数学分析 数列极限

合集下载

数学分析 数列极限存在的条件

数学分析 数列极限存在的条件
n
1 4.K ,N 0, 当n N 时,有 | an a | , 则 lim an a n K 5.若数列{an },{bn }中有一个发散或两个发散,则{an +bn }, {an bn }, {an bn }都是发散的 6.若 lim an a b lim bn , 则必存在发散数列cn , 使N 0,
二. {an }收敛的充要条件、充分条件、必要条件 1. N 定义 2.所有子列都收敛于同一个数 3.所有子列都收敛 4.柯西收敛准则 5.奇子列与偶子列收敛于同一数 6.{an }单调有界(充分不必要) 7.迫敛性(充分不必要) 8.有界性(必要不充分)
三.重要结论
n 1 1 a 1.无穷小数列:q n (| q | 1), ( 0), n , n n! n! n 2.极限等于1的数列: a , n n , n an (其中an a )
1 1 注: 1 ln n是收敛的,其极限值称为欧拉常数 2 n
一.写出下列定义 1. {an }收敛 2.{an }发散 3.{an }收敛于a 4.{an }不收敛于a 5.{an }是无穷小数列 6.{an }是无穷大数列 7. {an }不是无穷大数列 8.{an }有界 9.{an }无界
例5 求下列极限
注:c 时定理不成立
a1 a2 an (1)已知 lim an a, 求 lim n n n
(2)设0 x1 1, xn 1 xn (1 xn ),求 lim nxn
n
当 n, m N 时, 有 | a n A | , | am A | . 2 2 由此推得
an am an A am A

考研数学分析重要考点归纳

考研数学分析重要考点归纳

考研数学分析重要考点归纳1.1考点归纳一、数列极限1.定义设{an}是一个数列,,对∀ε>0,∃正整数N,当时,有,则称{an}收敛于a,则a称为数列的极限,记作.(1)无穷小数列:;(2)无穷大数列:;(3)发散数列:若极限不存在,则称为发散数列;(4)收敛⇔的任何子列都收敛.2.性质(1)唯一性收敛数列{an}只有一个极限.(2)有界性若{an}收敛,则∃正数M,对∀n∈N*有.(3)保号性若(或<0)则对或(),∃正数N,当n>N时有an>a′(或an<a′).(4)保不等式性收敛数列{an}与{bn}.若∃正数N0,当n>N0时有a n≤bn,则(5)夹逼性设{an},{bn}都收敛于a,{cn}满足:∃正数N0,当n>N0时有则{cn}收敛,且3.四则运算4.单调有界定理单调且有界的数列一定存在极限.5.柯西收敛准则{an}收敛⇔对∀ε>0,∃正整数N,当n,m>N时有二、函数1.函数三要素定义域值域对应法则2.性质(1)有界性若∃正数M,对∀x∈D有则称f在D上有界.(2)单调性①单调递增对∀x1,x2∈D.当x1<x2时,f(x1)<f(x2);②单调递减对∀x1,x2∈D.当x1<x2时,f(x1)>f(x2).(3)奇偶性D关于原点对称①奇函数f(-x)=-f(x),图像关于原点对称;②偶函数f(-x)=f(x),图像关于y轴对称.(4)周期性若∃T>0,对一切x∈D,x+T∈D,有f(x+T)=f(x),称T为函数f的周期,T的最小值称为最小正周期.3.分类(1)复合函数形如y=f(g(x)),u=g(x)的函数称为复合函数,对于每一个x,经过中间变量u,都得到唯一确定的y值,其中u=g(x)的值域不能超过y=f(u)的定义域.(2)反函数设函数f:D→f(D)是单射,则它存在逆映射,称此映射为函数f的反函数.注:互为反函数的两个函数的图像关于直线y=x对称.三、函数极限1.概念(1)函数f在点x0的极限f定义在U°(x0;δ')上,A为定数.对∀ε>0,若∃正数δ(<δ'),当0<|x -x0|<δ时有|f(x)-A|<ε,则称函数f在点x0的极限为A,记作(2)函数f在x趋于∞时的极限f定义在[a,+∞)上,A为定数.对∀ε>0,若∃正数N(≥a),使得当x>N 时有则称函数f在x趋于∞时的极限为A,记作(3)左极限f定义在[x0,x0+η)上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有则称A为f在点x0的左极限,记为(4)右极限f定义在(x0-η,x0]上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有就称A为f在点x0的右极限,记为(5).2.性质(1)唯一性;(2)有界性;(3)保号性;(4)保不等式性;(5)夹逼性.注:函数极限性质同数列极限性质类似.3.归结原则f定义在上,存在⇔对任何含于且以x0为极限的数列,都存在且相等.4.单调有界定理f为定义在上的单调有界函数,则右极限存在.5.柯西准则f定义在上,存在⇔∀ε>0,∃正数,使得对,有6.两个重要极限7.无穷小量与无穷大量(1)无穷小①时的无穷小,得;②时的无穷小,得.(2)无穷小的性质若f(x)为无穷小量,g(x)为有界量,则它们的积f(x)g(x)也为无穷小量.(3)无穷大f(x)定义在U0(x0)上.对∀给定的正数M,总∃正数(或正数X),只要(或|x|>X),总有|f(x)|>M,则称f为当或()时的无穷大.8.相关无穷小的定义(1)高、低阶无穷小若,则称x→x0时f为g的高阶无穷小量(或称g为f的低阶无穷小量),记作(2)同阶无穷小f和g定义U0(x0)上,若∃正数K和L,满足则称f与g为当x→x0时的同阶无穷小量.(3)等价无穷小若,则称f与g是当x→x0时的等价无穷小量,记作注:常用的等价无穷小9.渐近线设曲线y=f(x)(1)斜渐近线y=kx+b(2)垂直渐近线若(或者左、右极限趋于无穷),则垂直渐近线为.(3)水平渐近线若(或者),则水平渐近线为y=b.四、函数的连续性1.概念(1)连续的定义f(x)定义在U(x0)上,若则f在点x0连续.2.性质(1)有界性;(2)保号性;(3)四则运算.3.间断点(1)定义函数f(x)在点x0处不连续,则称点x0为函数f(x)的不连续点或间断点.如果x0是函数f(x)的间断点,但左极限及右极限都存在,则x0称为函数f(x)的第一类间断点.不是第一类间断点的任何间断点,称为第二类间断点.(2)类型①第一类间断点a.可去间断点在间断点处函数左右极限相等.b.跳跃间断点在间断点处函数左右极限不相等.②第二类间断点a.无穷间断点在间断点处函数极限为无穷大(无穷小).b.振荡间断点在间断点处函数值在一个区间变化.4.定理(1)最值定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有最大值与最小值.(2)有界性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有界.(3)介值性定理f为闭区间[a,b]上的连续函数,f(x)可以取介于最大值和最小值之间的任何值.(4)根的存在定理f为闭区间[a,b]上的连续函数,且f(a)·f(b)<0,则在(a,b)内至少有一点ξ,使得.5.一致连续(1)定义f定义在区间I上,如果对于∀给定的正数ε,总∃正数δ,使得对于区间I上的任意两点x1、x2,当时,有则称f在I上一致连续.(2)一致连续与连续的关系如果f(x)在区间I上一致连续,则f(x)在I上一定连续;当f(x)在区间I 上连续,f(x)在区间I上不一定一致连续.(3)一致连续性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上一致连续.。

§2.1数列极限

§2.1数列极限

华北科技学院理学院
2017年11月29日星期三
8
《数学分析》(1)
§2.1 数列极限概念
引例②截丈问题
战国时代哲学家庄周著的《庄子· 天下 篇》引用过一句话:
一尺之棰 日取其半 万世不竭. 1 第一天截下后的杖长为 X1 ; 2 1 第二天截下后的杖长为 X2 2 ; 2
1 第n天 截 下 后 的 杖 长 为 Xn n ; 2 1 0 Xn n
2
……
9
华北科技学院理学院
2017年11月29日星期三
《数学分析》(1)
§2.1 数列极限概念
两个引例共同点是出现了无限接近思想,这正是 极限概念的原始面貌. 极限概念是由于求某些问题的 精确答案而产生的, 割圆术和杖棰问题使用的都是极 限的方法. 第一个是把一个固定不变的量看作是一系 列变化着的多边形面积的趋向,从而确定出面积的 大小. 第二个是杖棰剩余问题,看作一系列变化着的 剩余趋向于一个确定量的问题. 无论是内接正多边形的面积 ,还是杖棰的剩余长 度,都可以看作是关于 n 的一个数列{ an },而这个数 列中的项随着 n 增加产生一个什么样的变化过程则是 人们最关心的,极限就是讨论这一类问题的数学模型.
16
《数学分析》(1)
§2.1 数列极限概念
(4) 对 0, 2 , , 2 , M ( M正常数 )等, 虽与 在 形式上有差异 , 但在本质上都与 起着同样的作用 .
lim a n a 0, N N , 当n N时, 有 a n a M .
2017年11月29日星期三
12
《数学分析》(1)
§2.1 数列极限概念
下面给出数列极限严格的数学定义. ( N定义)

第一讲-数列极限(数学分析)

第一讲-数列极限(数学分析)

第一讲 数列极限一、上、下确界 1、定义:1)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,则称M 是数集S 的一个上界,这时称S 上有界;若:,L R x S x L ∃∈∀∈≥,则称L 是数集S 的一个下界,这时称S 下有界;当S 既有上界又有下界时就称S为有界数集。

2)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,且0,:x S x M εε∀>∃∈>-,则称M 是数集S 的上确界,记sup M S =;若:,L R x S x L ∃∈∀∈≥,且0,:x S x L εε∀>∃∈<+,则称L 是数集S 的下确界,记inf L S =。

2、性质: 1)(确界原理)设S R ⊂,S ≠∅,若S 有上界,则S 有上确界;若S 有下界,则S 有下确界。

2)当S 无上界时,记sup S =+∞;当S 无下界时,记inf S =-∞。

3)sup()max{sup ,sup };inf()min{inf ,inf }AB A B A B A B ==。

4)sup inf();inf sup()S S S S =--=--。

5)sup()sup sup ;inf()inf inf A B A B A B A B +=++=+。

6)sup()sup inf A B A B -=-。

(武大93) 7)设(),()f x g x 是D 上的有界函数,则inf ()inf ()inf{()()}sup ()inf ()sup{()()}sup ()sup ()x Dx Df Dg D f x g x f D g D f x g x f D g D ∈∈+≤+≤+≤+≤+3、应用研究1)设{}n x 为一个正无穷大数列,E 为{}n x 的一切项组成的数集,试证必存在自然数p ,使得inf p x E =。

(武大94) 二、数列极限 1、定义:1)lim 0,():,||n n n a a N N n N a a εεε→∞=⇔∀>∃=>-<,称{}n a 为收敛数列;2)lim 0,:,n n n a M N n N a M →∞=+∞⇔∀>∃>>,称{}n a 为+∞数列;3)lim 0,:,n n n a M N n N a M →∞=-∞⇔∀>∃><-,称{}n a 为-∞数列;4)lim 0,:,||n n n a M N n N a M →∞=∞⇔∀>∃>>,称{}n a 为∞数列;5)lim 0n n a →∞=,称{}n a 为无穷小数列;2、性质1)唯一性:若lim ,lim n n n n a a a b a b →∞→∞==⇒=。

