电流互感器接线图如下

合集下载

电流互感器接线图

电流互感器接线图

电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。

一测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。

1普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。

电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。

2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。

二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。

单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。

(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。

它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。

两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。

两相差电流接线形式电流互感器接线图5.其它接线方式5.1 原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。

电流互感器原边串联、副边串联接线图5.2 原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。

电流互感器的接线方式

电流互感器的接线方式
电流互感器的接线方式
一、两相星形(V形)连接 优点:(1)节省导线。
一、两相星形(V形)连接
缺点: (1)现场用单相方法校验时,由于实际二次负载与运行
时不一致,有时必须要采用三相方法(或其他类似方 法),给校验工作带来一些困难。 (2)由于有可能其中一相极性接反,公共线电流变成差 电流,使错误接线机率相对地较多一些。
二、分相连接
优点是: (1)现场用单相方法校验与实际运行时负载相
同。 (2)错误接线机率相对地少些。
三、三相星形(Y形)量精度(因为零序电流没有通路)。

电流互感器的作用及接线方法 图文 民熔

电流互感器的作用及接线方法  图文  民熔

电流互感器的作用及接线方法从通过大电流的电线上,按照一定的比例感应出小电流供测量使用,也可以为继电保护和自动装置提供电源。

比如说现在有一条非常粗的电缆,它的电流非常大。

如果想要测它的电流,就需要把电缆断开,并且把电流表串联在这个电路中。

由于它非常粗,电流非常大,需要规格很大的电流表。

但是实际上是没有那么大的电流表,因为电流仪表的规格在5A 以下。

那怎么办呢?这时候就需要借助电流互感器了。

先选择合适的电流互感器,然后把电缆穿过电流互感器。

这时电流互感器就会从电缆上感应出电流,感应出来的电流大小刚好缩小了一定的倍数。

把感应出来的电流送给仪表测量,再把测量出来的结果乘以一定的倍数就可以得到真实结果。

我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。

测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。

电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。

电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次则标称K1、K2。

穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。

电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。

单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。

三相完全星形电流互感器接线图三相完全角形电流互感器接线图3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。

它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。

电流互感器接线图

电流互感器接线图

电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。

测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。

普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。

电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。

2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。

二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。

单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。

(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。

它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。

两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。

两相差电流接线形式电流互感器接线图5.其它接线方式原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。

电流互感器原边串联、副边串联接线图原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。

电流互感器各种接法说明

电流互感器各种接法说明

4、电流互感器使用须知
工作时二次侧不得开路, 二次侧有一端必须接地, 电流互感器在连接时,要注意其端子的极性.
第六节 电流互感器和电压互感器
电压互感器〔CT〕TA 电流互感器〔PT〕TV 功能:使仪表、继电器、二次设备与主电路绝缘,扩大仪表、继电器等二 次设备的应用范围.
一、电流互感器Байду номын сангаас
1、基本原理和特点 一次绕组导线很粗,匝数很少,二次绕组匝数多导线细.
←电流互感器 1铁心,2一次绕组,3二次绕组
2、电流互感器常用接线方式: 一相式接线、两相V型接线、两相电流差接线、三相星型接线
电流互感器的接线方案→
a>一相式接线 b>两相V形接线 C>两相电流差接线 d>三相星形接线
3、实际电流互感器
LQJ—10型电流互感器
1次接线端子,2一次绕组,3二次接线端 子,4铁心,5二次绕组,6警示牌
LMZJ1—0.5型电流互感器
1铭牌,2一次母线穿孔,3铁心,树脂浇注 4安装板,5二次接线端子

电流互感器的接法

电流互感器的接法

电流互感器的接法不复杂,只有四种接线形式;
1、是单台电流互感器的接线形式;
只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表;
2、三相完全星形接线和三角形接线形式;
三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中;只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集;三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护;
3、两相不完全星形接线形式;
在实际工作中用得最多;它节省了一台电流互感器,用A、C相的合成电流形成反相的B相电流;二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护;这种接线方式用于中性点不接地系统或经消弧线圈接地系统作相间短路保护;
4、两相差电流接线形式;
也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资;但故障形式不同时,其灵敏度不同;这种接线方式常用于10kV 及以下的配电网作相间短路保护;由于此种保护灵敏度低,现代已经很少用了;。

