高中《不等式》知识点总结资料讲解
高一数学不等式知识点总结
高一数学不等式知识点总结一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。
其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。
其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。
应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。
其逻辑关系为:AB1B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
用分析法证明AB的逻辑关系为:BB1B1B3 …BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。
高中不等式全套知识点总结
高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高三选修不等式知识点
高三选修不等式知识点不等式是高中数学中的一个重要内容,它在数学建模、优化问题以及各种实际应用中都起着重要的作用。
在高三数学的选修课中,不等式是必不可少的内容之一。
本文将详细介绍高三选修不等式的知识点,包括不等式的基本概念、性质和解法等。
一、不等式的基本概念不等式是数学中用不等号连接的数字或者表达式的关系式。
与等式不同,不等式所表示的是一种不严格的大小关系。
不等式可以分为严格不等式和非严格不等式两种形式。
严格不等式使用“<”和“>”表示,而非严格不等式使用“≤”和“≥”表示。
不等式的基本概念为后续的解法提供了基础。
二、不等式的性质1. 加减性质:对于不等式两边同时加减一个相同的数,不等号的方向保持不变,即若a < b,则a + c < b + c;若a > b,则a - c >b - c。
2. 乘除性质:对于不等式两边同时乘除一个正数,不等号的方向保持不变,即若a < b(或a > b),c > 0,则ac < bc(或ac > bc);若a < b(或a > b),c < 0,则ac > bc(或ac < bc);若a >b(或a < b),c > 0,则ac > bc(或ac < bc);若a > b(或a < b),c < 0,则ac < bc(或ac > bc)。
3. 倒置性质:若不等式两边的不等号互换,则不等式的方向也需要互换,即若a < b,则b > a;若a > b,则b < a。
三、不等式的解法1. 图像法:对于给定的一元不等式,可以通过绘制相关函数的图像来确定不等式的解集。
通过观察图像上的位置可以得到不等式的解集。
2. 区间法:对于一元一次不等式或二次不等式,可以将解集表示为一个或多个区间的交集或并集的形式。
高中不等式知识点总结
高中不等式知识点总结一、基本概念不等式是数学中的一个重要概念,它描述了数值之间的大小关系。
在高中数学中,我们学习了许多不等式的性质和解法。
下面将从基本概念、性质和解法三个方面对高中不等式的知识点进行总结。
1.1 不等式的定义不等式是指两个数或两个代数式之间的大小关系,用符号“<”、“>”、“≤”、“≥”表示。
不等式中的符号有以下含义: - “<”表示小于,例如a < b表示a小于b; - “>”表示大于,例如a > b表示a大于b; - “≤”表示小于等于,例如a ≤ b表示a小于等于b; - “≥”表示大于等于,例如a ≥ b表示a大于等于b。
1.2 不等式的解集不等式的解集是使不等式成立的所有实数的集合。
根据不等式的类型和题目的要求,解集可以是有限集、无限集或空集。
二、基本性质不等式具有一些基本的性质,了解这些性质可以帮助我们更好地理解和运用不等式。
2.1 不等式的传递性对于任意实数a、b、c,如果a < b且b < c,则有a < c。
这个性质称为不等式的传递性。
利用不等式的传递性,我们可以简化不等式的推导过程。
2.2 不等式的加减性质对于任意实数a、b、c,如果a < b,则有a + c < b + c,a - c < b - c。
这个性质称为不等式的加减性质。
利用不等式的加减性质,我们可以对不等式进行加减运算,从而得到等价的不等式。
2.3 不等式的乘除性质对于任意实数a、b、c(c ≠ 0),如果a < b且c > 0,则有ac < bc;如果a < b且c < 0,则有ac > bc。
这个性质称为不等式的乘除性质。
利用不等式的乘除性质,我们可以对不等式进行乘除运算,从而得到等价的不等式。
2.4 不等式的倒置性质对于任意实数a、b,如果 a < b,则有-b < -a。
高中不等式知识点
高中不等式知识点高中阶段,不等式是数学中的重要内容之一。
不等式不仅在数学中有广泛的应用,也在生活中有很多实际意义。
下面我将重点介绍高中阶段学习不等式的一些重要知识点。
1. 不等式的基本性质:(1) 加减性质:对于不等式两边同时加减同一个数,不等号的方向保持不变;(2) 乘除性质:如果同一个正数或同一个负数同时乘或除不等式两边,不等号方向不变,如果同一个正数乘或除不等式两边,不等号的方向保持不变,如果同一个负数乘或除不等式两边,不等号的方向发生改变;(3) 倒置性质:不等号两边同时倒置,不等号的方向也要倒置。
2. 不等式的解集表示法:(1) 常用解集表示法:使用不等号来表示解集,如x>2表示x 大于2;(2) 区间表示法:使用数轴上的区间来表示解集,如[2, +∞)表示大于或等于2的所有实数。
3. 一元一次不等式:一元一次不等式指的是只含有一个未知数(一元)和一次方程的不等式。
对于一元一次不等式的求解,可以进行类似于方程的运算,通过移项和化简得出解集。
4. 一元二次不等式:一元二次不等式指的是含有一个未知数(一元)以及二次项(平方项)的不等式。
对于一元二次不等式的求解,可以通过变换成二次方程,求出方程的解集,再用数轴上的区间来表示解集。