数列极限存在的充分必要条件

数列极限存在的充分必要条件

数列极限存在的充分必要条件数列极限存在是数学分析中一个重要的概念,它描述了数列在无限项的情况下的趋势和稳定性。

在数学中,我们常常关注数列的极限是否存在,因为它对于理解数列的性质和应用具有重要意义。

本文将探讨数列极限存在的充分必要条件。

一、数列的定义我们需要明确数列的定义。

数列是按照一定规律排列的一系列数的集合。

通常用{an}表示,其中n为自然数,an表示数列中的第n个数。

例如,{1, 2, 3, 4, ...}就是一个数列,其中an=n。

二、数列极限的定义数列极限的定义是数列理论的基础。

对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,|an-a|<ε成立,那么我们称实数a为数列{an}的极限,记作lim(n→∞)an=a。

三、数列极限存在的充分必要条件数列极限存在的充分必要条件是数学分析中的一个重要结论。

下面我们将介绍数列极限存在的充分必要条件。

充分条件:1. 单调有界性:如果数列{an}单调递增且有上界(或单调递减且有下界),则数列{an}的极限存在。

这是因为单调有界数列必定收敛于某个实数。

2. Cauchy收敛准则:如果数列{an}满足Cauchy收敛准则,即对于任意给定的正数ε,存在正整数N,使得当m,n>N时,|am-an|<ε成立,那么数列{an}的极限存在。

这是因为Cauchy收敛准则保证了数列的逼近性,使得数列趋于某个实数。

必要条件:1. 有界性:如果数列{an}的极限存在,那么数列{an}必定有界。

这是因为极限存在意味着数列在某个实数附近趋于稳定,因此数列的项必定在某个范围内。

2. 单调性:如果数列{an}的极限存在,那么数列{an}必定是单调的。

这是因为极限存在意味着数列在某个实数附近趋于稳定,因此数列的项必定具有一定的顺序性。

数列极限存在的充分必要条件是单调有界性和Cauchy收敛准则。

这两个条件保证了数列的趋势和稳定性,使得数列能够收敛于某个实数。

(整理)《数学分析》第二章 极限与连续.

(整理)《数学分析》第二章 极限与连续.

