(图1)。雷达通过在地面上移动的发射天线向地下发射高频电磁波, 电图1 地质雷达探测工作 图2 雷达波形记录示意图 天线天线 地面基岩面溶洞 点位(m) 12345670 双 程 时 间 (ns)

磁波在介质中传播时,其电磁波强度与波形将随所通过介质的电性质及几何形态而变化。因此,根据接收到波的旅行时间(亦称双程走时)、幅度与波形资料,可推断介质的结构。雷达图形常以脉冲反射波的波形形式记录,波形的正负峰分别以黑、白表示,或者以灰度或彩色表示。这样同相轴以等灰度、等色线即可形象地表征出地下反射面。图2为波形记录的示意图,图上对照一个简单的地质模型,画出了波形的记录,在波形记录图上各测点均以测线的铅垂方向记录波形,构成雷达时间剖面,通过对雷达图像的判读,可确定地下界面或地质体的空间位置及结构。 3 工程实例 3.1 岩溶地质勘探 本次工作任务是探测挖掘坑深部15米内有无岩溶洞穴、溶槽溶沟、溶蚀裂隙。挖掘坑为一溶洞,根据钻探资料可知,上面为洞穴堆积物,下面基岩层为灰岩。 地质雷达的观测方法采用剖面法。根据所揭示的地层分布特征,覆盖层的电 磁波平均速度一般为0.06~0.08 m/ns , 下伏灰岩电磁波平均速度一般为0.09~ 0.12m/ns;考虑雷达波的穿透能力,采用 100Mhz 天线,设定探测窗口为500ns , 采样点为1024,采取连续观测采集数据。 在隐伏基岩为灰岩的地区,溶蚀破碎带是一种较为常见的地质现象,一般情况下,致密的灰岩雷达波相特征是非常弱的反射或无反射,其周期较上覆黏土层应明显增加。而当致密的灰岩层在地下水的作用下发生溶蚀后,首先是以细微裂隙形式存在,且伴随溶蚀程度的提高而逐渐扩大,当这些细小的裂隙发展到一定程度后,常常会上下,左右连通,致使周围岩石破碎,进而形成溶蚀破碎结构。由于这些破碎的裂隙空间常常被空气、水以及黏土等物质所充填,进而使得裂隙与围岩之间接触面两侧的波阻抗存在差异,因此,当雷达波运行到这些波阻抗存在差异的接触面时,将会发生反射、折射和绕射,形成杂乱的强波阻抗反射特征。 当溶蚀裂隙扩展到一定程度,便发育成溶洞。溶洞雷达图像的特点是被溶图3 溶蚀破碎带雷达变面积曲线图 破碎

地质超前预报作业指导书

地质超前预报作业指导书 一、目的 为确保隧道施工安全质量,根据设计提供的工程及水文地质资料,结合地质超前预报,进行分析研究,制定完整的施工技术方案。做好技术、物质、机械设备的储备,避免地质灾害的发生。使之达到施工设计及施工规范的要求及工期目标的实现,特制订本作业指导书。 二、使用范围 本指导书适用于隧道黄土Ⅴ级围岩洞身段开挖施工。 三、依据 1、双线客运专线施工技术指南(报批搞); 2、铁路隧道施工规范及验收规范《铁建设【2005】160号》; 3、铁路隧道喷锚构筑法技术规范《TB10108-2002》。 4、甬台温铁路施工图; 5、《铁路隧道施工规范》-TB10204-2002 6、《铁路隧道工程质量检验评定标准》-TB10417-98 四、加强隧道地质预报和围岩监控测量 山后隧道穿越地段工程地质条件复杂主要为粉质粘土、角砾土、粉砂岩及硅质岩层,隧道安全问题为隧道工程施工的重点。为此成立

