十年代以来我国人口发展的数学模型和展望

合集下载

中国人口增长的中短期和长期趋势预测数学模型

中国人口增长的中短期和长期趋势预测数学模型

中国人口增长的中短期和长期趋势预测数学模型【摘要】中国是人口大国,人口的预测问题始终是关系到社会和谐发展的关键因素之一。

首先,本文就近几年中国人口结构的变化情况进行“生存——生育”双因素分析,按照人口性别分类,考虑老龄化进程、出生人口性别比以及乡村人口城镇化等因素,根据近几年城、镇、乡的统计数据,建立基于概率方法的Leslie矩阵,利用Matlab软件进行编程求解,对中国人口进行了中短期预测。

其次,在对人口进行长期预测时,引入净再生产率(NRR)和总和生育率(TFR)。

根据已知数据计算出1994—2005每年的NRR和TFR,通过曲线拟合预测出未来的TFR趋势。

而各年TFR的变化是由相应年各年龄女性生育率的变化引起的,各年龄女性生育率的变化比例即是TFR的变化比例,得到新的生育率,即得到了新的Leslie矩阵,计算出该Leslie矩阵的唯一的正的特征根λ,当λ接近于1时,则人口趋于稳定。

此时求得各年人口预测的新的Leslie矩阵,利用新的每年Leslie矩阵连乘,并乘于2005年各年龄人口数向量,则可预测中长期人口数量。

主要问题结论:1、对中国人口增长的中短期进行预测。

首先以2001年人口数据为基数,对2002年—2005年进行预测,并与真实年份(年)2002 2003 2004 2005 预测总人口数(万人)实际总人口数(万人)128453 129227 129988 130756 相对误差(%)虑各年份生育率的影响。

其次,由上表可知模型较为准确,可以2005年人口数据为基数,利用模型年份2006 2007 2008 2009 2010 预测总人口数(万人)年份2011 2012 2013 2014 2015 预测总人口数(万人)的变化得到每年各年龄女性生育率的变化,运用新的生育率得到该年的Leslie矩阵,计算出该Leslie矩阵的唯一的正的特征根λ,当2033年λ较为接近1时,则2033年后人口达到峰值趋向稳定,且此时NRR2033年=,亦接近于目前发达国家的NRR指标。

中国人口增长预测模型

中国人口增长预测模型

中国人口增长猜测模型随着时间的推移,人口数量的变化对于一个国家的进步和社会经济的稳定至关重要。

在中国这样人口浩繁的国家,准确地猜测人口的增长是制定各种政策和规划的基础。

为了更好地满足人民的需求并提供适当的资源,许多探究者和政府部门一直致力于开发和改进中国的人口增长猜测模型。

人口增长猜测是一项复杂的任务,因为涉及到多个变量和互相之间的干系。

为了更好地理解中国人口增长模型,我们将从几个重要的方面入手进行分析。

起首,人口自然增长率是一个重要的参考指标。

自然增长率是指在没有移民和移民的状况下,人口数量因诞生和死亡而增长的程度。

中国的人口自然增长率一直保持在较高水平,这在一定程度上反映了人口结构的变化和诞生率的变化。

通过分析历史数据和趋势,我们可以计算出过去几年甚至几十年的自然增长率,并将其作为人口增长模型的参考指标。

其次,男女比例也是人口增长猜测的重要因素之一。

在过去的几十年里,中国一直面临着男女比例失衡的问题,男性人口相对过多。

这种不平衡的状况在人口增长模型中需要得到充分的思量,因为它直接影响到将来人口的调整和平衡。

除此之外,人口迁移的影响也不行轻忽。

城市化进程加快,许多农村人口涌向城市寻求更好的生活和就业机会。

这种人口迁移对人口增长模型产生了直接的影响,特殊是对城市人口的增长速度和浓度产生了重要的影响。

最后,经济进步也与人口增长密切相关。

经济的快速进步会增进人口的增长,因为更多的人可以获得更好的生活条件和医疗保健。

然而,在人口增长模型中,也需要思量到经济进步对资源分配和环境压力的影响,以确保人口的增长是可持续的。

基于以上几个方面的因素和变量,探究者们提出了许多不同的人口增长猜测模型。

其中一种常用的模型是基于历史数据建立的趋势模型。

通过对历史数据的分析,我们可以发现一些规律和趋势,并将其应用于将来的猜测。

这种猜测方法相对简易,但有时会受到外界因素的干扰。

另一种常用的猜测模型是基于数学和统计分析的模型,如人口增长速度模型和人口结构模型。

人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。

人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。

为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。

人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。

线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。

指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。

Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。

在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。

同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。

在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。

趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。

复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。

比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。

时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。

系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。

在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。

同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。

此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析随着社会经济的发展,人口增长一直是一个备受关注的问题。