5. 系统不等式:系统不等式指的是多个不等式组成的一个问题。
对于系统不等式的求解,可以通过图像法,通过画出各个不等式的直线图像,找出满足全部条件的交集部分来表示解集。
6. 约束条件的不等式:在一些实际问题中,不仅有不等式的限制条件,还有其他的约束条件。
对于这种情况,需要将不等式的解集与其他条件进行比较来确定最终的解集。
不等式作为数学中的重要内容,不仅仅是应试的一部分,更是对学生逻辑思维和数学思考能力的考验。
通过学习不等式,可以培养学生的分析问题和解决问题的能力,使他们在解决实际问题时能够灵活运用数学知识。
在生活中,不等式也有很多实际应用,如求解最大值、最小值问题、经济学中的供求关系等等。
高中不等式知识点总结
高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点总结
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
高中不等式知识点总结
高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。
平均不等式常用于综合法的标度。
分析方法:不等式两边的关系不够清晰。
通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。
4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。
同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。
不等式数学知识点高一
不等式数学知识点高一一、不等式的概念和性质1. 不等式的定义不等式是数之间不相等关系的表示形式,可分为大于、小于、大于等于、小于等于四种不等式类型。
2. 不等式的解集表示法当不等式成立时,将满足不等式的数值表示为解集,用集合的形式表示。
3. 不等式的性质(1)对于同一不等式,两边同时加(减)同一个数,不等式的成立关系不变。
(2)对于同一不等式,两边同时乘(除)同一个正数,不等式的成立关系不变,但若同除,需考虑除数不能为零。
(3)对于同一不等式,两边同时乘以同一个负数,不等式的成立关系改变。
二、一元一次不等式1. 一元一次不等式的解法针对一元一次不等式,通过图像法或数值法求解。
2. 一元一次不等式的图像法(1)将一元一次不等式转化为方程,得到直线的方程。
(2)绘制直线图像,并根据不等式的符号确定阴影部分,即为不等式的解集。
3. 一元一次不等式的数值法(1)根据不等式的性质,将x的系数乘以-1,使其系数为正数。
(2)列出方程,求解x的值,并根据解的大小关系确定不等式的解集。
三、一元二次不等式1. 一元二次不等式的解法针对一元二次不等式,通过图像法或配方法(改变形式法)求解。
2. 一元二次不等式的图像法(1)将一元二次不等式转化为方程,得到抛物线的方程。
(2)绘制抛物线图像,并根据不等式的符号确定阴影部分,即为不等式的解集。
3. 一元二次不等式的配方法(1)根据不等式的性质,将一元二次不等式化为标准形式。
(2)通过配方法(改变形式法)将不等式化简为平方项的形式。
(3)根据不等式的解集性质,确定不等式的解集。
四、绝对值不等式1. 绝对值不等式的解法针对绝对值不等式,通过正负号讨论法求解。
2. 绝对值不等式的正负号讨论法(1)根据绝对值的性质,将绝对值不等式拆分为正负号的形式。
(2)分别讨论正负号情况下的不等式,并求解不等式的解集。
五、不等式的运算和复合不等式1. 不等式的运算法则(1)对于同一不等式,两边同时加、减、乘、除同一个数,不等式的成立关系不变。
高一不等式及知识点总结
高一不等式及知识点总结一、不等式不等式是数学中比较大小关系的表示形式,以不等号(>、<、≥、≤)连接。
在高中数学中,不等式是一个重要的概念,不仅在代数、函数等知识中经常出现,也在实际问题中有广泛的应用。
二、一元一次不等式1. 一元一次不等式的定义一元一次不等式是指只含有一个未知数的一次项的不等式,例如:ax + b > 0。
2. 一元一次不等式的解集表示解一元一次不等式的过程与解一元一次方程类似,需要进行变形、运算和判断。
例如,对于不等式2x + 4 < 10,我们可以首先将不等式转化为等价的形式2x < 6,然后再根据系数的正负情况确定不等式的解集。
3. 解一元一次不等式的充分条件解一元一次不等式的充分条件是指在变形和运算的过程中需要针对不等式的符号进行讨论,以确定最终的解集。
例如,当一元一次不等式中出现除法运算时,需要考虑分母为0的情况,以避免出现错误的解集。
三、一元一次不等式组1. 一元一次不等式组的定义一元一次不等式组是指由多个一元一次不等式组成的集合,例如:{2x + 3 > 1,4x - 5 < 3}。
2. 解一元一次不等式组的方法解一元一次不等式组的方法与解一元一次方程组类似,需要将不等式组中的每个不等式进行变形、运算和判断,最终确定解集的范围。
四、二次不等式1. 二次不等式的定义二次不等式是指含有二次项的不等式,例如:ax^2 + bx + c > 0。
2. 二次不等式的解集表示解二次不等式的方法主要是利用一元二次函数的图像特点和一次不等式的解法,通过绘制函数图像和分析函数在不同区间的正负性,确定二次不等式的解集。
五、绝对值不等式1. 绝对值不等式的定义绝对值不等式是指含有绝对值表达式的不等式,例如:|x - a| < b。
2. 绝对值不等式的解集表示解绝对值不等式的关键是将绝对值表达式拆解为两个不等式,并分别求解这两个不等式。
(完整版)高考不等式知识点总结