电流保护的接线方式

电流保护的接线方式
电流保护的接线方式
电流保护接线方式——电流继电器与电 流互感器之间的连接方式。
常用接线方式有: 1、三相完全星形接线方式 2、两相不完全星形接线方式 3、两互感器三继电器接线方式
一、三相完全星形接线方式——接线图
一、三相完全星形接线方式
特点 (1)正常运行及相间短路时,
中性线电流 Ìn= ÌA+ ÌB+ ÌC=0; (2)反应各种类型的短路故障(相间、接地); (3)、三种接线的应用
三相完全星形接线——用于发电机、变压器等 贵重电气设备中,以提高可靠性和灵敏性;
两相不完全星形接线——用于小电流接地系统; 两互感器三继电器接线——用于Y,d11变压器
接线,以提高灵敏度。
/10/29
.
14
二、两相不完全星形接线方式——接线图
QF TAa
I>
1KA TAc
I>
2KA
(a)两相不完全星形接线
二、两相不完全星形接线方式
特点: (1)中性线电流Ìn= ÌA+ ÌC; 正常及相间短路时, Ìn= -ÌB; (2)能反应各种相间短路,但不能完全接地短 路; (3)接线系数Kcon=IK/I2=1
四、两互感器三继电器接线方式
1、为了提高两相不完全星形在Y,d11接线变压器后两相 短路的灵敏度,可采用两互感器三继电器接线
2、两互感器三继电器接线:在两相不完全星形的中性线 上加接一个继电器3KA而构成,3KA通过的电流为B相电 流,因此该两互感器三继电器接线的灵敏度可由B相决 定,因此灵敏度与三相完全星形接线一样。
Ik(2)
1 3
Ik( 2 )
用作图法分析变 压器短路电流分 布
假设变压器线电 压比为1.

电流互感器及其回路

电流互感器及其回路

电流互感器的变比
备用情况下如何短接
P1
C2
C1
P2
电流互感器一次绕组外部接线图
P1
C2
C1
P2
电流互感器一次绕组并联外部接线图
P1
C2
C1
P2
电流互感器一次绕组串联外部接线图
P1
P2
S1
S2
S3
- 0 +
电流互感器极性的测试方法一
测试接线:
开关在合闸瞬间若指针向+偏而拉开开关瞬间指针向-偏时则P1、S1是同名端电流互感器是减极性
1 实测的伏安特性曲线与过去或出厂的伏安特性曲线比较电压不应有显著降低饱和的拐点不应有显著的变化 2当电流互感器被测绕组有匝间短路时其励磁特性曲线在开始部分电压较正常的略低如下图所示:
I
U
1
2
3
曲线1是正常情况下的伏安特性曲线 曲线2是匝间短路1匝下的伏安特性曲线 曲线3是匝间短路2匝下的伏安特性曲线
10%误差校核方法一
1收集数据:保护类型、整定值、变比和电流互感器接线方式 2测量电流互感器二次绕组直流电阻R2以代替电流互感器二次绕组漏阻抗Z2110~220kV的电流互感器取R2=Z235kV贯穿式电流互感器取3R2=Z2. 3用伏安特性法测试U=fIe曲线分别求出励磁电压、励磁阻抗、电流倍数、允许负载的数值 E=U-Iez2 Ze =E/Ie m10=10Ie/I2N=2Ie zen=E/9Ie-z2 4求计算电流倍数mca 1纵差保护 mca= Krel为考虑非周期分量影响后的可靠系数采用速饱和变流器的为1.3不带速饱和变流器的取2 2限时速断保护 mca= Krel为可靠系数取1.1;Kcon电流互感器接线系数