专门的地质预报小组,工程施工中采用超前TSP-203型地质预报仪及BK2000型地质雷达进行探测预报不良地质,严格按新奥法原则进行施工,采用CRD、CD、台阶法进行施工,并建立完善的安全控制体系,确保施工安全。 五、超前地质预报 山后隧道根据地质特点,本着以“早预报、早预防”的原则组织施工,本隧道采用地质调查、TSP-203超前地质预报、钻孔超前探测、开挖面及其附近的地质观测素描和地质作用等综合手段,预测不良地质的位置、性质、规模和对施工的影响程度。 针对本隧有断层破碎带、岩溶等不良地质和设计阶段地质勘测异常区,采用超前地质预测方法主要有: 地质素描法进行预报;TSP203超前地质预报仪进行距离100m~200m的超前预报;采用地质雷达、红外探水仪、HSP水平声波反射法和超前地质钻孔进行距离在30m~50m的预报。 超前地质预报工作内容及方法分别见图5-1“主要地质预报工作范围图”和表5-2“各不良地质段采取的地质预报方法”。 图5-1 主要地质预报工作范围图

地质雷达报告

福州绕城公路东南段 南峰隧道超前地质预报 (地质雷达) 编号:BG-CQYB-A16-001 合同段:A16合同段 施工单位:中铁十七局集团第一工程有限公司探测范围:右线出口LYK8+335~LYK8+310 编制: 校核: 检测单位:中国科学院武汉岩土力学研究所 检测日期:2013年12月27日 报告日期:2013年12月27日

一、工作概况 2013年12月27日,中国科学院武汉岩土力学研究所对福州绕城公路东南段A16合同段南峰隧道出口右洞进行了超前地质预报,采用GSSI 公司生产的SIR-20地质雷达进行数据采集,配属100MHZ 的屏蔽天线进行了探测。本次探测范围为右线出口LYK8+335~LYK8+310,共25m 。 二.预报的方法技术 (一) 地质雷达超前预报的基本原理 地质雷达(Ground Penetrating Radar ,简称GPR)是近年来应用于浅层地质构造、岩性检测的一项新技术,其特点是快速、无损、连续检测,并以实时成象方式显示地下结构剖面,使探测结果一目了然,分析、判读直观方便。因探测精度高、样点密、工作效率高而倍受关注。随着该项技术的不断完善和发展,其应用领域不断扩展。 隧道地质雷达超前预报方法是一种用于确定隧道掌子面前方介质分布变化的广谱电磁波技术。如图1所示,利用一个天线向掌子面前方发射无载波电磁脉冲,另一个天线接收由岩体中不同介质界面反射的回波,利用电磁波在岩体介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性 质(如介电常数Er) 及几何形态的变化差异,根据接收到的回波旅行时间、幅度和波形等信息,来探测掌子面前方介质的地层结构与异常地质体。 理论研究与实验室模拟试验证明,电磁波在物体或介质中的传播速度v 、走时t 、与介质的相对介电常数Er 有如下关系: v x z t 2 24+= r c v ε=

美国GSSI地质雷达隧道超前预报介绍与资料处理

美国地质雷达隧道超前预报工作介绍目前我们国家地下隧道建设工作量大,地质条件复杂,有灰岩地区、花岗岩地区、黄土高原、第四季覆盖等等。 隧道开挖中常常遇到岩溶发育、出现大的空洞,充水或者充泥,有时地下暗河发育;也会遇到构造带,或者岩石破碎,同时地下水发育,这给隧道开挖和建设造成很多困难,同时也给隧道运营造成一定的隐患。因此需要采用一定的手段对这些地质构造和地质灾害进行探测和预报,提前采取措施来排除灾害。 工作任务 为了能够探明隧道开挖面(俗称"掌子面")前方的地质构造,通常采用多种方法进行综合分析、探测、预报。常见的方法有:地质分析,地球物理探测(声波法、直流电法、电磁波方法),钻孔方法,或者超前导洞等等。采用各种地球物理方法进行探测,分别给出探测结果,综合地质构造情况,进行综合解释,给出掌子面前方的地质构造和可能的地质灾害信息。 探测前提条件 隧道开挖中遇到的地下材料或者介质,主要有石灰岩、花岗岩、大理岩、砂岩、第四季覆盖、沙土、黄土,还有地下水、空洞等等。由于这些材料的物理性质有很多种,比如密度、导电率、介电常数、磁导