第二章 极限与连续一、本章知识脉络框图二、本章重点及难点(一)重点:极限的定义与性质、数列极限和一元函数极限的计算、两个重要极限的运用、归结原则、柯西准则以及有界闭集上连续函数的性质.(二)难点运用柯西准则和归结原则进行证明、理解多元函数重极限与累次极限的概念、有界闭集上连续函数的性质以及一致连续性.三、本章的基本知识要点本章符号说明::∀ 每一个或任给的;:∃ 至少有一个或存在;⇔:充分必要条件. (一)数列极限1. 数列极限定义lim 0,0,n n a a N ε→∞=⇔∀>∃>当n N >时,有.n a a ε-<注:定义中的N 可不取整数,n a a ε-<可以是.n a a ε-≤定理:增加、改变或去掉数列的有限项, 不影响数列的收敛性和极限. 重排不改变数列敛散性.数列极限的等价定义:(1) 0,0,N ε∀>∃> 当n N >时有,n a a k ε-< 其中k 为某个正数. (2) 0,0,c N ε∀<<∃> 当n N >时有,n a a k ε-<其中c 与k 为某个正数. 2. 收敛数列的性质(1) 唯一性定理:每个收敛的数列只有一个极限. (2) 有界性定理:收敛的数列必定有界.(3) 保号性定理:若lim n n a a →∞=,则对任意(),r a r a <>或 ,N n N ∃∀>, 有n a r > (或n a r <).(4) 保不等式性定理:若lim ,lim n n n n a b →∞→∞都存在,且,n n N n N a b ∃∀>≤有,则lim lim .n n n n a b →∞→∞≤(5) 迫敛性定理:设lim lim .n n n n a b a →∞→∞== 数列{}n c 满足:,N n N ∃∀>有 n n n a c b ≤≤,则数列{}n c 收敛,且lim .n n c a →∞=(6) 四则运算法则:lim ,lim ,i)lim();ii)lim ;iii)lim,0,0.n n n n n n n n n n n n n na ab b a b a b a b a b a ab b b b →∞→∞→∞→∞→∞==±=±⋅=⋅=≠≠设则其中(7) 与子列的关系:数列{}n a 收敛⇔数列{}n a 的任何非平凡子列都收敛. 3. 数列极限存在的条件 递增数列:121n n a a a a +≤≤≤≤; 递减数列:121n n a a a a +≥≥≥≥.(1) 单调有界定理:在实数系中,有界的单调数列必有极限.(2) 柯西收敛准则:0,,,,||.n m N n m N a a εε∀>∃∃∀>-<(二)函数极限1. 函数极限和非正常极限概念 函数极限定义(通过对比加以理解):(1) lim ()0,0,,().x f x A k x k f x A εε→+∞=⇔∀>∃>>-<当时恒有(2) lim ()0,0,,().x f x A k x k f x A εε→-∞=⇔∀>∃><--<当时恒有(3) lim ()0,0,,().x f x A k x k f x A εε→∞=⇔∀>∃>>-<当时恒有(4) 00lim ()0,0,0,().x x f x A x x f x A εδδε→=⇔∀>∃><-<-<当时恒有(5) 00lim ()0,0,0,().x x f x A x x f x A εδδε-→=⇔∀>∃>-<-<-<当时恒有 (6) 00lim ()0,0,0,().x x f x A x x f x A εδδε+→=⇔∀>∃><-<-<当时恒有 上述左极限0lim ()x x f x -→和右极限0lim ()x x f x +→也可以写成0(0)f x -和0(0)f x +. 定理:000lim ()(0)(0).x x f x A f x f x A →=⇔-=+=非正常极限定义(只列出2个,其余可以类似写出):(1) 0lim ()x x f x →=-∞00,0,0||,().M x x f x M δδ⇔∀>∃><-<<-当时恒有(2) lim ()x f x →∞=+∞0,0,||,().M k x k f x M ⇔∀>∃>>>当时恒有2. 函数极限的基本性质下面只以0lim ()x x f x →为代表来说明,其余类型极限的性质可以类似写出.(1) 唯一性定理:若0lim ()x x f x →存在,则极限唯一.(2) 局部有界性定理:若0lim ()x x f x →存在,则()f x 在0x 的某个空心邻域00()U x 内有界.(3) 局部保号性定理:若0lim (),x x f x A →=则r A ∀<(或r A >),0,δ∃>当00(,)x U x δ∈时,有()f x r >(或()f x r <).(4)保不等性定理:设0lim ()x x f x →与0lim ()x x g x →都存在,且在某邻域00(;)U x δ内有()(),f xg x ≤则0lim ()lim ().x x x x f x g x →→≤(5) 迫敛性定理:设00lim ()lim (), x x x x f x g x A →→==且在某邻域00(;)U x δ内有()() ()f x h x g x ≤≤ 则0lim ().x x h x A →=(6) 四则运算法则:lim (),lim (),(1)lim(()());(2)lim ()();()(3)lim,0.()x x x x x x x x x x f x A g x B f x g x A B f x g x A B f x AB g x B→→→→→==±=±⋅=⋅=≠设则其中3.函数极限存在的条件(1) 归结原则(也称为海涅定理):设()f x 在00(;)U x δ内有定义. 0lim ()x x f x →存在⇔任意含于邻域00(;)U x δ且以0x 为极限的数列{},n x 极限lim ()n n f x →∞存在且相等.(2) 柯西准则:设函数()f x 在邻域00(;')U x δ内有定义. 0lim ()x x f x →存在⇔0,ε∀>∃正数('),δδ<00',''(;),x x U x δ∀∈有|(')('')|.f x f x ε-<4. 两个重要极限(1) 0sin lim1.x xx→=(2) 1lim(1).xx e x→∞+=由归结原则得1lim(1).nn e n→∞+=5. 无穷小量与无穷大量 (1) 无穷小量定义:i) 设函数()f x 在某邻域00(;)U x δ内有定义. 若0lim ()0x x f x →=, 则称()f x 为当0x x →时的无穷小量.ii) 设函数()g x 在某邻域00(;)U x δ内有界,则称()g x 为当0x x →时的有界量.由无穷小量的定义可知,两个(相同类型的)无穷小量之和、差、积仍为无穷小量;无穷小量与有界量的乘积为无穷小量.(2) 定理:0lim ()()(),x x f x A f x A x α→=⇔=+其中()x α是当0x x →时的无穷小.(3) 无穷小量阶的比较无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢. 若无穷小量f 与g 满足()()lim0x x f x g x →=,则称当0x x →时f 为g 的高阶无穷小量,g 为f 的低阶无穷小量,记作()()()f x g x ο=(0x x →).特别,f 为当0x x →时的无穷小量,记作()()1f x ο=(0x x →).若存在正数K 和L ,使得在某邻域()00U x 上有()()f x K Lg x ≤≤,则称无穷小量f 与g 为当0x x →时的同阶无穷小量.特别当()lim0()x x f x c g x →=≠时,f 与g 必为同阶无穷小量. 若无穷小量f 与g 满足()()f x Lg x ≤,()00x U x ∈,则记作()()()0( ).f x O g x x x =→ 特别,若f 在某()00Ux 内有界,则记为()()1f x O =(0x x →).甚至当()()()0( )f x o g x x x =→ 时,也有()()()f x O g x =(0x x →).若无穷小量f 与g 满足()lim1()x x f x g x →=,则称f 与g 为当0x x → 时的等价无穷小量,记作()()~f x g x (0x x →).应指出,并不是任何两个无穷小量都可以进行这种阶的比较.例如,当0x → 时,1sinx x和2x 都是无穷小量,但它们的比 21sinx x x =11sin x x 或 21sin x x x =1sin x x当0x → 时都不是有界量,所以这两个无穷小量不能进行阶的比较. 下述定理表明了等价无穷小量在求极限问题中的作用. 定理: 设函数f ,g ,h 在邻域()00Ux 内有定义,且有()()~f x g x (0x x →).ⅰ) 若()()0lim x x f x h x A →=,则()()0lim ;x x g x h x A →= ⅱ) 若()()limx x h x B f x →=,则 ()()0lim .x x h x B g x →=(4) 无穷大量定义:对于自变量x 的某种趋向(或n →∞时),所有以∞、+∞或-∞为非正常极限的函数(包括数列),都称无穷大量.定理:ⅰ)设f 在()00U x 内有定义且不等于0.若f 为当0x x →时的无穷小量,则1f为当0x x →时的无穷大量.ⅱ)若g 为当0x x →时的无穷大量,则1g为当0x x →时的无穷小量. 由上述定理,对无穷大量的讨论可归结为无穷小量的研究.(三)一元函数的连续性1. 函数在点0x 连续的定义: 设函数()f x 在0x 的某邻域内有定义. 若()()00lim ,x x f x f x →= 则称函数()f x 在0x 点连续.若记()()00,x x x y f x f x ∆=-∆=- ,则()()00lim x x f x f x →= 的等价叙述为lim 0x y ∆→∆=,于是函数()f x 在0x 点连续的定义又可以写成:定义: 设函数()f x 在0x 的某邻域内有定义. 若0lim 0x y ∆→∆=,则称()f x 在0x 点连续.改用εσ-语言叙述,则()f x 在0x 点连续可以定义为:定义: 设函数()f x 在0x 的某邻域内有定义. 若对0ε∀>,0δ∃>使得当0x x δ-<时,都有()()0f x f x ε-<, 则称()f x 在0x 点连续.2. 函数在点0x 左、右连续的定义相应于在0x 的左、右极限的概念,我们给出左右连续的定义如下:定义: 设函数()f x 在0x 的某左(右)邻域内有定义. 若()()00lim x x f x f x -→=(或()()00lim x x f x f x +→=), 则称()f x 在0x 左(或右)连续.定理: 函数()f x 在0x 点连续⇔()f x 在0x 点既左连续又右连续. 与上述定理等价的否定叙述:定理: 函数()f x 在0x 点不连续⇔()f x 在0x 点或不左连续或不右连续. 3. 函数的间断点(不连续点)及其分类 定义:设函数f 在某领域()00Ux 内有定义. 若f 在点0x 无定义,或在点0x 有定义但不连续,则称点0x 为函数f 的间断点或不连续点.由连续的定义知,函数()f x 在0x 点不连续必出现如下3种情形之一:i )()0lim x x f x A →=,而f 在点0x 无定义,或有定义但()()00lim x x f x A f x →=≠;ii ) 左、右极限都存在,但不相等; iii ) 左、右极限至少一个不存在.据此,函数()f x 的间断点可作如下分类: i ) 可去间断点若()0lim x x f x A →=(存在),而f 在点0x 无定义,或有定义但()()00lim x x f x A f x →=≠,则称0x 为可去间断点(或可去不连续点).ii )跳跃间断点若0)(x x f 在点的左、右极限都存在,但不相等(即0(0)f x +与0(0)f x - 均存在,但00(0)(0)f x f x +≠-),则称0x 为()f x 的跳跃间断点.注:可去间断点与跳跃间断点统称)(x f 的第一类间断点. iii ) 第二类间断点若0(0)f x +与0(0)f x -至少有一个不存在,则称0x 为)(x f 的第二类间断点. 定义: 若函数)(x f 在区间I 上每一点都连续,则称)(x f 为I 上的连续函数. 对于区间端点上的连续性,则按左、右连续来确定.定义: 如果)(x f 在区间[],a b 上仅有有限个第一类不连续点,则称函数)(x f 在区间[],a b 上按段连续.4. 连续函数的性质局部有界性定理: 若函数)(x f 在0x 点连续,则)(x f 在0x 点的某邻域内有界. 局部保号性定理: 若函数)(x f 在0x 点连续,且()0f x α>(或()0f x β<),则对'αα∀<(或'ββ>),∃某邻域()0,U x 当()0x U x ∈时,有()'f x α>(或()'f x β<).四则运算性质: 若函数()(),f x g x 在区间I 上有定义,且都在0x I ∈连续,则()()()()()(),,f x g x f x g x f x g x ±(()00g x ≠)在0x 点连续.复合函数连续性定理: 若函数()f x 在0x 点连续,()g u 在0u 点连续,()00u f x =,则复合函数()()g f x 在0x 点连续.定义:设()f x 为定义在数集D 上的函数. 若∃0x D ∈,使得对∀x D ∈都有()()0f x f x ≥(或()()0f x f x ≤),则称在D 上有最大值(或最小值),称0x 为f 在D 上的最大值点(或最小值点),并称()0f x 为f 在D 上的最大值(或最小值).闭区间上连续函数的基本性质:最大最小值定理: 若函数()f x 在闭区间[],a b 上连续,则()f x 在闭区间[],a b 上有最大值与最小值.有界性推论:若函数()f x 在闭区间[],a b 上连续,则()f x 在闭区间[],a b 上有界. 介值性定理: 若函数()f x 在闭区间[],a b 上连续,且()()f a f b ≠,μ为介于()f a 与()f b 之间的任何实数(()()f a f b μ<<或()()f b f a μ<<),则在开区间(),a b 内至少存在一点0x ,使得()0.f x μ=根的存在定理: 若函数()f x 在闭区间[],a b 上连续,且()f a 与()f b 异号,则至少存在一点()0,x a b ∈ 使得()00,f x =即()0f x =在(),a b 内至少有一个实根.反函数的连续性定理: 若连续函数()f x 在闭区间[],a b 上严格递增(递减),则其反函数()1f y -在相应的定义域()(),f a f b ⎡⎤⎣⎦(或()(),f b f a ⎡⎤⎣⎦)上递增(递减)且连续.5. 一致连续性一致连续性定义:设函数()f x 在区间I 上有定义. 若0,ε∀>()0δδε∃=>, 当12,x x I ∈且12x x δ-<时,有()()12,f x f x ε-< 则称()f x 在区间I 上一致连续.注意:这里的δ只与0ε>有关,与(1,2)i x i =的位置无关.区间I 上的连续函数()f x ⇔1,x I ∀∈0,ε∀>()1'',0,x δδε∃=> 当2x I ∈且12'x x δ-<时,有()()12.f x f x ε-< 这就是说,连续函数里的'δ与预先取定的点1x 的位置有关,区间I 上的无穷多个点,对应无穷多个'δ,这无穷多个'δ的下确界可能为零,也可能大于零. 如果这无穷多个'δ的下确界为零,则不存在对I 上所有点都适合的公共()0δδε=>,这时()f x 在I 上连续,但不一致连续;如果这无穷多个'δ的下确界大于零,则必存在对I 上每一点都适用的公共()0δδε=>,如我们可取inf{'},δδ=则对I 上任意两点12,x x I ∈,当12x x δ-<时,便有()()12.f x f x ε-< 这种情况,()f x 在I 上连续就成为一致连续.一致连续性定理:若函数()f x 在闭区间[],a b 上连续,则()f x 在[],a b 上一致连续. 定理:一切基本初等函数都是定义域上的连续函数.因为任何一个初等函数都是由基本初等函数经过有限次四则运算与复合运算所得到,故任何初等函数都是定义域上的连续函数.(四)多元函数的极限与连续1.点列与二元函数的极限 (1) 点列极限与二重极限设{}n x 是X 轴上的一个点列,{}n y 是Y 轴上的一个点列,则以n x ,n y 为坐标的所有点(){},nnx y 组成平面上的一个点列记作{}nP .又设0P 是平面上的一点,坐标是()00,x y .若0,ε∀>∃正整数N ,当n N >时,有()0,n P P ρε=<,就称{}n P 收敛于0P ,记作0lim .n n P P →∞= 点列收敛的柯西准则:平面点列{}n P 收敛⇔0,0,N ε∀>∃>当N n >时,对一切正整数k ,都有(),.n n k P P ρε+<定义: 设f 为定义在2D R ⊂上的二元函数,0P 为的D 的一个聚点,A 是一个确定的实数. 