电流保护的接线方式

电流保护的接线方式

电流保护的接线方式电流保护的接线方式就是指电流互感器与继电器的连接方式。

常用的接线方式有以下3种:完全星形接线,如图3-8a所示;不完全星形接线,如图3-8b所示;两相电流差接线,如图3-8c所示。

1.接线系数由图3-8可以看出,在完全星形和不完全星形的接线方式中,通过继电器的电流就是互感器的二次电流;在两相电流差的接线方式中,通过继电器的两相电流之差,即Ij=Ia-Ic。

在不同短路类型下,通过继电器的电流如图3-9所示。

在三相短路情况下(图3-9a),Ij=√3Ia=√3Ic;在AC两相短路时(图3-9b),Ijac=2Ia,;在AB或BC两相短路时(图3-9c),Ijab=Ia或Ijbc=Ic。

由此看出,接线方式不同,通过继电器的电流与互感器的二次电流是不相同的。

因此,在保护装置的整定计算中,必须引人一个接线系数kjx,其定义为式中Ij——通过继电器的电流;IH2——电流互感器的二次电流。

由式(3-1)可知,对于星形接线有kjx=1;而对于两相电流差接线在不同短路形式下,kjx是不同的,对称短路时kjx =√3,两相短路时为2或1,单相短路为1。

2.保护性能评价完全星形接线方式能保护任何相间短路和单相接地短路。

不完全星形和两相电流差接线方式能保护各种相间短路,但在没有装设电流互感器的一相(B相)发生单相接地短路时,保护装置不会动作。

不过对于矿山小接地电流电网(中性点不接地系统),单相接地故障通常采用专门的零序保护。

对于矿山35kV以下电网(小接地电流电网)的电流保护,通常采用不完全星形接线方式,当保护区内接有Y/△接线的变压器时,为提高对两相短路保护的灵敏度,可以采用两相三继电器的接线方式,如图3-10所示。

接在公共线上的继电器,即反映B相电流。

对于大接地电流电网,为适应单相接地短路保护的需要,应采用完全星形接线。

【施工用电】配电柜上电流表与互感器的接线图

【施工用电】配电柜上电流表与互感器的接线图
三相四线制有功电度表电流互感器接线图
通过电流互感器接线的三相四线有功电度表,电压线与电流线共用接线方式,在农电计量中为数不少。这种方法省去三根电压引线,将电流互感器K1与电源L1相连,通过电流二次线,将电度表电压桩头与电流桩头连片连接接入这种接法旨在减少二次接线根数。
但是,这种按法非常危险:第一,电流互感器二次回路不得接地,否则,引起短路,烧坏电度表。然而规程规定:互感器二次回路必须有一点接地。第二,因电度表的电压、电流接线端子和互感器二次回路均带380/220V电压,在带电工作中、要时刻注意不能误碰。第三,接到电度表的零线不能与其它任何一根搞错或调换,否则电度表电流线卷因短路而烧坏,同时电流互感器因二次回路接入电度表电压线卷,使回路阻抗无限增大而趋于开路状态,这些都是很危险的。
电流互感器比率是200∕5,就是说如果一次流过200A的电流,二次就相应有5A的电流,它的“变流比”是200÷5=40(倍)。因此该电度表的实际用电量,以电表读数电量(当月减上月)×40即是。
配电柜上电流表与互感器的接线图
接线图如下:
1、上图是三个电流互感器的接线图;
2、下图是两个电流互感器的接线图。
根据:Ia+Ib+Ic=0
所以:Ia+Ic=-Ib
故:绿色电流表指示B相电流。
这种电路在你用的电表盖上就有。
首先要记住:电压互Biblioteka 器是要接电源的。电流互感器不需要电源。
将电流互感器上的S1和S2端子引出两跟线,和配电柜上的电流表的两个接线柱I1、I2分别接上。再将S2同时接地进行保护。防止开路后出现高电动势造成触电事故。