数学建模是研究人口增长和人口结构的重要方法之一、本文将对中国人口增长的预测和人口结构进行简析,并利用数学建模方法进行预测分析。

首先,中国人口增长的情况是众所周知的。

随着中国的经济快速发展,人民生活水平的提高,医疗水平的提高以及计划生育政策的实施,中国的人口增长率逐渐放缓。

根据国家统计数据,自2024年以来,中国的总人口增长率一直在下降,其中在2024年总人口为14亿人,增长率仅为0.35%。

根据这一趋势,可以推断出未来的人口增长率可能会进一步下降。

在进行人口增长预测时,可以运用数学建模方法中的指数增长模型。

指数增长模型是描述人口增长的一种常用方法,其基本形式为:N(t)=N0*e^(r*t)其中,N(t)表示时间t时刻的人口数量,N0表示初始人口数量,r表示人口增长率,e表示自然对数的底数。

利用指数增长模型可以对未来的人口增长进行预测。

但要注意的是,由于人口增长受到多种因素的影响,例如政策调整、经济发展、文化变迁等,所以对于人口的精确预测是一项复杂而困难的任务。

因此,在进行人口预测时,应结合实际情况,综合考虑人口增长的多个因素。

另外,人口结构是指人口在不同年龄段的分布情况。

人口结构反映了一个地区或国家的经济、社会、教育等方面的发展状况。

中国的人口结构表现为老龄化趋势和少子化现象。

根据国家统计数据,中国的老龄化人口比例逐年提高,同时生育率呈下降趋势。

这种人口结构的变化将对中国的社会、经济等多个方面产生深远的影响。

为了分析人口结构的变化,可以利用数学建模中的人口金字塔。

人口金字塔以年龄为横轴,人口数量为纵轴,通过金字塔的形状和比例来反映人口的结构情况。

通过观察人口金字塔的变化,可以了解人口的年龄分布情况,判断人口的变化趋势,为相关政策和规划提供依据。

总之,中国人口增长的预测和人口结构的分析是一个复杂的问题,数学建模可以提供一种客观、科学的方法来分析这些问题。

毕业设计_数学建模论文中国人口增长预测

毕业设计_数学建模论文中国人口增长预测

中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。

模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。

该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。

又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。

结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。

模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。

各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。

根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。

结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。

可反映中国不同年龄结构的人口分布情况。

关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

因此人口预测的科学性、准确性是至关重要的。

英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。

但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。

因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。

我国人口增长预测数学模型

我国人口增长预测数学模型
中 图 分 类 号 :O 2 . 2 12 文 献标 识 码 : A 文 章 编 号 : 6 36 6 (0 8 0 — 130 1 7 -0 0 20 ) 10 2 —5
M a he a ia o lf r Chi e e Po ul to Gr wt Fo e a t t m tc lM de o n s p a i n o h r c s
pp l i rcs d tet a p plt na nt no me ( +1 =L・ t . o uao i f eat ,h tl oua o saf ci t : t ) tn so e o i u o f i X()
Ke r s: o uain go h;mp o iglgsi d l casc K—R ag r h lsi d l y wo d p p lt rw i rvn o it mo e; lsi o t c lo t m;e l mo e i e
Xu e e Zh n
( ix n nv r t o ra cs a dT X n in 5 0 0, hn ) X n i gU i s y f od at n V, ixa g 3 0 C i a e i B 4 a
A bsr t Bya po xmaetedf rnil q ain r h ieo o uaingo hfr o rhod rp ln mil mpo iglgsi o ・ t ac : p ra i t h i ee t u t i ts fp p lt rwt o ut re oy o a ,i rvn it p p f ae o g d o f o c
考虑诸 多 因素 , 立 了一个动 Байду номын сангаас的 l l 建 e i 型, 过考虑生 育妇女 的人 口数 量对人 口发展 的总趋势及 未来人 口的数 se模 通