率等等。 声波超前预报。由于密度不同、声波传播速度不同,可以采用声波法进行探测,出现了地震波超前预报。 直流电法超前预报。根据导电率的差异采用直流电法,预报掌子面前方材料的导电率差异,尤其是含盐份的地下水表现为良导体、而空气为高阻体; 地质雷达预报。根据导电率、介电常数、磁导率的差异,采用地质雷达高频电磁波方法进行探测,获取掌子面前方材料的介电常数差异信息, 瞬变电磁预报。由于岩石、土壤、水、空气的电磁响应不同,采用瞬变电磁方法探测材料的差异。 目前这4种方法在隧道超前预报中都有使用,尤其是地质雷达超前预报方法得到了普遍使用,利用地质雷达方法在隧道掌子面上进行探测,对隧道开挖超前预报,下面介绍这部分内容。 探测仪器 地质雷达方法通常采用高频电磁波发射法工作,频带范围为几兆赫兹到几千兆赫兹,不同的频率探测深度不同,低频电磁波探测深度较大,因而出现了不同中心频率的天线,商业地质雷达通常采用窄脉冲宽频带电磁波信号工作,一般情况下100兆天线在土壤、破碎的岩石、基岩上探测深度范围从几米到十几米甚至30米左右。 目前隧道开挖地质超前预报距离正好是要求在十几米到30米左

隧道超前地质预报作业指导书

×××标段隧道工程 隧道超前地质预报作业指导书 1、适用范围 本作业指导书适用于×××标段×××段范围内隧道及×××隧道洞口地段超前地质预报工作。具体内容包括:预报内容、预报分级、预报流程及要点。 2、作业准备 2.1内业技术准备 作业指导书编制后,在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,掌握有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前的技术培训,考试合格后持证上岗。 2.2外业技术准备 施工作业层中所涉及的各种外部技术数据收集。 修建生活房屋,配齐生活、办公设施,满足主要管理、技术人员进场生活、办公需要。 所有仪器已经到位,经过校验并在使用有效期限内。 3、技术要求 明确隧道超前地质预报作业工艺流程、操作要点和重要性,指导、规范隧道超前地质预报,保障隧道安全掘进。施工过程中必须将超前地质预报纳入施工工序管理,做到先探测、后施工,不探测不施工。 所使用的仪器具有合格的出厂证明及使用期限,并按相关要求进行质

量验收,有验收记录,并在有效使用期内。 4、施工程序与工艺流程 4.1 预报内容 (1)地层岩性,特别是对软弱夹层、破碎地层、煤层及特殊土的预测预报。 (2)地质构造,特别是对断层、节理密集带、褶皱轴等影响山体完整性的构造发育情况的预测预报。 (3)不良地质,特别是溶洞、暗河、人为坑洞、放射性、有气体及高地应力等发育情况的预测预报。 (4)地下水,特别是对岩溶管道水、富水断层、富水褶皱轴、富水地层等的预测预报。 4.2 预报方法 (1)超前地质预报方法按预报原理可分为地质分析法、钻探法、物探法和超前导坑法。 ①地质分析法,包括地层分界线、构造线,地下和地表相关全分析、地质作图等。 ②钻探法,包括深水水平钻探、5~8m加深炮孔探测及孔内摄影。 ③物探法,包括地震波反射法、声波反射法、电磁波反射法、红外探测法等。 ④超前导坑法,包括平行超前导坑法、正洞超前导坑法。 (2)超前地质预报按长度可分为长距离预报(大于200m)、中长距离预报(30~200m)和短距离预报(小于30m)。