若0,ε∀>∃0,δ> 使得当()D P UP oδ;0∈时,都有(),ε<-A P f 则称f在D 上当0P P →时以A 为极限,记作()0lim .P P P Df P A →∈=在对D P ∈不致产生误解时,也可简单地写作()0lim .P P f P A →= 当0,P P 分别用坐标()()00,,,y x y x 表示时,()0lim P P f P A →=也常写作()0(,)(,)lim ,.x y x y f x y A →=定理:()0lim P P P Df P A →∈=⇔对D 的每一个子集E ,只要点0P 是E 的聚点,就有()0lim P P P Ef P A →∈=.推论:i) 设1E D ⊂,0P 是1E 的聚点. 若极限()01lim P P P E f P →∈不存在,则极限()0lim P P P Df P →∈也不存在.ii) 设12,E E D ⊂, 0P 是1E 和2E 的聚点. 若存在极限()011lim P P P E f P A →∈=,()022lim P P P E f P A →∈=, 但12A A ≠, 则极限()0lim P P P Df P →∈不存在.iii) 极限()0lim P P P Df P →∈存在⇔对D 内任一点列{}n P , 0n PP →但0n P P ≠,数列(){}nf P 收敛.定义: 设D 为二元函数f 的定义域,),(000y x P 是D 的一个聚点. 若对0,M ∀>总存在0P 的一个δ邻域()00;U P δ,使得当()()0,;P x y U P D δ∈时,都有()f P M >,则称f 在D 上当0P P →时,存在非正常极限+∞,记作()()()00,,lim,.x y x y f x y →=+∞ 类似定义()()()00,,lim,x y x y f x y →=-∞和()()()00,,lim,.x y x y f x y →=∞(2) 累次极限 在前面研究的极限),(lim),(),(00y x f y x y x →中,两个自变量y x ,同时以任何方式趋于00,,x y这种极限也称为二重极限. 这一段考察x 与y 依一定的先后顺序相继趋于0x 与0y 时f 的极限,这种极限称为累次极限.定义:设,,x y E E R ⊂ 0x 是x E 的聚点,0y 是y E 的聚点,二元函数f 在集合x y D E E =⨯上有定义. 若对每一个0,y y E y y ≠∈,存在极限),,(lim 0y x f xE x x x ∈→由于此极限一般与y 有关,因此记作()),,(lim 0y x f y xE x x x ∈→=ϕ而且进一步存在极限(),lim 0y L yE y y y ϕ∈→=则称此极限为二元函数f 先对()0x x →后对()0y y →的累次极限,并记作 ),(lim lim 00y x f L xy E x x x E y y y ∈→∈→=或简记作).,(lim lim 00y x f L x x y y →→=类似地可以定义先对y 后对x 的累次极限 ).,(lim lim 00y x f K x x y y →→=注:i) 两个累次极限存在时,可能不相等. 例如:设yx y x y x y x f +++-=22),(,它关于原点的两个累次极限分别为.1)1(lim lim limlim 0202200-=-=-=+++-→→→→y yyy y x y x y x y y x y 与.1)1(lim lim limlim 0202200=+=-=+++-→→→→x xxx y x y x y x x x y x ii) 两个累次极限中的一个存在时,另一个可能不存在.例如函数1(,)sin f x y x y=在点(0,0)的情形.iii) 二重极限存在时,两个累次极限可能不存在(见例题).iV) 两个累次极限存在(甚至相等),二重极限可能不存在(见例题).综上, 二重极限、两个累次极限三者的存在性彼此没有关系. 但有以下确定关系: 定理:若二重极限()()()00,,lim,x y x y f x y →和累次极限()00lim lim ,x x y y f x y →→ (或另一次序)都存在, 则二者必相等.推论:i) 二重极限和两个累次极限三者都存在时,三者相等. ii) 两个累次极限存在但不相等时,二重极限不存在. 3. 二元函数的连续性 (1) 连续性概念定义: 设f 为定义在点集2R D ⊂上的二元函数. 0P D ∈(它或者是D 的聚点,或者是D 的孤立点). 若0,0,εδ∀>∃>只要(),;D P U P δ0∈就有()()ε<-0P f P f ,则称f 关于集合D 在点0P 连续. 在不至于误解的情况下,也称f 在点0P 连续.设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量. 和一元函数一样,可用增量形式来描述连续性,即当0lim),()0,0(),(=∆∈→∆∆z Dy x y x 时,f 在点0P 连续.如果在全增量中取0=∆x 或0=∆y ,则相应的函数增量称为偏增量,记作 ()00,y x f x ∆()()0000,,y x f y x x f -∆+=, ()00,y x f y ∆()().,,0000y x f y y x f -∆+=一般说来,函数的全增量并不等于相应的两个偏增量之和.若一个偏增量的极限为零,例如()000lim ,0,x x f x y ∆→∆=它表示在f 的两个自变量中,当固定0y y =时,()0,y x f 作为x 的一元函数0x 在连续. 同理,若().0,lim 000=∆→∆y x f y y 则表示一元函数()y x f ,0在0y 连续.容易证明,当f 在其定义域的内点()00,y x 连续时,()0,y x f 在0x 和()y x f ,0在0y 都连续. 但是反过来,二元函数对单个自变量都连续并不能保证该函数的连续性.(2) 连续函数的性质局部保号性定理:若二元函数f 在点()000,y x P 连续,并且存在实数A (或B )使得0()f P A >(或0()f P B <),则存在0P 的邻域0(;)U P δ,当0(;)P U P δ∈时有()f P A >(或()f P B <).局部有界性定理:若二元函数f 在点()000,y x P 连续,则f 在0P 的某个邻域0(;)U P δ上有界.四则运算性质: 两个连续函数的和、差、积、商(若分母不为0)都是连续函数. 复合函数的连续性定理:设函数()y x u ,ϕ=和()y x v ,φ=在xy 平面上点()000,y x P 的某邻域内有定义,并在点0P 连续;函数()v u f ,在uv 平面上点()000,v u Q 的某邻域内有定义,并在点0Q 连续,其中()000,y x u ϕ=,()000,y x v φ=.则复合函数()[]),(),,(,y x y x f y x g φϕ=在点0P 也连续.(3) 二元初等函数及其连续性与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.4. 有界闭区域上连续函数的性质(1) 有界性与最值性定理: 若函数f 在有界闭域2R D ⊂上连续,则f 在D 上有界,且能取得最大值与最小值.(2) 一致连续性: 若函数f 在有界闭域2R D ⊂上连续,则f 在D 上一致连续, 即0,0,εδ∀>∃>使得,,P Q D ∀∈只要(),,P Q ρδ<就有()()ε<-Q f P f .(3) 介值性与零点定理:设函数f 在区域2R D ⊂连续,若21,P P 为D 中任意两点,且()()21P f P f <,则对任何满足不等式()()21P f P f <<μ的实数μ,存在点D P ∈0,使得()μ=0P f .四、基本例题解题点击【例1】按N ε-定义证明!lim0.nn n n →∞=【提示】在用N ε-定义证明极限时,先写出定义,运用放缩法,找到合适的N 即可. 【证明】0,ε∀> 1,N ε∃=当n N >时,有!110.n n n n Nε-≤<= 因此 !lim 0.nn n n →∞= ■【例2】求极限111lim().1223(1)n n n →∞++⋅⋅+【提示】111.(1)1n n n n =-++【解】111lim()1223(1)n n n →∞++⋅⋅+11111lim[(1)()()]2231n n n →∞=-+-++-+ 1lim(1) 1.1n n →∞=-=+ ■【例3】求极限n →∞+【提示】用极限的迫敛性定理.【解21,nn<++<=+且lim1,lim11,n nn →∞→∞===由极限的迫敛性定理,得 1.n →∞+= ■【例4】应用柯西收敛准则,证明数列{}n a 收敛,其中2sin1sin 2sin .222n nna =+++【提示】利用柯西收敛准则和三角函数有界性. 【证明】0ε∀>,21log ,N ε∃=,n m N ∀>> 有()()12sin 1sin 2sin 222n m m m nm m na a ++++-=+++12111111121222212n m m m n m -+++-≤+++=⋅- 11111.122212m mN ε+<⋅=<=-故由柯西收敛准则知数列{}n a 收敛. ■【例5】计算.n nπ【提示】定义函数(),f x nπ= 再用极限四则运算、归结原则和等价无穷小量求解.【解】记函数(),f x xπ=则有sin limlim )0.x x x xxπππ→+∞==故由归结原则得 l i s i n 0.n nπ=■【例6】设()10111011m m m mn n n na x a x a x a f xb x b x b x b ----++++=++++,000,0,a b m n ≠≠≤,求()lim x f x →+∞.【提示】极限的四则运算法则和12lim lim lim 0.n x x x xx x ---→+∞→+∞→+∞====【解】因()10111011lim lim m n m n nm n n x x n na x a x a x f xb b x b x b x -------→+∞→+∞-+++=++++, 12lim lim lim 0,n x x x x x x ---→+∞→+∞→+∞====当m n ≤时,12lim lim lim 0;m n m n n x x x xx x -----→+∞→+∞→+∞====当m n =时,lim 1m nx x-→+∞=; 当m n <时,lim 0.m nx x-→+∞=故由极限的四则运算法则,有()00,;lim 0,.x a m n b f x m n →+∞⎧=⎪=⎨⎪<⎩■【例7】设()()00,lim x x f x f x A →>=.证明limx x →= 其中2n ≥为整数.【提示】当0A =时,直接利用函数极限定义证明.当0A >分子有理化,然后利用放缩法证明.【证明】因为()0f x >,故()0lim 0x x f x A →=≥.若0A =,由()0lim x x f x A →=,则0,0,εδ∀>∃>当00x x δ<-<时,有()().f x A f xε-=<=<即0lim 0x x →==.若0A >,由()0lim x x f x A →=,则0,0,εδ∀>∃>当00x x δ<-<时,有().f x A ε-<从而有2n nA-=++()1.f x A ε<-<故lim x x →=■【例8】求极限0x → 【提示】利用重要极限0sin lim1x xx→=及函数极限的运算法则.【解】 当11x -<<2.2x ==故22002lim lim 1cos 2sin 2x x x x x →→=-⎛⎫⎪⎝⎭222220sin 22lim[]11sin 22x x xx x →⎛⎫ ⎪⎝⎭=⋅=⨯=⎛⎫ ⎪⎝⎭ ■【例9】证明:若f在点0x 连续,则f 与2f 也在0x 连续. 又问:若f 或2f 在I 上连续,那么f 在I 上是否必连续?【提示】要证2f 连续,证2ff f =⋅即可,要证f连续,证f =f 或2f 连续不一定有f连续.【证明】由()f x 在0x x =连续,得()()00lim x x f x f x →=,从而()()()()0220lim lim lim ,x x x x x xfx f x f x f x →→→=⋅=再由例7的结论知 ()()00lim lim,x x x x f x f x →→===故f 与2f 也在0x x =连续.构造函数1(0)(),1(0)x f x x ≥⎧=⎨-<⎩ 则,x R ∀∈有2()1,()1,f x f x == 即2(),()f x f x 在R 上连续,但()f x 在0x =不连续,故()f x 在R 上不连续. 因此,由f 或2f 在I 上连续不能断定f在I 上连续. ■【例10】 设f 在[],a b 上连续,[]12,,,n x x x a b ∈.证明:存在[],a b ξ∈,使得()()()()121n ff x f x f x n ξ=++⎡⎤⎣⎦.【提示】f 在[],a b 上连续,则存在最大值和最小值,利用连续函数介值性定理. 【证明】设()()()(){}12max ,,,,i n f x f x f x f x =()()()(){}12min ,,.j n f x f x f x f x = 不失一般性,设.i j x x <(1)若()(),i j f x f x =则()()()12n f x f x f x ===,此时有()()()()121,k n f x f x f x f x n=+++⎡⎤⎣⎦ 1,2,,.k n =取k x ξ=即可. (2)若()()i j f x f x ≠,则()()()()()121.j n i f x f x f x f x f x n<+++<⎡⎤⎣⎦由连续函数介值性定理知,[](,),,i j x x a b ξ∃∈⊂使得 ()()()()121.n ff x f x f x n ξ=+++⎡⎤⎣⎦由此本题得证. ■五、扩展例题解题点击【例1】 设1,m a a 为m 个正数. 证明:{}12max ,,.m n a a a =【提示】运用迫敛性定理和1(0).n m =>【证明】设{}12max ,,,m a a a A = 则有A ≤≤因lim ,lim ,n n A A A →∞→∞==故由极限的迫敛性定理,得{}12max ,,.m n a a a =【延伸】:设<<1,2,...)i a M n =0(. 试证明:{}sup .n n na =【提示】:与前面方法类似(运用 1.n =) ■【例2】设数列{}n a 满足:存在正数M ,对一切n 有21321.n n n A a a a a a a M -=-+-++-≤证明:数列{}n a 与{}n A 都收敛.【提示】利用单调有界原理,柯西收敛准则及绝对值不等式证明.【证明】由,n A M ≤且11n n n n A A a a +--=-≥0,知{}n A 为单调有界数列. 由单调有界原理知{}n A 收敛.因{}n A 收敛,故由柯西收敛准则知,0,0,N ε∀>∃>当n m N ≥>时有.n m A A ε-< 而 ()()()1121n m n n n n m m a a a a a a a a ---+-=-+-++-1121n n n n m m a a a a a a ---+≤-+-++-.n m A A ε=-<由柯西收敛准则知{}n a 收敛,故{}n a 与{}n A 都收敛. ■【例3】设 1.a > 证明:lim 0.an n n a→∞=【提示】令a b =+1,利用二项式定理把分母na 展开,利用放缩法和基本例题中的例6. 【证明】令[]a 表示a 的整数部分,b a =-1,显然>b 0. 故[][]()110.1a a a nn n n n n a a b ++<≤=+ 当[]2n a >+时,()[][]221.na a nbc b +++>因此,[]()[][][]1122<.1a a na a nn n c bb ++++<+0因[][][]122lim 0,a a a n nn c b+++→∞= 故由迫敛性定理知,当1a >时,lim 0.an n n a→∞= ■【例4】计算1lim .xx x +→ (上海大学2001年考研试题) 【提示】先用数列1n ⎧⎫⎨⎬⎩⎭代替x ,猜测出极限的值,然后考虑用迫敛性定理. 【解】在区间()0,1内,10,xx x << 而0lim 0,x x +→= 故由迫敛性定理知,1lim 0.xx x +→= ■【例5】已知323lim 0.1x x x ax bx c x →+∞⎛⎫++---= ⎪+⎝⎭求,a b 与c 的值.【提示】此题中2ax bx c ++实际上就是331x x x +++的整式部分.【解】因323lim 0,1x x x ax bx c x →+∞⎛⎫++---= ⎪+⎝⎭故 ()()()()()3233223lim 113lim 0213lim 031x x x x x ax bx c x x x c ax b x x x x x b c a x x x x →+∞→+∞→+∞⎧⎛⎫++⎪--= ⎪+⎪⎝⎭⎪⎛⎫++⎪---= ⎪⎨ ⎪+⎝⎭⎪⎪⎛⎫++⎪---= ⎪ ⎪⎪+⎝⎭⎩由(3)与极限四则运算法则,得:()323lim 1.1x x x a x x →+∞++==+把1a =代入(2),得:()()3333lim lim 1.11x x x x x x b ax x x x x x →+∞→+∞⎛⎫⎛⎫++++=-=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭同理,把1,1a b ==-代入(1),得c =2. ■【例6】设lim n n a A →∞=(或∞+或∞-),则()121limn n a a a A n→∞+++=(或∞+或∞-).