数学建模-人口增长模型

数学建模-人口增长模型

数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。

人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。

本文将从多个方面来探究人口增长模型。

一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。

由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。

第二阶段:传统社会阶段,人口增长迅速。

由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。

第三阶段:现代社会阶段,人口增长开始放缓。

由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。

另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。

人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。

它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。

目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。

2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。

3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。

4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。

该模型可广泛应用于国家人口预测、社会福利计划等领域。

人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。

1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。

模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。

这里,我们采用两种算法进行人口总数的预测。

一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。

通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。

我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。

由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。

关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。

二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。

中国未富先老,对经济的发展产生很大的影响。

中国人口增长预测模型

中国人口增长预测模型

0
h r
r r1,r r2
1 1 e r r
r r1
a
r2 r r1
其中:r1 15 r2 49, 并取 2 n 2
拟合得到:
由于中国人口迁移主要是在于内部城市之间, 因此g(r,t)可近似为0 通过模型:
中国是一个人口大国,人口问题始终是制 约我国发展的关键因素之一。根据已有数据, 运用数学建模的方法,建立中国人口增长的 数学模型,并由此对中国人口增长的中短期 和长期趋势做出预测;特别要指出模型中的 优点与不足之处。
中国是一个人口大国,人口问题始终是制约我国 发展的关键因素之一。 进来,中国人口发展出现了一些新的特点,例如: 人口老龄化、出生人口性别比例持续升高、以及乡 村人口城镇化等因素,都影响着当今中国的人口增 长。 通过已经积累得到的大量数据资料,就中国实际 人口情况和人口增长的上述特点,建立中国人口的 增长模型,对中国人口短期、长期状况下进行预测, 并指出模型的优缺点。
通过已经计算拟合的数据,便可以计算得 到未来几年中,中国人口的预测数量。
计算未来几年男性人数得到:
通过已有的2001~2005年间的人口数据,和拟合得到的 数据进行比较计算,对P r,t 进行误差分析得到:
年份 误差 2001 …… 2002 0.085 2003 -0.091 2004 -0.012 2005 0.079
首先,可以看到该模型中男婴出生比例 (m),是静止不 变的,这不能体现当今中国人口所呈现的性别出生比的上 升和老龄化进程的特点。所以在提出的中国人口发展模型 中对 (m),s1(n -1)引进时间参数t,将其动态化为 (m,t),s(r,t)。 然后用灰色预测模型对这两个参数进行预测。 . 其次,进一步分析p1(0,t) b1(t 1) g1(0)项,其意思是该年出 生的人在下一年作为0岁的人数计算,而附录所给统计数据0岁 所对应的是当年所出生的人数,所以宋健的人口发展模型是 滞后一年的。将其修正为p1(0,t) s(0,t 1)b1(t 1) g1(0,t 1)

中国人口增长预测模型

中国人口增长预测模型

中国人口增长预测模型中国是全球人口最多的国家之一,人口增长对社会经济发展和资源分配产生重大影响。

因此,准确预测中国的人口增长对于政府决策和社会规划至关重要。

本文将介绍一个基于趋势分析和数学模型的中国人口增长预测模型。

首先,分析历史数据是了解人口增长趋势的关键。

我们可以通过查阅官方统计数据来获得中国过去几十年的人口数量。

这些数据可以反映出不同年代的人口变化情况。

通过对这些数据进行趋势分析,我们可以更好地了解人口增长的规律。

其次,我们可以使用数学模型来预测未来的人口增长。

常用的人口增长模型包括线性增长模型、指数增长模型和Logistic增长模型。

线性增长模型假设人口每年以相同的速度增长,而指数增长模型则假设人口增长的速度与当前的人口数量成正比。

Logistic增长模型则考虑到了环境容量的限制,即人口增长速度会随着人口密度的增大而减缓。

在选择模型时,我们需要考虑人口增长的影响因素。

例如,出生率、死亡率和迁徙率等因素都会对人口增长产生影响。

因此,在构建预测模型时,我们需要综合考虑这些因素,并基于历史数据进行参数估计。

在模型构建完成后,我们可以利用计算机软件进行模拟和预测。

这些软件可以根据历史数据和模型参数,预测未来的人口数量和变化趋势。

通过不断调整模型参数,我们可以提高预测准确度,从而使我们的预测结果更具有可信度。

然而,人口增长预测也存在一定的不确定性。

例如,社会政策的改变、科技进步和自然灾害等都可能对人口增长产生重大影响。

因此,我们在使用预测模型时应该意识到这些不确定性,并将其考虑在内。

此外,随着社会的发展和科技的进步,我们可以探索更加精细化的人口增长预测模型。

例如,可以考虑区域差异和人口组成的变化,利用更多的经济、社会和环境因素来对人口增长进行建模。

这样的模型可以更好地适应中国复杂多变的人口情况。

综上所述,中国人口增长预测模型是一种重要工具,可以帮助我们了解和预测中国人口的发展趋势。

通过分析历史数据、构建数学模型并利用计算机软件进行模拟和预测,我们可以提高预测的准确性,并为政府决策和社会规划提供有力的支持。

数学建模人口模型人口预测

数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。

2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。

首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。

在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。

然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。

对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。

同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。

中国人口增长预测模型

中国人口增长预测模型

中国人口增长预测模型摘 要人口问题是当今世界上最令人关注的问题之一。

本文针对中国现阶段的国情及人口调查数据建立了四个模型,分别对中国短中期和长期的人口增长进行了预测和分析。

首先,我们假设每年的人口增长率不变,为一常数k 。

根据统计所得的1994~2005年的人口数据,我们建立了模型I (指数增长模型),对2006~2010年的全国总人口进行了预测(见表2),并求出了误差率%04758.1=λ,对模型做了检验。