第三章:不等式1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ba nb n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:112a b a b --+≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβu r u r 是两个向量,则,αβαβ⋅≤u r u r u r u r当且仅当βu r 是零向量,或存在实数k ,使k αβ=u r u r 时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+==<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理) 规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩ 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥ 15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:yz x =或;y b z x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab ab ∈++()()值?(一正、二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。
高一数学不等式知识点整理归纳
高一数学不等式知识点整理归纳一、不等式的基本性质1. 对称性:若 \(a > b\),则 \(b a\);若 \(a b\),则\(b > a\)。
2. 传递性:若 \(a > b\) 且 \(b > c\),则 \(a > c\);若\(a b\) 且 \(b c\),则 \(a c\)。
3. 加法性质:若 \(a > b\),则 \(a + c > b + c\)。
4. 乘法性质:若 \(a > b\) 且 \(c > 0\),则 \(ac > bc\);若 \(a > b\) 且 \(c 0\),则 \(ac bc\)。
二、一元一次不等式形如 \(ax + b > 0\) 或 \(ax + b 0\)(\(a \neq 0\))的不等式。
解法步骤:1. 移项:将常数项移到不等式的另一边。
2. 化简:将 \(x\) 的系数化为 \(1\),注意当系数为负数时,不等号方向改变。
三、一元二次不等式形如 \(ax^2 + bx + c > 0\) 或 \(ax^2 + bx + c 0\)(\(a \neq 0\))的不等式。
解法:1. 求出方程 \(ax^2 + bx + c = 0\) 的根(可用求根公式 \(x = \frac{b \pm \sqrt{b^2 4ac}}{2a}\) )。
2. 根据二次函数 \(y = ax^2 + bx + c\) 的图像与 \(x\) 轴的交点,确定不等式的解集。
当 \(a > 0\) 时:若方程有两个不同实根 \(x_1\) , \(x_2\) (\(x_1x_2\)),则不等式 \(ax^2 + bx + c > 0\) 的解集为 \(x x_1\)或 \(x > x_2\) ;不等式 \(ax^2 + bx + c 0\) 的解集为 \(x_1x x_2\) 。
高中数学不等式知识点总结
不等式总结一、不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a cbx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x x x<<∅∅注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式1.均值不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba2、使用均值不等式的条件:一正、二定、三相等3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数),即2112a ba b++(当a = b时取等)四、含有绝对值的不等式1.绝对值的几何意义:||x是指数轴上点x到原点的距离;12||x x-是指数轴上12,x x两点间的距离2、则不等式:如果,0>aaxaxax-<><=>>或||axaxax-≤≥<=>≥或||axaax<<-<=><||axaax≤≤-<=>≤||3.当0c>时,||ax b c ax b c+>⇔+>或ax b c+<-,||ax b c c ax b c+<⇔-<+<;当0c<时,||ax b c x R+>⇔∈,||ax b c xφ+<⇔∈.4、解含有绝对值不等式的主要方法:①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;②去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a<>⇔-<<,|| (0)x a a x a>>⇔>或x a<-.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.五、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f xg xf x f xf xg xg xg x g x≥⎧>⇔>≥⇔⎨≠⎩②无理不等式:转化为有理不等式求解()0()0()()f xg xf xg x⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)()()]([)()()()()(2xgxfxgxfxgxfxgxf或⎪⎩⎪⎨⎧<≥≥⇔<2)]([)()()()()(xgxfxgxfxgxf③指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>④对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩六、三角不等式: |b ||a ||b a ||b |-|a |+≤+≤ 七、不等式证明的几种常用方法比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。