问:反之是否成立?【提示】利用极限定义和绝对值不等式证明.【证明】由极限定义知,1>0,,N N ε+∀∃∈当1n N >时,有,n a A ε-<故当1n N >时,有1212nn a a a a a a nAA nn++++++--=112N a A a A a An-+-++-≤1112N N n a A a A a An++-+-++-+1121.N a A a A a An N nnε-+-++--≤+⋅ 记112N a A a A a A b -+-++-=,因lim0,n bn→∞= 故2N N +∃∈, 当2n N >时有.bnε< 取{}12max ,N N N =, 当n N >时,1212.na a a n Nb A nn nεεεε+++--≤+⋅<+= 因此 ()121lim.n n a a a A n→∞+++=∞+或∞-的情形可类似进行证明.反之,若()121lim n n a a a A n→∞+++=,则不能得出lim n n a A →∞=. 例如,取(1),n n a =-则()121lim0,n n a a a n →∞+++= 而limn n a →∞不存在; 取2121,n a n -≡- 20,n a = 则()121lim ,n n a a a n →∞+++=+∞ 而lim n n a →∞不存在;∞-的情形类似. ■【例7】设函数f 定义在(),a +∞上,f 在每一个有限区间内有界,并满足()()lim 1,x f x f x A →+∞+-= 则()lim.x f x A x→+∞= 【提示】运用极限的定义,由题设条件推出结论成立.【证明】由题设()()lim 1,x f x f x A →+∞+-= 则00,,x a ε∀>∃> 使得当0x x ≥时,有()()()1.1f x f x A ε+--<∀0,x x > 记[]00,,m x x k x x m =-=-- 则1,k ≤<0 于是0,x x m k =++因而有()()()()000f x f x f x k f x k x k m A A A x x m x x -++⎛⎫+-=-+- ⎪⎝⎭ ()()()()0002f x f x k f x k x k m A A x m x x -++⎛⎫+≤-++ ⎪⎝⎭. 由(1)式可得()()0f x f x k m A x m -+⎛⎫- ⎪⎝⎭()()()00111mi f xk i f x k i mA m=≤++-++--∑()()()001111.3m i f x k i f x k i A m m mεε==++-++--<⋅⋅=∑ 又由于()f x 在()0,1a x +上有界,则()0lim 0x f x k x →+∞+=及0lim 0x x kA x→+∞+=,于是1,x a ∃> 使得当1x x >时,有()()00;.4f x k x kA x xεε++<< 取{}01max ,,X x x = 于是当x X >时,由(2)、(3)与(4)便有()3.f x A xεεεε-≤++= 故 ()lim .x f x A x→+∞= ■【例8】设f 为区间I 上的单调函数,证明:若0x I ∈为f 的间断点,则0x 必是f 的第一类间断点.【提示】利用确界与极限关系,证明f 在0x 的左右极限均存在.【证明】若f 为区间I 上的单调增函数,取()00U ,x I ⊂ 且满足()0012U ,,,x x x x I ∀∈∃∈使得12,x x x <<则f 在()00U x 上为有界函数. 由()()()000U 0inf ,x x f x f x +∈+=()()()000U 0sup ,x x f x f x -∈-= 知道f 在0x 左、右极限均存在. 因此,0x 若为f 的间断点,则0x 必为f 的第一类间断点. 若f 为区间I 上的单调减函数,则令()(),g x f x =-则()g x 为I 上的单调增函数,从而()()()(){}()()000000U U 00inf sup ,x x x x f x g x f x f x ++∈∈+=-+=--= ()()()(){}()()000000U U 00supinf.x x x x f x g x f x f x --∈∈-=--=--=因此,结论也成立. ■【例9】设函数f 为区间I 上满足利谱希茨条件(Lipschitz ),即存在常数0,L >使得对于I 上的任意两点'x 与''x 都有()()''''''.f x f x L x x -≤- 证明:f 在I 上一致连续.【证明】0,ε∀> 取0,δε=> 则''',,x x I ∀∈ 且''',x x δ-< 有()()''''''.f x f x L x x L ε-≤-<故f 在I 上一致连续. ■【例10】设{}n a 是有界数列,且12,n n n a a b ++= 若lim n n b →∞存在,则lim n n a →∞也存在(北京大学2009年考研试题).【证明】因{}n a 有界,故,M ∃ 使得,n ∀ 有.n a M ≤因lim n n b →∞存在(令其值为b ),故0,,N ε∀>∃ 当n N >时,有,n b b ε-< 即.n b b b εε<<+-因12,n n n a a b ++= 故有12.n n b a a b εε+<+<+-下面用反证法证明11.33n b a b εε<<-2+2 反设1,3n a b ε≥+2 由12n n a a b ε++<+得 1123n b a b εε+⎛⎫+<+ ⎪⎝⎭+2,即113.3n a b ε+<-因()2112,,n n n a a b b b εε++++=∈+- 故有2123,3n b a b εε+⎛⎫-+> ⎪⎝⎭-即215.3n a b ε+>+依此类推,于是得()22121.3k n k a b ε+>+-因此,当k 充分大时,有2.n k a M +>(例如当21log 12M b k ε⎛+⎫+⎪⎝⎭>时) 这与{}n a 为有界数列矛盾. 于是1.3n a b ε<+2 同理可证1.3n a b ε>-2 因此,0,,N ε∀>∃当n N >时有1.3n a b ε-<2 故{}n a 收敛. ■六、本章训练题提示点评 【训练题1】证明函数()1cosxf x e x=在()01,内非一致连续.(云南大学2004年考研试题) 【提示】利用非一致连续的定义证明. 【证明】0121110,0,,,222x x k k εδπππ∃=>∀>∃==+当正整数k 充分大时有12||x x δ-<(例如当12k δπ>时),故有 12101211coscos 1.xx x e e e x x ε-=≥= 因此,命题成立. ■【训练题2】已知()112,xx x xna a a f x n ⎛⎫+++=⎪⎝⎭其中123,,,n a a a a 为n 个正数.求(1)()0lim x f x →;(2)()lim x f x →+∞与 ()lim .x f x →-∞(2004年云南大学考研试题)【解】(1)因12112200ln ln ln lim lim x x x x xxn n nx x a a a n a a a a a a nx n→→+++-+++=(洛比达法则)()12ln .n a a a n=故()12121200lim lim 1x x x n x x x n a a a nnn xx x x a a a n n x x a a a n f x n +++-+++-→→⎡⎤⎛⎫+++-⎢⎥=+ ⎪⎢⎥⎝⎭⎢⎥⎣⎦()1212120ln limlim x x xx x xn n n x a a a a a a na a a n nxnxnx eee→+++-+++-→====(2)由(1)知x =0是()f x 的可去间断点. 由初等函数在其定义域内的连续性知,()()()()lim ln lim ln lim ,lim ,x x f x f x x x f x e f x e →+∞→-∞→+∞→-∞==而 ()121lim ln lim ln,x xxnx x a a a f x x n →+∞→+∞+++=⋅()121lim ln lim ln .x xx nx x a a a f x x n→-∞→-∞+++=⋅1 若{}max 1,i ia =则当0x >时,12.x xx n a a a n <+++≤1故()lim ln 0,x f x →+∞= 即()lim 1.x f x →+∞=2 若{}min 1,i ia = 则当0x <时,12.x x xn a a a n <+++≤1故()lim ln 0,x f x →-∞= 即()lim 1.x f x →-∞=3 若{}max 1,i i a ≠则12lnx xxna a a n+++为x →+∞时的无穷大量.故由洛比达法则得,12112212ln ln ln 1lim ln lim x xxx x xnn nx x x x x na a a a a a a a a x na a a →+∞→+∞++++++⋅=+++{}()ln max .i ia =因此,(){}lim max .i x if x a →+∞=4 若{}min 1,i i a ≠则12lnx xxna a a n+++为x →-∞时的无穷大量.故由洛比达法则得,12112212ln ln ln 1lim ln lim x xxx x xnn nx x x x x na a a a a a a a a x na a a →-∞→-∞++++++⋅=+++ {}()ln min .i ia =因此,(){}lim min .i x if x a →-∞=综合,2,3,41知,(){}(){}lim max ,lim min .i i x x iif x a f x a →+∞→-∞== ■【训练题3】设()2122lim 1n n n x ax bxf x x -→∞++=+是连续函数,求a ,b 的值.(福建师范大学2006年考研试题)【提示】利用极限的四则运算法则和连续函数的定义.【解】当1x >时,()23222111lim;1n n n n a bx x f x x x x--→∞-++==+当1x <时,()2122lim 1n n n x ax bxf x x -→∞++=+2;ax bx =+ 当1x =-时,()()111;2f a b -=-+- 当1x =时,()()111.2f a b =++ 因()f x 在1x =处连续,故()()()111,f f f -+==即 ()111;2a b a b +==++ 因()f x 在1x =-处连续,故()()()111,f f f -+-=-=-即()111.2a b a b -=-=-+- 解方程组可得 0a =, 1.b = ■【训练题4】求α和,β 使得当x →+∞时,量.x βα(上海大学2002年考研试题).【解】0limlim x t x βα+→+∞→+=122lim .t tβα+→-=在右领域()()0;1U δδ+<内,()211,2t t ο=++()211.2t t ο=-+当11,2αβ==-时,lim 1.x →+∞= 即当x →+∞12.x - ■【训练题5】设()f x 在(),a b 上连续,且f 是一对一(即()12,,x x a b ∀∈且12x x ≠时,有()()12f x f x ≠),证明:()f x 在(),a b 上严格单调. 【证明】反证法. 反设()f x 在(),a b 上非严格单调,即()123,,,x x x a b ∃∈且123,x x x <<有()()()()1232,.f x f x f x f x << 或()()()()1232,.f x f x f x f x >>(因f 是一对一,故不能取等号) 若()()()()1232,f x f x f x f x <<成立, 取()()(){}213max ,,2f x f x f x M +=显然()2M f x <且()()13,.M f x M f x >>在[]12,x x 上()f x 连续,由介值性定理知,()412,,x x x ∃∈ 使得()4,f x M =同理()523,,x x x ∃∈ 使得()5.f x M =于是()()45,f x f x = 这与f 在(),a b 上一对一矛盾.因此,当123x x x <<时,()()12f x f x <与()()32f x f x <不能同时成立. 同理可证,当123x x x >>时,()()12f x f x >与()()32f x f x >不能同时成立. 综上所述知,()f x 在(),a b 上严格单调. ■【训练题6】求202cos 2lim.tan sin x x x e x x x→+--(华南理工大学2004年考研试题) 【解】因()()2tan sin tan 1cos 0,2x x x x x x x -=-⋅→ 而()()22232cos 21212.2xx x e x x x x ο⎛⎫+-=++--+ ⎪⎝⎭(由泰勒公式)于是233002cos 2lim lim 2.tan sin 2x x x x e xx x xx →→+-==- ■【训练题7】设11x >>, 11nn na x x x ++=+, 1,2,n =, 试证{}n x 收敛,并求lim n n x →∞, (华南理工大学2004考研试题).【解】 因11x >>, 故2121101a xx x x --=<+, 即21x x <.因121111111a x ax x x +-==+<+=++故21x <<因 222211111a x a x x x +-==+>=++故3x >同理4x <, ,因此得21k x ->, 211,2,)k x k <<=.因213112()012a x x x a x --=<++, 故31x x <.因224222()012a x x x a x --=>++, 故42x x >.因22212121212212()112k k k k k k k a x a x x x x x a x -+---+--=-=+++且21k x ->故有21210k k x x +--<, 即2121k k x x +-<. 同理得222k k x x +>. 因此, 子列{}21k x -单调减小有下界, 故21limk k x -→∞存在, 设极限为1m . 子列{}2k x 单调增加有上界, 故2lim k k x →∞存在, 设极限为2m .对2212121212()12k k k k a x x x a x -+----=++左右两边取极限, 得21m a =. 由极限保号性知1m =. 同理得2m =. 由数学分析第一册(华东师大)第26页例题7知,lim n n x →∞=. ■【训练题8】证明极限111lim 1ln 23n n n →∞⎛⎫++++- ⎪⎝⎭存在. (哈尔滨工业大学2009考研试题). 【证明】 记1111ln 23n a n n =++++-. 则11ln11n n na a n n +-=+++. 因23ln(1)23x x x x -=----, ()[1,1)x ∈-,故2311111ln 112131n n n n n ⎛⎫⎛⎫=--⋅-⋅-⎪ ⎪++++⎝⎭⎝⎭.因此得10n n a a +-<, 即{}n a 为单调递减数列.由于23ln(1)23x x x x +=-+- ()(1,1]x ∀∈-,故ln(1)x x +<()(1,1]x ∀∈-. 因此得()111ln 11ln 1ln 1ln 1ln 23n a n n ⎛⎫⎛⎫⎛⎫>++++++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()ln 2(ln3ln 2)(ln 4ln3)ln 1ln ln n n n =+-+-+++--1ln0n n+=>. 于是{}n a 有下界.综上所述, 知{}n a 为单调递减数列且有下界, 故{}n a 收敛. ■【训练题9】令22(,)xyf x y x y=+,讨论二重极限(,)(0,0)lim (,)x y f x y →与累次极限00limlim (,)y x f x y →→、00limlim (,)x y f x y →→是否存在.【解】当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时, 由于此时2(,)(,)1mf x y f x mx m ==+, 因而有2(,)(0,0)0lim(,)lim (,)1x y x y mxmf x y f x mx m →→===+.这说明动点沿不同斜率m 的直线趋于原点时, 对应的极限值也不同, 因此所讨论的重极限不存在.已经知道(,)(0,0)x y →时f 的重极限不存在. 但当0y ≠时有22lim0x xyx y →=+从而有 2200lim lim0y x xyx y →→=+. 同理可得 2200lim lim0x y xyx y →→=+. ■【训练题10】设11(,)sinsin f x y x y y x=+. 讨论重极限(,)(0,0)lim (,)x y f x y →和累次极限。