()()()⎪⎩⎪⎨⎧≤≤=>=10000t t t P t P k kP dt dP(I ) 由于模型I 预测误差率太大,于是建立了模型II (灰色预测模型)对短期人口增长进行预测(见表3),并计算出平均误差率%01204.0=λ,预测效果很好。

()()()()()()()()()[]at a e a u P e t P t P t P---=-+=+/1111ˆ0110 (II ) 为了对中国人口增长进行长期预测,我们改进了模型I ,即取消了人口增长率固定不变的假设,改设增长率()P k 是人口P 的线性函数,建立了模型I I I (阻滞增长模型),计算得出误差率%13.0=λ。

利用该模型对2006~2120年的中国人口进行了预测(见表4),发现115年(2120年)之后中国人口趋近最大值亿344.15。

()()()⎪⎩⎪⎨⎧≤≤=>⎪⎪⎭⎫⎝⎛-=10000001t t t P t P k P P P k dt dP m (I I I ) 以上三个模型都只考虑了人口总数和总的增长率,不涉及年龄结构及性别比例。

在人口预测中人口年龄结构也是十分重要的,因为不同年龄人的生育率和死亡率有很大的差别,即使两个国家或地区目前人口总数一样,如果它们年龄结构状况不同,则两者的发展将大不一样。

为了更准确地预测人口增长情况,我们考虑了年龄性别等因素,建立了模型V I 。

()()()()()()⎪⎩⎪⎨⎧-+=-+=-+=+---t U t F P P t U t F P P t U t F P P P P P P t t t t t t t t t t 333,13222,12111,11321+= (V I ) 其中t P 为第t 年全国总人口,1t P 、2t P 、3t P 分别为第t 年城市、镇、乡的总人口;()t F 1,()t F 2,()t F 3分别为第t 年城市、镇、乡的新生人口总数;()t U 1,()t U 2,()t U 3分别为第t 年城市、镇、乡的死亡人口总数。

中国人口增长预测模型与分析

中国人口增长预测模型与分析

中国人口增长预测模型与分析摘要:人口问题一直是我国最大的社会问题之一,人口基数大、增长快,严重影响了我国经济和社会的发展,因此要通过控制人口数量来促进经济和社会的和谐发展,这就需要我们对人口数量和发展趋势进行预测。

做中期预测时考虑到人口增长到一定的数量增长率下降的主要原因之一是自然资源和环境条件等因素对人口的增长起着阻滞作用,随着人口的增长阻滞作用变得越来越大,因此运用灰色Logistic模型预测。

对于长期的人口预测,我们从Leslie模型中得到启发,用Leslie矩阵原理进行长期的预测。

关键词:中国人口;灰色Logistic模型;Leslie矩阵模型一模型假设1)假設中国人口没有迁移,处在一个封闭的系统中,不受外界条件的影响;2)假设样本的数据可以充分反映人口总体的情况;3)假设在预测中不会出现异常突发情况(如疾病、战争等);4)长期预测中假设生育率和存活是稳定的;5)长期预测中男女比例是不变的;6)假设没有人能活到超过m组的年龄;二模型的建立与求解中短期人口趋势预测模型,整体思想是运用Logistic模型和多元线性回归模型分别进行预测比较,综合多种因素,采用最优组合模型,使得问题反映的更全面,得到人口趋势的预测。

具体求解过程如下:在求解模型之前,首先考虑人口增长峰值问题,来确定中短期预测的时间。

在Matlab中进行非线性拟合,发现出生率、死亡率和时间序列间存在着很好的指数关系,而性别比率、出生性别比随时间没有明显的规律性。

我们考虑到当出生率和死亡率相等时,人口趋于稳定,人口数量到达峰值,随后下降或稳定,是长期预测的问题。

在Matlab7.0[1]中用非线性拟合得到出生率和时间序列的关系如下:f(x)= 2.647e+279*exp(-((x+3.248e+004)/1283))死亡率和时间序列的关系如下:f(x)= 6.272 *exp(-((x +1.029)/10.68))+ 11.05 *exp(-((x-15.02)/ 8.102))-4.501*exp(-((x-13.07)/ 5.412))当出生率等于死亡率时,预测出现峰值的时间,通过Matlab得到z =22.1595 即大概22.1595年(2017年)后人口出现峰值,因此我们的中短期预测就预测2017年。