电流互感器及其回路

电流互感器及其回路

;若采用ZL+ZK,则应取相间短路电流值。哪种情况严重,采用哪种组合 方式。 7)分析结果 根据计算电流倍数,找出m10倍数之对应允许阻抗值zen,然后将实测 阻抗值按最严重的短路类型换算成Z,当Z≤zen时为合格。
10%误差校核方法二
拐点电压法
5P10的含义
标称准确限制电流倍数:当二次回路所带负载为额定阻抗时,
电流互感器的变比
备用情况下如何短接?
电流互感器一次绕组外部接线图
P1
P2
C1
C2
电流互感器一次绕组并联外部接线图
P1
P2
C1
C2
电流互感器一次绕组串联外部接线图
P1
P2
C1
C2
电流互感器极性的测试方法一
测试接线

S1 P2
S2
S3 P1
开关在合闸瞬间, 若指针向“+”偏,而 拉开开关瞬间指针向 “-”偏时,则P1、S1 是同名端,电流互感 器是减极性。
A相CT回路升流时电 流流向如图。可见由于
保护电流回路与仪表电
流回路的N回路在同一 地点打连且接地,在一
次加电流时二次回路中
测得的电流大小均正常。 请大家讨论解决方案
案例5
当天检修人员因故对C相CT更换。保护人员做试验时,
一次导线未进行连接。晚上送电后测向量时发现C相电 流比正常少一半,停电后发现C相一次导线距离太近, 导致电流分流
I
电流互感器的饱和
l
l
稳态饱和 暂态饱和
电流互感器的升流
l 验证变比及回路的正确 l 要注意备用绕组的检查
l 该有的有,该没有的没有
l 注意检查接地线中是否有电流 l 电流不要太大 l 注意将母差电流回路封好

常用的电流互感器二次接线

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。

但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。

变压器差动保护误动作的原因及处理方法如下:一、差动保护电流互感器二次接线错误(一)常用的电流互感器二次接线图1-101 常用的电流互感器二次接线图1-101是工程上常用的一种接线方式。

图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。

对图l-101进行相量分析如下:现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。

T2流出。

在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得:I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。

由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。

由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。

在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。

如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。

那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-102(c)中的相应相量反相。

如图1--102(d)所示。

常用的电流电压互感器接线法

常用的电流电压互感器接线法

常用的电流电压互感器接线法
电流、电压互感器的规格、品种分超高压、高压、低压,各种变比的互感器的数量和接线方法,主要是由供电电压及供电方式来决定的。

1电流互感器
在单相回路中仅有一个回路,这样可用一台电流互感器来测量回路中的电流,如图1所示。

我们实际使用的电灯的回路中就是采用这种方式。

在三相三线的电气回路中,因为没有相线和中性线间负荷,便可以用两台电流互感器,接成V型接线的方式,接二只电流表测量电流,接线方式如图2所示。

这种接线方法:是将两只电流表,接在二次线图的公用导线上。

为了节约器材和简化接线,在三相负荷基本平衡时,也可以用一台电流互感器接一只电流表参考使用。

同时在三相三线式的回路里,有时也采用三台电流互感器接成角型接线,如图3所示,分别测量三相电流。

在三相四线制供电系统中,应安装三台电流互感器分别供电流表使用,接线方式可采用星形接线,如图4所示。

2电压互感器
在单相回路中仅有一个回路,只须一台单相电压互感器将一次线圈接到高压电源线上,低压线圈(二次线圈)接到电压表端子上,如图5所示。

在三相回路中,为了安装电能表,电力表,电流表等,以观察三相电压,可以采用三相电压互感器或采用三台单相的电压互感器组配在一起接成星形或角型接线。

如图6、7所示。

有时也用两台电压互感器接成V型接线来测量三相电压,如图8所示。

电流互感器正反

电流互感器正反

互感器与电表接线不当是会逆转的。

电源线从互感器P1穿过时,S1接电表进线端,S2接出线端,称正接式;若从P2穿过时,S1接电表出线端,S2接进线端,称反接式。

两种接线方式的电表均正转,违反上述接线时电表则逆转。

(二) 三只电流表经电流互感器测三相线电流的接线转载▼标签:教育画出接线原理图三只电流互感器的K1分别接三只电流表的任一接线端,三只电流表的另一端连接后再与三只电流表的K2端连接,并接地或接零。