高一数学不等式知识点总结及例题
高一数学不等式知识点总结及例题一、不等式知识点总结。
(一)不等式的基本性质。
1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
2. 传递性:如果a > b,b > c,那么a > c。
3. 加法单调性:如果a > b,那么a + c>b + c。
- 推论1:移项法则,如果a + b>c,那么a>c - b。
- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。
4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。
- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。
- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。
(二)一元二次不等式及其解法。
1. 一元二次不等式的一般形式。
- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。
2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。
- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。
- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。
高三数学不等式知识点
高三数学不等式知识点高三数学不等式知识点11.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a③当a=2,b≥-2时,其解集为φ④当a=2且b2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c0)的`形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.高三数学不等式知识点21、建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的`特殊语言,并永久记忆在自己的脑海中。
良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、针对自己的学习情况,采取一些具体的措施(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
高考数学复习《不等式》知识点
不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │§06. 不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式.(4) 同解不等式与不等式的同解变形. 2.不等式的基本性质(1)a b b a <⇔>(对称性)(2)c a c b b a >⇒>>,(传递性)(3)c b c a b a +>+⇒>(加法单调性)(4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减) (6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则)(12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式(1)0,0||,2≥≥∈a a R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号) 0,2b aab a b>+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么2112a ba b+≤+(当仅当a=b时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数): 特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫ ⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ 注:例如:22222()()()ac bd a b c d +≤++.常用不等式的放缩法:①21111111(2)1(1)(1)1n n n n n n n n n n -==-≥++--p p1)n ==≥pp(2)柯西不等式: 时取等号当且仅当(则若nn n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ΛΛΛΛΛΛ332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ (3)无理不等式:转化为有理不等式求解1()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f (4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()22327x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x x x x+=+≥与同号,故取等。
高中不等式知识点大全总结
高中不等式知识点大全总结一、基本不等式性质1. 两个数的比较:(1)当 a > b 时,a-b>0;(2)当 a < b 时,a-b<0;(3)当 a = b 时,a-b=0。