中国人口增长预测数学模型

中国人口增长预测数学模型

中国人口增长预测数学模型
中国人口增长可以用人口增长率来描述。

人口增长率是指一个国家的出生率、死亡率和移民率产生的净人口变化的比率。

一般来说,一个国家的人口增长率越高,其人口增长速度越快,反之亦然。

由于中国的出生率和死亡率一直在变化,因此需要建立一个数学模型来预测中国的人口增长。

常见的模型有以下几种:
1. 指数模型
指数模型假设人口增长率是一个恒定值,因此未来的人口数量可以通过不断累乘现有人口数量和人口增长率来预测。

这种模型适用于人口增长迅速的情况,但并不适用于中国的情况,因为中国的人口增长率不是恒定的。

2. Logistic 模型
Logistic 模型假设人口增长率随着人口数量的变化而变化,即当人口数量增加到某一点时,人口增长率会逐渐降低。

这种模型适用于人口数量增长迅速的情况,适用于中国的情况。

3. 随机游走模型
随机游走模型假设人口增长率是一个随机变量,可以根据历史发展趋势来预测未来的变化。

这种模型适用于人口数量变化不规律的情况,但对于中国这样的大国而言,其复杂性较高,难以建立准确的模型。

总之,预测中国的人口增长需要考虑许多因素,例如出生率、死亡率、移民率等等,而且这些因素也会受到其它因素的干扰,例如经济、社会政治等因素。

因此,建立准确的模型需要大量的数据和正确的假设。

中国人口发展趋势的预测模型-07年全国大学生数学建模竞赛全国二等奖论文

中国人口发展趋势的预测模型-07年全国大学生数学建模竞赛全国二等奖论文

中国人口发展趋势的预测模型摘要本文从宏观和微观两方面讨论了中国人口发展问题:建立时间序列分析法中的ARMA 模型, 对中国人口总数进行宏观预测;建立了微分方程的模型, 对中国人口的年龄结构以及男女性别比等几个方面进行微观预测。

对人口总数进行宏观预测时,根据处理后的数据的自相关函数和偏相关函数的拖尾性,估计出ARMA的参数p、q,并对估计的参数进行验证和调节,最终确定参数,建立出ARMA(p ,q)模型。

用此模型预测出2020年和2050年的人口分别为138135.3万人和143352.6万人,而且到2050年人口呈现缓慢下降趋势。

对人口组成结构进行微观预测时,引用Shape-Lotka-Mckendrick模型。

根据中国人口发展的特点,并加入影响因素改进原始模型,分别建立了带移民因素和两性具有不同出生率、死亡率的微分方程模型,并讨论得出带移民因素的模型对我国人口结构预测比Shape-Lotka-Mckendrick模型更合理。

在求解的过程中,本文将连续的微分方程离散化,用多项式拟合得到预测数据,求出方程的数值解,得到2006-2010年人口按年龄的结构分布(男女比例分布、生育率、死亡率、迁移率),并进一步预测出未来人口老龄化指数,其中2020年和2050年的老龄化指数分别为0.511和0.566。

关键字:时间序列微分方程模型连续函数的离散化多项式拟合摘要 (1)一问题的重述与分析 (3)1.1 问题重述 (3)1.2 问题的分析 (3)二模型的基本假设和符号说明 (3)2.1 模型假设 (3)2.2 符号说明 (3)三模型的建立及求解 (4)3.1 模型一 (4)3.2 模型二 (7)3.2.1 只考虑出生率和死亡率的Shape-Lotka-Mckendrick模型]4[ (7)3.2.2 考虑竞争死亡率的模型 (7)3.2.3 考虑两性具有不同出生率和死亡率的人口模型 (8)3.3模型的求解 (8)3.4 对结果的分析 (11)四模型的评价 (11)五参考文献 (12)六附录................................................. 错误!未定义书签。

中国人口增长预测模型

中国人口增长预测模型

中国人口增长预测模型一、问题分析中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

建立中国人口预测模型具有重要意义,预测未来人口发展状况的主要有三个依据:第一,根据现有人口的数量、性别、年龄构成、出生率、死亡率、迁移率等预测未来人口数量的变动;第二,根据过去某一时期内人口增长的速度或绝对数,预测未来人口发展状况;第三,根据影响人口总数变动的因素进行人口预测,下面从这三个依据出发建立中国人口增长模型。

二、模型假设人口数量和结构变化的因素不外乎出生、死亡和迁移,由于我们预测的是全国的人口,国际的迁入迁出对全国人口的影响不大,所以我们的模型只考虑了自然的出生和死亡,对迁入及迁出因素忽略不计。

三、模型的建立模型(一)修正指数模型与阻滞增长模型1、修正指数模型修正指数曲线的人口趋势模型,依据历年人口记录数据来预测未来人口发展状况,修正指数曲线是一种具有增长极限的曲线,该模型的形式为:y(t)= K + ta b式中:K, a , b 均为待估参数,由表达式可见,当时间很大时, K 为增长上限或下限。