地质雷达使用与操作2

地质雷达仪的操作与保养 0.0前言:作为近十余年来发展起来的地球物理高新技术方法,地质雷达以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,在工程探测领域应用不断被拓宽。 就目前市场上而言,地质雷达厂家主要有加拿大ERROR,美国SIR系列,瑞典MALA,国产青岛中科院光电所等等,其设备主要部件都是操作平台,仪器主机,以及配套雷达三大块。目前国内各种地质雷达使用研发已相当成熟,不同厂家的仪器性能不断改善和优化。相信在以后工程实践中,地质雷达会应用越来越光,且越来越适应各类不同的现场条件。 我公司引进的是瑞典MALA公司生产的RAMAC/GPR地质雷达,现主要介绍该仪器的使用及其小知识。 首先仪器硬件部分,仪器操作平台为IBM笔记本电脑,分采集软件GROUND VISION和分析处理软件REFLAXW软件;雷达主机为同步采集系统和高频模块;雷达的发射和采集天线为集成天线,目前购置了1.2GHZ 屏蔽天线,500MHZ屏蔽天线,100MHZ屏蔽天线,50MHZ非屏蔽天线共四种。通过在不同的工作领域合理调配不同的天线,再辅以不同的辅助设备,(比如隧道中的脚架,提升车,公路上的拖车,水上物探上的木船,或者防水密闭管等等),使工作更便捷,应用效果更准确。 雷达的基本操作应当说比较傻瓜型,使用起来应该说比较容易上手,在实践中应当遵循《城市工程地球物理规范》等国家,行业标准,以及仪器本身操作指南,使测试工作安排,测线布置,采样方式,测试精度,测试效果,以及测试成果等等满足工程技术要求。 1.0 基础篇 一、软件安装 1、计算机开机时,首先进入 BIOS 设置(如IBM 按F1 进入,其它参阅计算机使用手册) 将并口设置为 ECP 方式,端口地址设为0378。 2、如果是 Windows XP 或2000 操作系统,应在控制面板中进入设备管理器,在并口属性中 的端口设置栏:筛选源方案选择“使用指派给此端口的任何中断”,并选择“使用即插 即拔设备”;在资源栏:输入/输出范围选“0378-037F” 3、使用软件安装光盘,点击“setup”进行安装,按照安装提示进行安装即可。 二、雷达操作使用

地质雷达操作手册

第一篇SIR-3000操作探讨 1.GSSI简介 便携式透地雷达美国GSSI是目前世界上最好的生产地质雷达的厂家,它的产品遍布全球,目前超过1800套,占全球销量80%以上,在中国200余套,占中国市场份额的75%以上。创始于1969年的美国地球物理探测公司(GSSI公司),是世界上第一家专业研制探地雷达的公司,其前身为美国宇航局。随着60年代末期美国宇航局专门为阿波罗计划所研制的专用仪器,成功地探测到月球表面尘埃之后,世界上第一台进入民用的商用探地雷达得以在美国推出,它就是美国GSSI公司生产的SIR系列探地雷达的前身。它用电磁波为地质勘察服务,为勘察方法起到了革命性的推动作用。

注释:不要使用Windex或其它脱氨的玻璃清洁器来清洁显示屏,因为这会损坏涂层。只需使用一个清洁的、轻微潮湿的布来轻柔地擦洗屏幕。位于该部件前部的电池槽接收10.8伏的锂离子可充电电池。完全充电电池的测量时间近似为3小时。电池是可以再充电的,方法是采用任选的电池充电器来充电,或通过简单地把电池留在该部件内,把该部件与标准交流源连接起来,然后把系统放在备用模式下进行。给一个电池再充电的时间近似为4 到5小时。务必保持电池槽遮盖在该部件上,在使用中保证没有灰尘或污垢进入该部件内部。 2.探测原理 H=vf 3.硬件连接 在该部件的背部,SIR-3000有六个连接器和一个用于记忆卡的槽。顶排五个连接器从左到右依次是:交流电源,串行输入/输出( RS232),以太网,USB-B,USB-A。

注:如果你没有使用测量轮的话,用户标记对记录所通过的距离是有帮助的。对记录诸如圆柱,树,凹坑等障碍物的位置来说,用户标记也是有帮助的。 3. 启动和屏幕显示 第一个是TerraSIRch。用TerraSIRch模式可以对所有数据采集参数进行完全控制。QuickStart 引导是对每个其他模式都有用的。按TerraSIRch按钮。过一会儿,你将看到屏幕被分成了三个窗口,并且有一个条运行穿过屏幕底部,该条带有上面六个功能键的命令。 按Mark 按钮将改变你要求的单位,从英制的到米制的。 在进入六个数据采集模式之一后,你可以通过点击Power (电源)按钮两次来返回该屏幕,或去掉电源再把它插入进行启动来返回该屏幕。 4. 基于时间数据采集的设置 时基数据剖面的扫描间距(水平分辨率)是系统采集数据的速度和天线移过测量界面的速率的函数。你设置的速率(每秒扫描数)越高,并且你移动天线越慢,则数据将越稠密。 时基数据没有实际距离的标记,因此软件不知道你实际要测量旅行多远。特别重要的是以常数速度移动天线,并以一致的间隔增加用户标记(点击标记按钮)。时基数据需要在RADAN中做附加处理,以创建三维图象。如果三维图象是你的目标,你应该用测量轮采集基于距离的数据。 第一步: 在系统启动后,按TerraSIRch 功能键。几秒钟后,你将看到一个分区的屏幕,右边是波形曲线,左边是参数选择树,中央是主要数据显示窗。如果你有一个已连接的天线,一个兰色的“等待”条将两