大学数列的极限知识点归纳总结

大学数列的极限知识点归纳总结

大学数列的极限知识点归纳总结数列是数学中常见且重要的概念之一,它含有很多有趣而具有挑战性的性质。

其中,数列的极限是数学分析中的重要内容之一,它在微积分、实变函数等领域中有广泛的应用。

本文将对大学数列的极限知识点进行归纳总结,帮助读者更好地理解和掌握这一概念。

一、数列的定义及性质1. 数列的定义:数列是按照一定顺序排列的一串数字。

2. 数列的记法:一般用 {an} 表示数列,其中 an 表示数列的第n项。

3. 数列的性质:数列可以是有界的或无界的。

二、数列极限的概念1. 数列极限的定义:对于数列 {an},如果存在一个常数A,使得对于任意给定的正数ε,存在正整数N,使得当n>N时,|an-A|<ε,那么称数列的极限为A,记作lim (n→∞) an = A。

2. 数列极限的几何解释:数列的极限可以理解为当n趋向于无穷大时,数列的项趋向于某个常数。

三、数列极限的性质1. 数列极限的唯一性:对于一个数列,如果其极限存在,则该极限是唯一的。

2. 数列极限与数列项的关系:如果数列的极限存在,那么对于任意大于极限的数M,存在正整数N,使得当n>N时,an>M。

3. 数列极限与数列的有界性的关系:如果数列的极限存在,那么这个数列一定是有界的。

四、常见数列的极限1. 等差数列的极限:对于等差数列 {an} = a1, a1+d, a1+2d, ...,其中a1为首项,d为公差,其极限为lim (n→∞) an = a1。

2. 等比数列的极限:对于等比数列 {an} = a1, a1r, a1r^2, ...,其中a1为首项,r为公比(r≠0),其极限存在的条件是|r|<1,极限为lim(n→∞) an = 0。

3. 斐波那契数列的极限:斐波那契数列 {Fn} = 1, 1, 2, 3, 5, 8, ...,其中每一项等于前两项之和。

斐波那契数列的极限不存在,即lim (n→∞) Fn 不存在。

《数学分析》第二章 数列极限

《数学分析》第二章 数列极限

xn的 限 或 称数 xn 收 于 ,记 极 , 者 列 敛 a 为
lim xn = a, 或xn → a (n → ∞).
n→∞
如果数列没有极限,就说数列是发散的 如果数列没有极限 就说数列是发散的. 就说数列是发散的 注意: 注意:.不等式 x n a < ε刻划了 x n与a的无限接近 ; 1
则当n > N时有 a b = ( x n b ) ( x n a )
ε ≤ x n b + x n a < ε + ε = 2ε.
故收敛数列极限唯一. 上式仅当a = b时才能成立 . 故收敛数列极限唯一
例5 证明数列 x n = ( 1) n + 1 是发散的. 1 由定义, 证 设 lim x n = a , 由定义 对于ε = , n→ ∞ 2 1 则N , 使得当 n > N时, 有 x n a < 成立, 2 1 1 即当n > N时, x n ∈ (a , a + ), 区间长度为1. 2 2 而x n 无休止地反复取1, 1两个数 , 不可能同时位于长度为 的 不可能同时位于长度为1的区间内. 长度为
注意: 数列对应着数轴上一个点列.可看作一 注意: 数列对应着数轴上一个点列 可看作一 1.数列对应着数轴上一个点列 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n = f (n). 数列是整标函数
三,数列的极限
( 1)n1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n
2,唯一性 ,
定理2 定理2 每个收敛的数列只有一个极限. 每个收敛的数列只有一个极限.

数学分析 第二章21-2数列极限的准则、运算法则

数学分析 第二章21-2数列极限的准则、运算法则
数列极限的准则、 运算法则
2021/3/22
1
极限存在准则
1.定理3(夹逼准则)
若数列( xn )n1, ( yn )n1,(zn ) 满足下列条件:
(1) yn xn zn (n N),
(2)
lim
n
yn
lim
n
zn
a,
则数列
(
xn
)n1的极限存在,

lim
n
xna.Leabharlann 2021/3/222
证 yn a, zn a,(n )
xn
yn
a b.
3.lim xn a , (b 0).
y n n
b
2021/3/22
11
证1 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a ,
当 n N2时恒有 yn b ,
取 N max{ N1, N2 }, 当 n N时, 恒有 上两式同时成立,
M | b | (M | b |)
即lim n
xn
yn
ab
lim
n
xn
lim n
yn
特别地,两个无穷小量的积仍是无穷小量.
更一般,一个有界量与一个无穷小量的积仍
是无穷小量.
2021/3/22
15
证3 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a , 当 n N2时恒有 yn b ,
| (xn yn ) (a b) | | xn a | | yn b | 2
即lim( n
xn
yn )
a
b

数学分析2-323 数列极限存在的条件

数学分析2-323 数列极限存在的条件

n
2
) 1
1 (1 1 )(1 2 ) (1 n 1)
n! n 1 n 1
n1
1 (1 1 )(1 2 ) (1 n ).
(n 1)! n 1 n 1
n1
把 en 和 en1的展开式作比较就可发现, en 的展开
式有 n 1 项,其中的每一项都比 en1 的展开式中
的前 n 1 项小,而 en1 的最后一项大于零.因此
n(n 1) n!
11 nn
1 1 1 (1 1 ) 1 (1 1 )(1 2 ) 1! 2! n 3! n n
1 (1 1 )(1 2 ) (1 n 1),
(1)
n! n n
n
前页 后页 返回
由此得
en1
1
1 1!
1 (1 2!
1 n
) 1
1 (1 3!
1 n
)(1 1
A2 2 A,并解出 A 2, A 1.
由极限的不等式性, 知道 A 0 , 所以
lim
n
an
2
.
前页 后页 返回
例2 下面的叙述错在哪儿?
“设 an 2n, n 1, 2, , 则
an1 2n1 2an .
因为显然有
an
0,
所以
{ an }
递增 . 设
lim
n
an
A,
从而得出
A 2A A 0,
即 lim 2n 0 .” n
以前知道圆周率 π 是一个重要的无理数,现在来
介绍另一个重要的无理数 e.
前页 后页 返回
考察数列
en
(1
1 n
)n
的收敛性,下面的证法

数学分析第三讲 数列极限综合例题选讲

数学分析第三讲  数列极限综合例题选讲

nn
n n 1 1
n1 n 1
nn11
利用an bn a b an1 an2b bn1
n 1n nn1
1
1 n
n
n
e n
1n
3
n 3, n n 单调递减.
得到结论:Sup n n = max 1, 2, 3 3 3 3
综合例题
例11
n
xn
.
解:分析数列
1 xn 1 xn1 1 / 4 2 xn 1 xn 1 / 4
xn 1 xn xn 1 xn1 xn xn1 xn单调有界
根据数列极限的保序性
lim n
xn
1
lim
n
xn1
1 / 4 1 1
4
lim n
xn
1
lim
n
xn
0 1, N
xn p xn
ln max
x1 ln q
结论得证
x0
1,1 , n
N
,p
N
*:
柯西(Cauchy,Augustin Louis, 1789-1857)法国数学 家. 在数学领域有很高的建树. 在复变函数论、微分方程等领 域研究具有开创性工作. 柯西是微积分严密化创始人之一.
n2 1
1/
8
+
n
1 1/
4
n2 1
1/
4
+
n
1 1/
2
n2 1
1/
2
+
n
1
分母最高次: n1/4 n1/2 n n7/4
解:原式=
2n / n7 / 4
lim
0