修正指数曲线模型的特点是一阶差分的环比为一个常数,根据这一特点,当某一时间序列的一阶差分的环比近似为一常数时,可以用该模型来进行预测。

至于模型中参数估计的问题,可以分为两种情况讨论:第一种情况:根据经验,当增长上限K已知时,可以先将模型线性化,再用最小二乘法来估计其余两个未知参数a 和b。

对于模型:y(t)= K +ta b( K > 0,a < 0,0 <b < 1)进行变换,并取对数可以将模型变为ln( K – y(t))= ln( - a) + tlnb令Y= ln( K – y(t)), A = ln( - a), B = lnb,则原模型转换为直线模型:Y= A + tB,再代回求解得:a = - A e,b = B e第二种情况:当K,a,b 均未知时,模型无法线性化,因此不能用最小二乘估计参数,但此时可以用三和法或是三点法估计参数。

中国人口预测模型

中国人口预测模型

如何预测中国人口增长——胡海滔、纪从威、张新干一.问题的提出中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。

根据中国1982~1998年的人口统计数据,取1982年为起始(t=0),1982年的人口101654万人,人口自然增长率为14%,以36亿作为我国人口的容纳量,试建立一个较好的人口数学模型并给出相应的算法和程序,并与实际人口进行比较。

二.模型假设(1)x(t)表示t时刻我国人口总数,我们将x(t)看成t的连续函数;(2)对一个国家而言,迁入和迁出人数相对很少,故略去迁移对人口变化的影响,即人口数量变化仅与出生率和死亡率有关;(3)每一社会成员的死亡与生育水平相同,即人口死亡率与出生率之差与人口总数成正比。

三.符号说明t:统计总人口数量的时间;()t x:t时间的总人口数;X:初始时候的总人口数,即1982年的总人口数;r:人口自然增长率;x:自然资源和环境条件所能容纳的最大人口数量。

m四.模型建立模型:指数增长模型(马尔萨斯模型)1.模型建立:记t 时刻的人口为()t x ,当考察一个国家的人口时,()t x 为一个很大的整数。

利用微积分这一数学工具,将()t x 视为连续、可微函数。

记初始时刻(t=0)的人口为0X 。

假设人口增长率为常数r ,即单位时间内()t x 的增量等于r 乘以()t x .考虑到t 到t t ∆+时间内人口的增量,显然有:t t rx t x t t x ∆=-∆+)()()( (1)令0→t ,得到()t x 满足微分方程rx dtdx= , 0)0(x x = 于是X (t )满足微分方程:⎪⎩⎪⎨⎧==0)0()()(X x t rx dtt dx (2) 2.模型求解:解得微分方程(2)得:X (t )=0X )(0t t r e - (3)表明:∞→t 时,)0(>∞→r x t1982年人口自然增长率r 为14‰,1016540=X为了能对比Malthus 模型计算的长期值和实际值,取1982~2005年数据:根据Malthus模型,用Matlab计算1982~2005各年的人口总数,程序:t=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005]; t0=1982;x=10.1654*exp(0.014*(t-t0));xformat short计算结果:x =Columns 1 through 1410.1654 10.3087 10.4541 10.6014 10.750910.9025 11.0562 11.2121 11.3701 11.5304 11.693011.8578 12.0250 12.1946Columns 15 through 2412.3665 12.5408 12.7176 12.8969 13.078813.2632 13.4501 13.6398 13.8321 14.0271用Matlab软件将计算值与实际人口总数进行对比:程序:t=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998];x=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 115817 119850 121121 122389 123626 124810];plot(t,x);hold ony=[101654 103087 104541 106014 107509 109025 110562 112121 113701 115304 116930 118578 120250 121946 123665 125408 125408];plot(t,y,'r*');legend('实际值','预测值');hold offxlabel('年份');ylabel('总人口数');title('模型计算值与实际值对比');grid;19801985199019952000200511.051.11.151.21.251.31.351.41.455年份总人口数模型计算值与实际值对比3.结果分析从1982年起在较短的一段时间内(1982~1995)用Malthus 模型计算的值与实际人口总数很接近,相对误差均在1%以下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八十年代以来我国人口发展的数学模型和展望1ThemathematicalmodelingandprojectionofChinapopulationafter1980物理学院技术物理系99级王彦摘要以LESLIE矩阵构建人口的动力学方程,建立了80年以来中国人口的数学模型,并用人口普查的数据验证了该模型的有效性及所含假设的合理性。

利用该模型可推算82年至98年的逐年的以岁为单位的年龄构成。

通过调整模型中有关参数及输入的条件,定量地分析了“夫妻双方均为独生子女可生两胎”这一政策将在未来15年内对我国人口的影响。

所建模型有很好的移植性,理论上来讲可推测很长一段时期内任一年的年龄结构,并可通过调整参量定量分析一部分人口政策及社会因素对人口发展的影响,可供有关研究及政策制定部门参考。

abstractBasedontheLESLIEMatrixasthedynamicfunction,webuiltupthemathematicalmodelof thechinapopulationdevelopmentsincetheadoptionof“FamilyPlanningPolicy”.,,wef urtheralculatethepopulationagedistributionin2015withandwithoutadoptionof“asp ousecanhavetwochildrenifthetwopartiesofthespouseareboththeonlychildintheirfam ily”.Thismodelcouldbeused,throughadaptingitsparameters,tocalculateandproject populationdevelopmentundersomedifferentsocialconditions社会经济的许多领域的规划都必须考虑人口这一重要因素。