根据负荷电流选择电流表、电流互感器及二次线:1.电流表的选择:(1)电流表的量程应按计算电流(或按正常的最大负荷电流)的1.5倍左右选取。

负荷电流应经常指示在电流表满刻度值的1/3 – 3/4范围内为宜;(2)根据安装位置、尺寸及对电流表外形的要求选择电流表的型号。

2.电流互感器的选择:应使电流互感器的一次额定电流等于电流表的量程(其二次额定电流固定为5A)。

电流互感器与电流表的变比应相同,极性不能反接,K2端应接地或接零;一次电流按负荷电流的1.5倍选,精度等级为一级(为接线方便,尽可能选用母线式(穿芯式)例如:LMZ – 0.5)。

3.二次线的选择:选用截面不小于2.5mm2的绝缘铜导线,中间不得有接头,线端应顺时针压接牢固。

(一次线按照一次电流或者负荷电流选择)4.电流互感器可选用LMZ型穿芯式电流互感器例:某一计算电流为510A的线路,试为其选择电流表、电流互感器、二次线。

解:①选电流表:510×1.5=765(A)可选用量程为750A的电流表(例如采用59L23—750A的方形电流表)。

②选电流互感器可选用750/5的电流互感器(例LMZ0.5-750/5的电流互感器)③选二次线可选用BV-2.5的绝缘铜线。

电流知识1.星形接法电路中线电流等于相电流。

2.三角形接法电流中线电流等于倍相电流。

3.根据设备功率P大小计算额定电流;三相电动机1KW≈2A单相220V用电1KW≈4.5A单相380V用电1KW≈2.5A电流互感器使用中二次为什么不可以开路?电流互感器在使用中是一台串联接法的变压器。

电流互感器接线方式

电流互感器接线方式

电流互感器接线方式(转载)技术交流2010-03-27 09:02:22 阅读3069 评论0 字号:大中小订阅电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。

电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。

(也可理解为一次电流与二次电流的方向关系)。

按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。

在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。

其三种标注方法如图 1 所示。

电流互感器同极性端的判别与耦合线圈的极性判别相同。

较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。

当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。

3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图 1 电流互感器的三种极性标注图2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。

电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。

但是严禁多点接地。

两点接地二次电流在继电器前形成分路,会造成继电器无动作。

因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。

如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。

3.2 两相式不完全星形接线两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。

如图 3 所示。

若有一相二次极性那么流过3KA 的电流为I A I e ,由向量差得其电流值为Ia 的 3 倍,相位滞后I a 300 角,如果三只继电器整定值是一样的,3KA 会提前动作,造成保护误动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器接线图如下:
1、图1、图2是三个电流互感器的接线图;
2、图3是两个电流互感器的接线图。

根据:Ia+Ib+Ic=0
所以:Ia+Ic=-Ib
故:绿色电流表指示B相电流。

图1
图2 图3
三只电流互感器的K1分别接三只电流表的任一接线端,三只电流表的另一端连接后再与三只电流表的K2端连接,并接地或接零。

电流互感器的接线方式按其所接负载的运行要求确定。

最常用的接线方式为单相,三相星形和不完全星形。

1、三相完全星形接线可以准确反映三相中每一相的真实电流。

该方式应用在大电流接地系统中,保护线路的三相短路、两相短路和单相接地短路。

2、两相两继电器不完全星形接线可以准确反映两相的真实电流。

该方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路和两相短路。

完全星形接线
两相两继电器不完全星形接线
3、两相差接反映两相差电流。

该接线方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路、两相短路、小容量电动机保护、小容量变压器保护。

4、单相接线在三相电流平衡时,可以用单相电流反映三相电流值,主要用于测量回路。

5、两相三继电器完全星形接线,流入第三个继电器的电流是Ij=Iu+Iw=-Iv。

该接线方式应用在大电流接地系统中,保护线路的三相短路和两相短路。

相关文档
最新文档