数列的极限与收敛性

数列的极限与收敛性

数列的极限与收敛性在数学中,数列是由一系列按照特定规律排列的数所组成的序列。

数列的极限是指当序列的项趋向无穷时,序列的最终趋势。

而数列的收敛性则是指当序列逼近其极限时,序列的值逐渐趋于稳定。

本文将探讨数列的极限与收敛性的相关概念以及数列收敛的判定方法。

一、数列的极限数列的极限是指当数列中的项趋向无穷时,序列的最终趋势。

记作lim(n→∞)an = A,其中an表示数列中的第n个数,A表示数列的极限。

当数列的极限存在时,有以下几种可能情况:1. 若数列的极限A存在有限值,即lim(n→∞)an = a,则该数列为收敛数列。

2. 若数列的极限不存在有限值,即lim(n→∞)an = ∞或lim(n→∞)an= -∞,则该数列为发散数列。

3. 若数列的极限不存在,既不是有限值也不是无穷值,则该数列为不存在极限的数列。

在求解数列的极限时,可采用数列的通项公式或递推关系进行分析推导。

通过不断逼近数列中的项,可以确定数列的极限并判断其收敛性。

二、数列的收敛性判定方法针对数列的收敛性,常用的判定方法有以下几种:1. 夹逼定理:若对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(n→∞)an = lim(n→∞)cn = A,则数列{bn}的极限存在且等于A。

夹逼定理可用于判定数列的收敛性,通过找到两个夹逼数列,其中一个逼近极限A,另一个逼近A的同时,数列{bn}也逼近A。

2. 单调有界原则:对于单调递增(递减)的数列,若该数列有上(下)界,则该数列必为收敛数列。

单调有界原则通过观察数列的变化趋势,若数列单调递增且上界有限,或数列单调递减且下界有限,可判断该数列为收敛数列。

3. 递推关系法:当数列的通项公式较难推导时,可通过数列的递推关系判断其收敛性。

递推关系法思路是通过递推公式不断迭代计算数列的项,直至数列趋于稳定。

递推关系法需要根据数列的特点,寻找递推公式,并进行递归计算,直到数列的项逐渐趋于稳定。

数列极限的概念及其性质证明

数列极限的概念及其性质证明

数列极限的概念及其性质证明数列是数学中的重要概念之一,它是由一系列按照一定规律排列的数所组成的序列。

而数列极限是数列理论中的核心概念之一,它描述了数列在无限项下的趋势和性质。

本文将探讨数列极限的概念及其性质证明。

一、数列极限的概念数列极限是指当数列的项数趋向无穷大时,数列中的数值逐渐趋近于某个固定的值。

具体地说,对于一个实数数列{an},如果存在一个实数a,使得对于任意给定的正数ε,总存在正整数N,使得当n>N时,有|an - a| < ε成立,那么称数列{an}的极限为a,记作lim(n→∞)an = a。

二、数列极限的性质证明1. 唯一性性质首先,我们来证明数列极限的唯一性性质。

假设数列{an}的极限既为a又为b,且a ≠ b。

根据极限的定义,我们可以取ε = |a - b|/2,那么存在正整数N1和N2,使得当n > N1时,有|an - a| < ε,当n > N2时,有|an - b| < ε。

考虑n > max(N1, N2),那么根据三角不等式,有:|a - b| = |(a - an) + (an - b)| ≤ |a - an| + |an - b| < ε + ε = |a - b|。

这与|a - b| < |a - b|矛盾,因此假设不成立,数列极限的唯一性得证。

2. 有界性性质接下来,我们证明数列极限的有界性性质。

假设数列{an}的极限为a,则存在正整数N,使得当n > N时,有|an - a| < 1。

令M = max{|a| + 1, |a1|, |a2|, ..., |aN|},那么对于任意的n > N,有:|an| = |an - a + a| ≤ |an - a| + |a| < 1 + |a| ≤ |a| + 1 ≤ M。

因此,数列{an}是有界的。

3. 单调性性质最后,我们证明数列极限的单调性性质。

数学分析讲解数列极限

数学分析讲解数列极限

例7 设数列{xn}对常数A和0 < q <1满足条件
| xn1 A | q | xn A | (n N)
证明
lim
n
xn
A.
例8

x1
1,
xn1
1 1 xn
,
(n
N).求
lim
n
xn
三、收敛数列的性质
定理1 (唯一性)若数列{xn}存在极限,则其极限值必唯一. 即
若lim n
xn
A, 又 lim n
推论1 若
lim
n
an
a , 则有
lim a1 a2 L
n
n
an a
推论2
若an
>
0,

lim
n
an
a
,
则有
lim n
n
a1 a2 L
an
a
推论3
若an
>
0,
且lim n
an an1
a , 则有
lim n
n
an
a
例14
求极限
12 lim
22
n
2 32 3 3L n2 n n n3
lim (
n
xn
yn )
A
B
lim
n
xn
lim
n
yn ;
lim (
n
xn
yn )
A
B
lim
n
xn
lim n
yn ;
(lim n
xnm
Am ,
m N)
(lnim(cxn
)
cA
c
lim

数学分析数列极限分析解析

数学分析数列极限分析解析

第二章 数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。

教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。

教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。

2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。

”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。

例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n )1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011n只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。

记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。

数列与数列的极限与收敛

数列与数列的极限与收敛

数列与数列的极限与收敛在数学中,数列是由一列按特定规律排列的数所组成的。

数列的极限和收敛是数学分析中的重要概念,它们对于理解数学中的变化趋势和数值计算都有着重要的作用。

本文将从数列的定义开始,逐步介绍数列的极限和收敛以及它们在数学中的应用。

一、数列的定义数列是由一系列有序数按照一定规律排列而成的集合。

数列可以用一般形式表示为:{a₁, a₂, a₃, ... , aₙ},其中 a₁、a₂、a₃等为数列的项,n为项的序号。

每个数列都有一个递增的自然数集合作为序号集。

二、数列的极限数列的极限是数列中项的值逐渐趋近于某个确定的值的过程。

如果存在一个实数L,对于任意给定的正数ε,总能找到自然数N,使得当n大于N时,数列的第n项与L的差的绝对值小于ε,那么我们称数列的极限为L。

三、数列的收敛数列的收敛是指数列中的项逐渐趋近于某个值的过程。

如果一个数列存在极限,那么我们称该数列是收敛的。

反之,如果一个数列不存在极限,或者极限不是一个实数,那么我们称该数列是发散的。

四、数列极限的性质1. 数列的极限唯一性:对于一个数列来说,它的极限是唯一的。

2. 收敛数列有界性:如果一个数列是收敛的,那么它是有界的。

3. 收敛数列的性质:如果一个数列是收敛的,并且它的极限是L,那么数列中的所有项都会无限接近于L。

五、数列极限的计算方法1. 常数列的极限:对于一个常数c来说,它自身就是一个数列的极限,即lim(c) = c。

2. 递推数列的极限:对于一个递推数列来说,可以通过借助极限的性质和运算法则来计算极限。

3. 收敛数列的运算法则:对于两个收敛数列{aₙ}和{bₙ}来说,它们的和差、积、商仍然是收敛数列,并且满足相应的运算法则。

六、数列极限的应用1. 数学建模:在数学建模中,数列的极限和收敛是重要的工具。

通过研究数列的极限和收敛,可以推断出一些复杂问题中的规律和趋势。

2. 数值计算:在数值计算中,数列的极限和收敛可以用来进行数值逼近和数值解的计算,从而提高计算的精度和效率。

数学分析2.3数列极限存在的条件

数学分析2.3数列极限存在的条件

第二章数列极限2 数列极限存在的条件若数列{a n}的各项满足a n≤a n+1(a n≥a n+1),则称{a n}为递增(递减)数列。

递增数列和递减数列统称为单调数列。

定理 2.9(单调有界定理):在实数系中,有界的单调数列必有极限,且其极限就是它的上(下)确界.证:若{a n}为有上界的递增数列. 由确界原理可知,{a n}有上确界,记a=sup {a n}. 则对∀ε>0,有{a n}中的某一项a N,使得a-ε<a N.∵{a n}递增,∴当n≥N时,有a-ε<a N≤a n.又{a n}有上界,∴对一切a n,都有a n≤a<a+ε.综上,当n≥N时,有a-ε<a n <a+ε, ∴=a.若{a n}为有下界的递减数列. 由确界原理可知,{a n}有下确界,记b=inf {a n}. 则对∀ε>0,有{a n}中的某一项a N,使得b+ε>a N.∵{a n}递减,∴当n≥N时,有b+ε>a N≥a n.又{a n}有下界,∴对一切a n,都有a n≥b>b-ε.综上,当n≥N时,有b-ε>a n >b+ε, ∴=b.例1:设a n=1,n=1,2,…,其中实数a≥2. 证明数列{a n}收敛. 证:∵a n-1-a n=(1)- (1)=>0.∴{a n}递增. 又a n≤1≤1=2<2,n=1,2,…,∴{a n}有上界. 由单调有界定理可知{a n}收敛.例2:证明数列,,……收敛,并求其极限.n个根号证:记a n=,且a1=<2, 可设a n<2,则有a n+1=<<2,从而对一切n,有a n<2,即{a n}有界。

又a1=>0,a2=>=a1>0,可设a n>a n-1,即a n-a n-1>0;则a n+1-a n=>0,∴{a n}递增.由单调有界定理可知,数列{a n}有极限,记为a. 由=2+a n,对两边取极限得a2=2+a,解得a= -1或a=2. 由数列极限的保不等式性知,a= -1不合理,舍去. ∴.例3:设S为有界数集. 证明:若sup S=a∉ S,则存在严格递增数列{x n}⊂S,使得=a.证:∵sup S=a,∴∀ε>0,∃x∈S,使x>a-ε. 又a∉ S,∴x<a,从而有a-ε< x<a,取ε1=1,则∃x1∈S,使得a-ε1< x1<a,再取ε2=min{,a- x1}>0,则∃x2∈S,使得a-ε2< x2<a,且有x2> a-ε2≥a-(a- x1)= x1.如上循环进行可得x n-1∈S,取εn=min{,a- x n-1}>0,则∃x n∈S,使得a-εn< x n<a,且有x n> a-ε2≥a-(a- x n-1)= x n-1. 至此得到严格递增数列{x n}⊂S,且满足a-εn< x n<a<a+εn,∴=a.例4:证明存在.证:建立不等式b>a>0,对任一正整数n有,b n+1-a n+1<(n+1)b n(b-a),即a n+1> b n[(n+1)a-nb] (1)以a=1,b=1代入(1)式,得,∴递增;再以a=1,b=1代入(1)式,得1>=,∴<4.∴有界;根据单调有界定理可知:收敛。