而人口普查只能为我们提供某几个时间点的横截面数值,但在现实生活中,人们常常需要其他时间点的人口总数及其构成。

于是一个迫切的任务就是如何用少数的几个时点的信息比较准确的得到较详尽的其他时点的人口数据。

同时我们知道,人口与政策密切相关,这一点对于自80年起实施“一对夫妇只生一个孩子”的中国更是如此。

为了定量分析政策对它的影响,也需要建立一个现实的,可靠的模型。

这两方面的原因促使作者从人口发展的动力学机制出发,建立一个含多方面参量包括政策参量的数学模型。

本文由五部分构成:第一部分介绍人口学中部分专业词汇的定义;第二部分模型的建立和检验。

第三.四部分为该模型的两个应用,针对缺乏相关参量的直接统计数据是两种不同的处理方法。

第五部分为总结和讨论。

0.数据定义这部分介绍本文中出现的人口学名词并加以简单分析。

年龄别生育率:某年的某年龄妇女生的孩子数与该年龄妇女总数之比。

总和生育率:某年各年龄组妇女生育率的合计数。

即总和生育率=各年龄组妇女生育率之和我们可以把年龄别生育率看作一个妇女在该年龄时平均生的孩子,于是各个不同年龄段的生育率分布可以看成一个妇女处在不同年龄段生育孩子数的分布。

我们把这一分布称为生育模式。

而总和生育率等于每个妇女一生中一共生育的孩子数。

出生率:某年的出生人数与该年总人数之比。

1“政基金”项目和国家自然科学基金委员会杰出青年基金项目资助(No年龄别死亡率:某年的某年龄死亡的人数与该年龄总人数之比。

一.模型的建立(一).LESLIE 矩阵首先,我们要找到描述人口变化的方程。

目前我国的移民现象很少见,我们可以认为中国人口是一个封闭的系统。

定义)(i A n 为第n 年i 岁的人数,)(i d n 为第n 年年龄为i 的人的死亡率,()i b n 为第n 年年龄为i 的妇女生的孩子数与该年龄妇女数的比例,即i 岁的妇女的生育率。

则当i ≥1时,)]1(1[)1()(1--*-=+i d i A i A n n n 。

我国人口男女比大约,我们在这里忽略这种差别,近似为1,则)()(2/1)0(1i b i A A n n nn **=∑+。

用矩阵来表示上述关系,得到其中,[]Tn n n n i A A A A ...)(...)1()0(= 由于80岁以上的老人所占比重很小,且对于人口的增长已经没有影响(他们不可能再生育),在本文的模型中,常常只考虑80岁以下的人的情况。

其实,n A 的维度只要大于一定值就可以了,在问题处理过程中是可以变化的。

(二).参量的确定LESLIE 矩阵本身是普适的人口动力学方程,而不同历史,社会条件下的人口发展模式特点是由其中的参量来描述的,也就是)(i b n 和)(i d n 。

它们都是随时间变化的量,是诸多因素共同作用的结果。

我们不可能找到这些参量每年的精确数值,因此作一些假设和近似是必要的。

1.生育率i b n ()如第一部分数据分析中分析的那样,我们把某个时点的妇女的生育年龄分布同时看作一个妇女一生中生育孩子数的分布.于是某个时点的综合生育率等于一个妇女一生中生育的孩子数。

考察城市和人口的生育的年龄结构,我们发现两者有很大的不同。

图一98年中国城乡妇女生育率年龄分布从图中,我们发现农村妇女的总和生育率明显高于城市妇女,同时她们的生育高峰也比城市妇女早一些,且计划生育政策及其执行情况也有很大的不同,所以本文中将把这两种情况分开讨论。

即知道了)(i A n ,我们可以用城乡人口比来得到)(i A rural n和)(i A urban n 。

受到生理条件的限制,生育率关于年龄的相对分布应该是一个变化缓慢的量。

我们假定在没有政策性变化时(如限制生育年龄,或允许多育),它是恒定的。

于是如果知道某年的总和生育率,结合图一给出的98年的分布,便可得到当年的具体分布:i b n ()=)(*)(/)(9898i b i b i b in i ∑∑⎥⎦⎤⎢⎣⎡如果我们把总和生育率)(i b in ∑表示为n B ,则i b n ()=n B B i b */)(9898而总和生育率n B 是比较容易获得的。