地下管线探测作业指导书

中国水利水电第三工程局勘测设计研究院 地下管线探测施工 编制 审核 接受人 日期 中国水利水电第三工程局勘测设计研究院 二○一二年十二月

地下管线作业指导书 1 适用范围 本工法可广泛适用于市政工程和其他工程中由水泥、陶瓷和塑料材料构成的非金属管线、由铸铁、钢材构成的金属管线、由铜、铝材料构成的电缆等各种地下管线的探测。 2 参考文件 (1)《城市地下管线探测规程》 CJJ61-2003/J271-2003 (2)《城市测量规范》 CJJ/T8-2011; (3)《全球定位系统城市测量技术规程》 CJJ73—97。 3 资源配置 3.1 设备配置 (1)地质雷达PROEX型l套,配备250MHz、500MHz屏蔽天线; (2)管线探测仪l套; (3)全站仪1台; (4)GPS接收机1台。 3.2 人力资源 管线探测专业性强,技术含量高,因此该项工作宜委托给具备专业资质的合作队伍实施。现场配备技术人员和普通劳工协助实施。人力配置如下:检测工程师2人,技术工程师1人,测量工程师2名,普通劳工 2人。 4 地下管线探测工艺流程及操作要点 4.1 地下管线探测工艺流程

确定工作范围,工作对象 搜集原始资料 现场踏勘,验证搜集的资 现场踏勘,记录已知管线 探测方法验证 编写施工方案 现场探测 资料汇总 图1 地下管线探测工艺流程图 4.2 确定工作范围,工作对象 4.2.1 确定工作范围 施工场地地下管线探测应在工程施工开挖前进行,其范围应包括开挖以及可能受开挖影响的地下管线安全的区域,探测以上场地的管线走向、位置、深度,避免开挖或非开挖作业时,破坏地下管线,造成严重的后果。 4.2.2 确定工作对象 地下管线探测前,需搞清楚所测区域地下管线的种类,根据不同的地下管线种类以便选用合适的探测方法,地下管线主要包括以下几个类别: (1)由水泥、陶瓷和塑料材料构成的非金属管线,如排水管(雨水、污水、雨污合流)、工业管线或某些给水管线(生活用水、生产用水、和消防用水)等; (2)由铸铁、钢材构成的金属管线,如给水,燃气(煤气、液化气、天然气)、供热等工业管线; (3)由铜、铝材料构成的电缆(其外用钢铠、铝或塑料包装),如电力电缆(供电、路灯、电车)、通讯电缆(军用光缆、通信光缆)等和有线电视电缆等。

地质雷达操作注意事项及日常维护

地质雷达操作注意事项及日常维护 1.出工前检查仪器及其配件是否齐全。 2.出工前先检查仪器工作正常与否,电池电量是否充足。 3.电源12伏特直流电源,红正黑负。采用220伏特交流稳压电源充 电,详见《电池使用注意事项》。SIR-20充电器在国内使用时应置于230VAC档。 4.仪器电板装入后,仪器即处于待机或工作状态,因此仪器长时间 不用或处于运输过程中,应把仪器电池取出。 5.电池或电瓶,要做定期维护。建议每个月做充电放电。 6.先连接系统各个部件,主机+电缆+天线+标记杆+测距轮,再接通 电源开机;先关机再拆设备附件。 7.更换设备部件(如电缆、天线、打标器、测距轮等等)要求无电 操作。即关闭主机电源后再拆或连接安装。 8.发现仪器信号不好或怀疑仪器工作不正常,先关闭主机电源再检 查电缆两端接头(电缆与主机的接头、电缆与天线的接头是否连接正确),检查完毕确认无误再接通电源开机。 9.电缆线应绕圈收放,不能折叠。 10.在工地现场注意保护仪器,轻拿、轻放,避免人为损坏。电缆线 应避免机械轧、拉,重物压损等现象造成断裂,避免长期在地面磨损。 11.如发现没有接收到雷达信号,应联系检查雷达电源电池是否连接、