2. 不等式的四则运算:不等式有“加减乘除”运算律,即不等式两边都同时加减(乘除)同一个数,不等式依然成立。
3. 绝对值不等式:对于任何实数 a 和正实数 b,有|a| > b 的不等式解集是 a > b 或 a < -b。
4. 不等式的取反:若不等式 a > b 成立,则其取反 a < b 也成立;若不等式 a > b 不成立,则其取反 a < b 亦成立。
5. 不等式的合并:若不等式 a > b 和 c > d 同时成立,则其合并为 a + c > b + d 成立。
6. 不等式的分拆:若不等式 a + b > c + d 成立,则其分拆为 a > c - b + d 或 b > d - a + c 成立。
二、一元一次不等式一元一次不等式是指只含有一个未知数的一次函数不等式,通常具有形式 ax+b > 0 或ax+b < 0。
1. 解不等式的方法一元一次不等式的解法包括两种:一是化简法,即通过使用运算律化简不等式,然后求出不等式的解集;二是图解法,即将不等式用图形表示出来,然后求出不等式的解集。
2. 一元一次不等式组一元一次不等式组是由若干个一元一次不等式组成的系统。
解一元一次不等式组的方法同样包括化简法和图解法。
三、一元二次不等式一元二次不等式是指只含有一个未知数的二次函数不等式,通常具有形式 ax^2+bx+c > 0 或 ax^2+bx+c < 0。
1. 一元二次不等式的解法一元二次不等式的解法通常使用折线法和区间法。
折线法是利用二次函数的拐点和零点来求解不等式的解集;区间法是将一元二次不等式用图像表示出来,然后找出其零点和开口方向,从而求出解集。
完整版)不等式知识点归纳大全
完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。
不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。
2.解分式不等式f(x)。
a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。
3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。
4.解含参不等式时,常常需要分类等价转化。
按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。
二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。
2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。
三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。
2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。
四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。
2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中《不等式》知识
点总结
《不等式》知识点
一、不等式及其解法:
1.一元二次不等式: 化标准式(即二次项系数为正)⇒“大于取两边,小于取中间”
如:解不等式(1)0322≤-+x x ; (2)0122≤++-x x
解:(1)原不等式等价于 0)1)(3(≤-+x x , 方程0)1)(3(=-+x x 的根为3-,1
故解集为}{}13≤≤-x x .
(2)原不等式等价于0122≥--x x , 方程0122=--x x 的根为21+,21-,
故解集为}{}
2121+≥-≤x x x 或.
2.高次不等式:“穿根法”. 化标准式(即每一项的x 系数为都为正)⇒穿根
(从右上方出发,依次穿过每个根,如遇“重根”,奇穿偶回)
如:解不等式(1)0)1)(1(≤-+x x x ; (2)0
)1)(2(≥-+x x ; (3)0
)1(2<-x
解:(1)解集为{}101≤≤-<x x x 或; (2)解集为{}312>≤≤-x x x 或; (3)解集为]1,2[--
3.分式不等式:移项⇒通分.
如:解不等式12≤x . 解:移项后012≤-x ,通分后02≤-x x ,化标准式为02≥-x
x ,故解集为{}20≥<x x x 或
4.绝对值不等式:a x <)0(>a 的解集为{}a x a x <<-; a x >)0(>a 的解集为{}a x a x x -<>或 二、1.重要不等式:),(222R b a ab b a ∈≥+,当且仅当b a =时,等号成立
变形:2
2
2b a ab +≤ 应用:22b a +为定值时,求ab 的最大值. 2.基本不等式:)0,0(2
>>+≤b a b a ab 当且仅当b a =时,等号成立 变形一:ab b a 2≥+ 应用:ab 为定值时,求b a +的最小值.
变形二:2)2
(b a ab +≤ 应用:b a +为定值时,求ab 的最大值. 注:利用基本不等式求最值的条件:一正、二定、三相等.
三、线性规划问题
1.能画出二元一次不等式组表示的平面区域.
2.相关概念:约束条件、目标函数、可行域、可行解、最优解.
3.目标函数常见类型:
(1)求线性目标函数By Ax z +=的最值时,先令0=z ,画出直线l :0=+By Ax , ①若0>B ,则l 向上平移,z 变大,向下平移,z 变小;②若0<B ,则l 向上平移,z 变小,向下平移,z 变大
(2)“斜率型”目标函数a
x b y z --=,z 表示可行域内动点),(y x 与定点),(b a 连线的斜率. (3)“距离型”目标函数22222))()(()()(b y a x b y a x z -+-=-+-=,z 表示可行域内动点),(y x 到定
点),(b a 的距离的平方.。