数列极限的计算方法

 数列极限的计算方法

数列极限的计算方法一、引言数列极限是数学分析中的一个基本概念,它描述了数列随着项数的增加而逐渐接近的某个数值。

数列极限的计算方法多种多样,包括直接代入法、夹逼定理、单调有界定理等。

本文将详细介绍这些计算方法,并探讨它们的适用范围和优缺点。

二、直接代入法直接代入法是最简单直观的数列极限计算方法。

当数列的通项公式较为简单时,我们可以直接代入n趋向于无穷大的情况,从而求出数列的极限值。

例如,对于数列an = 1/n,当n趋向于无穷大时,an趋向于0,即lim an = 0。

直接代入法的优点在于操作简单、容易理解;但其缺点也很明显,即仅适用于通项公式简单、易于计算的数列。

三、夹逼定理夹逼定理是计算数列极限的常用方法之一。

它适用于那些通项公式较为复杂、难以直接代入计算的数列。

夹逼定理的基本思想是通过找到两个收敛于同一极限的数列{an}和{bn},使得对于所有正整数n,都有an ≤ xn ≤ bn,从而得出数列{Xn}的极限值。

例如,对于数列Xn = sin(n)/n,我们可以利用夹逼定理来求解其极限。

首先,找到两个收敛于0的数列{an}和{bn},使得对于所有正整数n,都有an ≤ sin(n)/n ≤ bn。

显然,当n > 0时,-1/n ≤ sin(n)/n ≤ 1/n,即an = -1/n,bn = 1/n。

由于lim an = lim bn = 0,根据夹逼定理,我们得出lim Xn = 0。

夹逼定理的优点在于适用范围广,可以处理许多直接代入法无法处理的复杂数列;但其缺点在于需要找到合适的{an}和{bn},这往往需要一定的数学技巧和经验。

四、单调有界定理单调有界定理是计算数列极限的另一个重要方法。

它适用于那些单调递增或单调递减且有界的数列。

单调有界定理的基本思想是,如果一个数列单调递增(或递减)且有上界(或下界),则该数列必定收敛,且其极限值等于其上界(或下界)。

例如,对于数列Xn = 1/n^2,我们可以看出这是一个单调递减且有下界的数列(下界为0)。

数学分析课件之第二章数列极限

数学分析课件之第二章数列极限

02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态

数分第三章:数列极限

数分第三章:数列极限

0,
2 an 2 an1
数学分析
所以 {an }递增 . 下面再来证明此数列有上界.
显然 , a1 2 2 , 设 an 2 , 则
an1 2 an 2 2 2.
由此得到 {an }有上界 2 ,
故极限
lim
n
an

A
存在
.
于是由
lim
n
第三单元 数列极限 3.1.1 数列收敛的定义
数学分析
数列极限的概念
数列极限是函数极限的特殊情况,也是 整个数学分析最重要的基础之一, 而且 为今后学习级数理论提供了极为丰富的 准备知识.
数学分析
一、数列的定义
若函数 f 的定义域为全体正整数的集合 N+ , 则称 f : N+ R 或 f (n), n N+
n
3n2
n2 n7

1. 3
数学分析
例4 用定义验证 lim n a 1, 其中 a 0. n
证 这里只验证 a 1的情形(0 a 1 时自证).

n

1
an
1
.
因为
a
1 n n
1 nn ,
所以
0

n

n
a
1
a1 n
.
故对于任意正数 , 取 N a 1 , 当 n N 时 ,
以说明, 希望大家对 “ - N ”说法能有正确的认识.
例1
用定义验证:
lim
n
1 n

0.
分析
对于任意正数 , 要使
1 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。

教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。

教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。

2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。

”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。

例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n )1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011n只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。

记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。

(2)数列极限定义的“符号化”记法:a a n n =∞→lim ⇔ε∀>0,∃N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式aan-<ε,可用an-替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一....的,只要存在一个N ,就会存在无穷多个N(5)如何用肯定的语气叙述a a n n ≠∞→lim : 0ε∃>0,∀N ,∃n 。

尽管n 。

>N ,但aaon-≥ε(6)如何用肯定的语气叙述,数列{}na 发散:Ra ∈∀ ,)(a O Oεε=∃>0,∀N ,∃n o,尽管n o >N ,但aaon -≥εo 。

(7)a a n n =∞→lim即a {}n a 中,所有下标大于N 的a n ,都落在a 的ε邻城内。

.的例题 例1.证明01lim =∞→kn n (K 为正实数)证:由于kk n n 101=- 所以∀ε>0,取N=⎥⎥⎦⎤⎢⎢⎣⎡k 11ε,当n >N 时,便有ε〈-01k n注:或写作:∀ε>0,取N=⎥⎥⎦⎤⎢⎢⎣⎡k 11ε,当n >N 时,有ε〈=-KK n n 101,∴01lim=∞→kn n例2. 证明343lim22=-∞→n n n 分析,要使ε〈≤-=--n n n n 12412343222(为简化,限定n 3≥ 只要n ε12〉证.⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=〉∀3,12max ,0εεN 取,当n N 〉,有ε〈≤-=--nn n n 12412343222由定义343lim 22=-∞→n n n 适当予先限定n >n 。

是允许的!但最后取N 时要保证n >n 。

例3.证明nn q ∞→lim =0,这里q <1证.若q=0,结果显然成立若0<q <1,令q =h h (11+>0)由于由贝努利不等式nnn h q q )1(1+==≤nh +11<nh1所以,ε∀>0,取N=n h 当,1⎥⎦⎤⎢⎣⎡ε>N ,有0-n q <ε注:1°特别地写当q=21时,此即为上述实例中的0)21(lim =∞→nn2°贝努利不等式(1+h )n ≥1+nh.3°由例2、例3看出,在由a a n -<ε中求N 时,适当的 “放大”不等式,可以简化运算。

而“放大”的技巧应引起同学们注意体验、总结。

如:用已知不等式,用限定“n >n 。

”等方法。

例4.证明1lim=∞→nn a ,其中a >1证.令a n1-1=α,则α>0由贝努利不等式 α=(1+α)n ≥1+n α=1+n (11-na)或11-n a ≤na 1-ε∀ >0,取N=⎥⎦⎤⎢⎣⎡-ε1a ,当n >N 有11-na<ε四、等价定义与无穷小数列定义1' 任给ε>0,若在U (a;ε)之外数列{}n a 中的项至多只有有限个,则称数列{}n a 收敛于极限a 。

由定义1' 可知,若存在某ε0>0,使得数列{}n a 中有无穷多个项落在U(a ;ε0)之外,则{}n a 一定不以a 为极限。

例5 证明{}2n 和{}n )1(-都是发散数列。

分析 利用定义1' 证例6 设a y x n n n n ==∞→∞→lim lim ,作数列﹛z n ﹜如下:﹛z n ﹜:x 1,y 1,x 2,y 2,…,x n ,y n ,…。

证明 a z n n =∞→lim 。

分析 利用定义1' 证例7 设{}n a 为给定的数列,{}n b 为对{}n a 增加、减少或改变有限项之后得到的数列。

证明:数列{}n b 与{}n a 同时为收敛或发散,且在收敛时两者的极限相等。

分析 利用定义1'证 设{}n a 为收敛数列,且n n a ∞→lim =a 。

按定义1',……。

现设{}n a 发散,倘若{}n b 收敛,则因{}n a 可看成是对{}n b 增加、减少或改变有限项之后得到的数列,故由刚才所证,{}n a 收敛,矛盾。

所以当{}n a 发散时{}n b 也发散。

在所有收敛数列中,有一类重要的数列,称为无穷小数列,其定义如下:定义2 若0lim =∞→n n a ,则称{}n a 为无穷小数列。

前面例1、2、4中的数列都是无穷小数列。

由无穷小数列的定义,读者不难证明如下命题:定理2. 1 数列{}n a 收敛于α的充要条件是:{}α-n a 为无穷小数列。

五、小结:(可以师生共同总结,或教师引导学生小结,然后教师再条理一下)本节课重点在于“数列极限的概念”,而“用极限定义证明极限”的例题学习也是为了巩固极限概念。

为此,同学们要注意:°极限概念的“ε-N ”叙述要熟练掌握,并注意理科ε,N 的双重性。

°用极限定义证明极限时,关键是由任给的ε>0通过反解不等式|a n -a |<ε求N ,其中的若干技巧在于化简不等式。

特别注意不等式的“放大”要适度;即要尽可能化简,又不要过度,N 的表达式一定仅依赖于ε,当然N 是否是自然数,倒是无关紧要的。

3°同学们在学习这部分知识的同时要反复体验其中渗透看的重要数学思维方法,如:抽象化法,数形结合法,符合化法等,这对于大家体验数学的本着特点及培养数学思维能力是十分有益的。

关于这一点希望同学们在课下复习时反复体会一下,并结合以前学过的知识中的类似方法对照思考。

复习思考题、作业题:数列收敛发散的定义是什么?收敛发散的概念是不是相反的?1(1),2,3,4,6§§2 收敛数列的性质教学目的与要求:掌握收敛数列的性质如唯一性,有界性,四则运算等及应用。

教学重点,难点:收敛数列的性质应用,数列子列的定义及数列子列收敛与数列收敛之间的关系。

教学内容:收敛数列主要有唯一性、有界性、保号性、保序性、迫敛性、四则运算性、子列性等重要性质,通过这些性质的学习,可使学生掌握数列极限的定义与应用定义证明有关命题。

1、唯一性定理2.2 若数列{}n a收敛,则它只有一个极限。

分析使用几何定义——定义1'证注1:本性质证明使用几何定义。

为让学生学会取特殊的ε,可讲解反证法ε”定义。

证明。

这样更可体现极限的“N-注2:一个收敛数列一般含有无穷多个数,而它的极限只是一个数。

体现了无限与有限之间的转化关系,这样由这一个数就能精确地估计出几乎全体项的大小,以下收敛数列的一些性质,大都基于这一事实。

2、有界性定理2.3 若数列{}n a收敛,则{}n a为有界数列,即存在正数M,使得对一切正整数n有≤。

aMn分析证注1:ε的取法注2:有界性只是数列收敛的必要条件,而非充分条件,例如数列{}n)1(-有界,但它并不收敛(见§1例6)。

3、保号性定理2.4若0lim a >a n n =∞→或<0,则对任何∈'a (0,a )(或)0,('a a ∈),存在正数N ,使得当n >N 时有a n >'a (或a n <'a )。

分析 证注1:ε的取法注2: 在应用保号性时,经常取2'aa =。

4、保序性定理2.5 设{}n a 与{}n b 均为收敛数列,若存在正数N 0,使得当n >N 0时有a n ≤b n ,则n n n n b a ∞→∞→≤lim lim 。

分析 定义与第一章§1例2 证注1:N 的取法思考:如果把定理2.5中的条件a n ≤b n ,换成严格不等式a n <b n ,那么能否把结论换成n n n n b <a ∞→∞→lim lim ?例1 设an ≥0(n=1,2,…)。

证明:若a a n n =∞→lim ,则a a n n =∞→lim 。

分析 定理2.5、定义与分类讨论 证4、迫敛性定理2.6 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N 0,当n >N 0时有n n n b c a ≤≤ (4) 则数列{}n c 收敛,且a c n n =∞→lim 。

例2 求数列{}nn 的极限。

分析解5、四则运算法则定理2.7 若{}n a 与{}n b 为收敛数列,则{}n n b a +,{}n n b a -,{}n n b a ⋅也都是收敛数列,且有,lim lim )(lim n n n n n n n b a b a ∞→∞→∞→±=±n n n n n n n b a b a ∞→∞→∞→⋅=⋅lim lim )(lim 。

特别当b n ,为常数c 时有n n n n n n n n a c ca c a c a ∞→∞→∞→∞→=+=+lim lim ,lim )(lim 。

相关文档
最新文档