电池是否有电、网络电缆线是否连接、网络ip地址是否被修改、关闭再开机检查仪器是否有信号、用不同的天线比对、用不同的电缆比对信号等,如初步判断某处有问题或发现不到问题,请及时联系厂家。 12.电缆连接防止虚接。联机时注意电缆接口方向,电缆接头应与面 板垂直,拧紧,与主机端旋转至红线处。天线端旋转至三个小卡槽露出,同时注意固定电缆。电缆与天线应用环行扣连接。13.仪器使用、搬运转移过程中,主机与天线注意防震。避免设备内 部部件接触不良。仪器主机要装箱运输。 14.天线系统应该轻拿轻放,或者测试过程中,防止长时间剧烈震荡 破坏天线系统。 15.测试时,100兆天线的长轴方向与电缆线垂直,成90度角。电缆 不能与天线平行,不能在天线上面过,也不在天线下面过。主机系统测试期间,应放置在3-5米范围以外。电缆不能绕圈,防止线圈产生交变电磁场干扰。 16.整套雷达系统应尽量远离高压线缆,防止强电磁干扰对仪器系统 造成损伤。 17.测试过程中要避免照明电缆、表面金属障碍物。在无法避开照明 电缆时,建议关闭照明电以后再进行雷达测试。 18.避免雷雨天操作。 19.出工测试,要保护好天线、电缆接头,做好防水措施。 20.整套雷达仪器系统应注意防水防尘防震。

隧道超前地质预报(地质雷达法)施工作业指导书

超前地质预报(地质雷达法)施工作业指导书 1.适用范围 适用于铁路隧道工程超前地质预报(地质雷达法)施工作业。 2.作业准备 2.1施工前应充分掌握隧道设计图纸及相关文件内容,并及时与现场进行核对,以确定合适的超前地质预报方法并配备相应机具设备。根据施工图设计要求及现场实际情况做好超前地质预报作业技术交底。 2.2熟悉《铁路隧道超前地质预报技术规程》(Q/CR9217-2015)、业主下发有关超前地质预报的管理办法等文件要求。 2.3将隧道超前地质预报工作纳入正常的施工工序管理,建立完善的信息收集和信息反馈系统。 2.4熟悉了解已有勘察资料,掌握掌子面所处地段的地层岩性、构造特征、不良地质及水文地质特征。 2.5熟悉了解其他预报手段探测成果,分析判断掌子面所处地段工程地质与水文地质特征可能出现的差异(与勘察成果比较)。 3.技术要求 3.1技术指标 3.1.1地层岩性预报,特别是针对软弱夹层、破碎地层及特殊岩土的预测预报。 3.1.2地质构造预报,特别是针对断层、节理密集带、褶皱轴等影响岩体完整性的构造发育情况的预测预报。 3.1.3不良地质预报,特别是针对瓦斯等发育情况的预测预报。 3.1.4地下水预测预报,特别是针对富水断层、富水褶皱轴、富水地层中的裂隙水等发育情况的预测预报。 3.2技术标准 3.2.1探明断层的性质、产状、富水情况、在隧道中的分布位置、断层破碎带的规模、物质组成等,并分析其对隧道的危害程度。 3.2.2测定瓦斯含量、瓦斯压力、涌出量、瓦斯放散初速度等,评价隧道瓦斯严重程度及对工程的影响,提出技术措施建议等。 4.施工程序与工艺流程 4.1 施工程序 隧道地质复杂程度分级→超前地质预报设计→编制超前地质预报实施方案→超前地 质预报实施→地质综合分析→提交地质预报成果报告→隧道实施方案根据地质预报结论 变更设计或方案后实施。 4.2工艺流程 详见下页 5.施工要求 5.1施工准备 5.1.1根据施工图设计要求及现场实际情况做好超前地质预报作业技术交底。 5.1.2超前地质预报施工前应熟悉相应隧道的设计图纸,核对地质资料。 5.1.3根据检测方法准备好各种施工机械和检测仪器,配备相应的专业人员。 5.1.4检测之前对仪器进行检查,确保能正常运行。 5.1.5准备好预测使用的各种材料。

相关文档
最新文档