2.年龄别死亡率)(i d n年龄别死亡率分布数据很少,事实上,作者只找到了89年一例,于是只能先假定死亡率不变。

而通过后面的计算发现,这个假设和我国80年至今的情况符合的很好。

即使在未来的很长一段时间内,只要没有医学上大的革命,这个量的变化将很小。

因此,本文中把它当成常量处理。

所用数据为89年的统计(中国统计局数据服务DUS2-42),如图所示图二:89年中国年龄别死亡率分布(三).82年——90年的人口变化及假设的验证对于80年代的人口,我们掌握的材料比较充分,如逐年的城乡总和生育率,82年和89年的人口年龄结构,历年城乡人口比例等。

我们用82年的数值作为初始条件,用上述模型推算至90年的分布,再和普查数据比较,以此检验我们的模型及相关假设。

结果如以下图所示。

图三:90年中国人口年龄分布比较两条曲线,发现它们吻合的相当不错,尤其是10岁以后的曲线,差别非常小。

由于这部分人口的发展只受死亡率的影响,说明我们把)(i d n 作为常量处理是合理的。

(这也说明我国二十年来医疗技术的进步还没有对人口产生大的影响)而10岁以前的曲线也基本吻合,最大误差在5%以内。

由此,关于生育率的年龄的相对分布的假设也是合理的。

至此,模型的有效性得到了证明。

二.90—98年的人口发展和上一阶段不同,这一时期的人口统计数据不够充分,尤其是总和生育率的数据的缺乏,使这一阶段的处理方法和90年以前不同。

)(i A n 对1≥i 的情况仍可按刚才的方法处理,但对于)0(n A ,在没有总和生育率时,就不能得到)(i b n ,也就不能用LESLIE 矩阵法了。

作者用第n 年的出生率⨯人口总数=第n+1年的0岁的人数得到)0(1+n A 。

而人口总数和总出生率都是比较容易获得的数据。

用上述方法可以得到90-98年逐年的年龄构成,98年的分布见下图图四:98年中国人口年龄分布推算这种处理方法只能用来求过去的时点的年龄结构,而不能用与人口的预测,因为将来的时点的人口总数和出生率也是未知的。

而LESLIE 矩阵则从人口发展的动力学机制出发,因而可以用来预测未来的情况。

第四部分就是一个例子。

三.2015年人口分布的预测这一部分主要采用本文第一部分阐述的方法分析“夫妇双方均为独生子女可生育两个孩子”这一政策将给我国人口造成的影响。

我国农村妇女的总和生育率在计划生育实行后一直维持在以上,而在80年代初有左右,也就是说,即使在2000年后,农村独生子女的比重很小,而夫妻均为独生子女的概率更小,于是可以认为该政策对农村的影响可以忽略,农村生育模式不变。

而城市的总和生育率自80年代起非常接近1,我们认为所有的80年以后的城市出生的都是独生子女,于是前述政策对城市的影响很大。

下面是定量分析。

考察98年我国农村分胎次的生育率年龄分布:图五:98年中国城乡妇女生育率农村每个妇女平均有个二胎,而城市平均只有个,但是它们的相对分布确实非常相近的。

事实上,从图中可以看出,把城市妇女的第二胎的生育年龄结构按比例()放大后和农村妇女的相应的分布形状基本相同。

这是容易理解的,由于受到生理条件的限制,在没有其他政策性引导的情况下(如规定生第二胎的最早年龄),妇女生两胎的年龄相对分布应基本稳定。

另外,我们还发现,在35岁后生育的概率很小,于是从最早的独生子女开始生育到他们35岁这一时期(即大约2000—2015),我国城市妇女的生育模式逐渐向两胎过渡。

而她们的孩子这时还未到生育年龄,于是可以认为生育年龄分布向两胎变化,到2015年完全达到。

也就是说,到2015年,城市妇女的生育年龄结构可看成第一胎和第二胎的叠加。

我们假定第一胎的生育模式不变(其实观察上图可知,图形应该变尖锐一些,且峰将提前,但鉴于变化过于复杂,本文不讨论)。

对于第二胎,我们把98年农村妇女的二胎的年龄分布按比例放大到总和生育率为1。

这样我们就得到了二胎完全普及的2015年中国城市的生育模式。

从1998年到2015年,我们考虑最简单的情况,即假定变化是线性的,可得各年的生育率,即)(i b urban n。

同时,我们假定)(i d n 和城乡比不变。

事实上,从80年到98年的数据来看,城乡比变化缓慢。

而且,在1998-2015年这段时间内,城市和农村的总和生育率比较接近,平均都在左右,所以城乡比有几个百分点的差别并不会太影响结果。

用上述方法得到的2015年的人口分布如图。

图六:是否实行“二胎政策”对我国2015年人口年龄结构的影响观察上图,我们发现,从82年到2015年我国人口的年龄分布变化是非常剧烈的。

但总的来说,曲线趋于平坦,也就是说,人口结构慢慢由均匀化的趋势。

相关文档
最新文档