新人教版七年级数学上册总复习课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、分配律: a(b c) ab ac
有理数混合运算的运算顺序 先算乘方,再算乘除,最后算加减。 如果有括号就先算括号里面的。
同级运算从左到右进行。
8
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
(3)多项式排列: ①把一个多项式按某一个字母的指数从大到小的顺序排列起来, 叫做把多项式按这个字母的降幂排列. ②把一个多项式按某一个字母的指数从小到大的顺序排列起来, 叫做把多项式按这个字母的升幂排列. (4)单项式与多项式统称整式。
(分母含有字母的代数式不是整式) 12
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
13
4.整式的加减就是合并同类项的过程。
5.整式去括号变化规律: (1).如果括号外的因数是正数,去括号后原括号内 各项的符号与原来的符号相同;如:+(x-3)=x-3 (2).如果括号外的因数是负数,去括号后原括号内 各项的符号与原来的符号相反。如:-(x-3)=-x+3
6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
注意:①.若两个同类项的系数互为相反数,则两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。
②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从 大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或 写5+5x-4x2。
b
(a)2n a2n
(a) a 2n1
2n1 注意:-14=– (1×1×1×17)=–1
(-1)4=(-1) ·(-1) ·(-1) ·(-1)=1
运算律 1、加法交换律:a b b a
2、加法结合律:a b c a (b c)
3、乘法交换律:ab ba
4、乘法结合律:abc a(bc)
⑥单独的一个数字是单项式,它的系数是它本身;非零常数
的次数是0。
11
(2)多项式:几个单项式的和叫做多项式。 1、多项式中的每一个单项式叫做多项式的项。 2、多项式中不含字母的项叫做常数项。 3、一个多项式有几项,就叫做几项式。 4、多项式的每一项都包括项前面的符号。 5、多项式中次数最高的项的次数,叫做这个多项式的次数。
2、将用科学计数法表示的数还原,如: 1.52×104=15200
(5)、有效数字、近似数 一个数字从左边第一个非0的数字起到末位止,
叫做这个数的有效数字。 如:0.003020有四个有效数字,分别是3、0、2、0。
9
减第 二 章 整 式 的 加
10
1.整式的概念:
(1)单项式:都是数字与字母的乘积的代数式叫做单项式。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为0
5
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。 ②两个正数比较大小,绝对值大的数大;
两个负数绝对值大的反而小。 ③正数都大于零,负数都小于零,正数大于负数。 ④作差法:a-b>0↔a>b ⑤作商法:a/b>1,b>0↔a>b
2
1.2有理数
任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的三要素
、 正方向、单位长度。
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
①单项式的系数:单项式中的数字因数。
②单项式的次数:单项式中所有的字母的指数和
※注意
①圆周率π是常数;
②只含有字母因式的单项式的系数是1或-1时,“1”通常
省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。如23a6的次数为6
④单项式的系数是带分数时,应化成假分数。
⑤单项式的系数包括它前面的符号。
6
★有理数的运算
加法
减法
乘法 除法
乘方
符号
计算绝对值
同号
取相同的符号
绝对值相加
异号 取绝对值大的符号 较大绝对值减较小绝对值
减去一个数等于加上这个数的相反数 a b a (b)
同号
得正
异号
得负
绝对值相乘
同号
得正
绝对值相除
异号
得负
除以一个数等于 乘以这个数的倒数
ab a1
a n a a a a(n个a相乘)
然后再合并同类项.
14
第三章 一元一次方程
1:等式的概念:用等号表示相等关系的式子叫做等式.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
3
有理数的两种分类:
有理数
整数 分数
正整数 0
负整数 正分数
负分数
有理数
正整数
正数 正分数 0 …………….
非负数
负数 负整数
来自百度文库
负分数
4
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数 a的绝对值,符号表示为( |a| )
A
B
-5 -4 -3 -2 -1 0 1 2 3 4
新人教版 七年级数学上册 (各章知识点课件)
1
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
把一些数放在一起,就组成一个数的集合,简称数集(set of number)。 所有正数组成的集合,叫 做正数集合; 所有负数组成的集合叫做负数集合; 所有整数组成的集合叫整数集合; 所有分数组成的集合叫分数集合; 所有有理数组成的集合叫有理数集合; 所有正整数和零组成的集合叫做自然数集。
有理数混合运算的运算顺序 先算乘方,再算乘除,最后算加减。 如果有括号就先算括号里面的。
同级运算从左到右进行。
8
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
(3)多项式排列: ①把一个多项式按某一个字母的指数从大到小的顺序排列起来, 叫做把多项式按这个字母的降幂排列. ②把一个多项式按某一个字母的指数从小到大的顺序排列起来, 叫做把多项式按这个字母的升幂排列. (4)单项式与多项式统称整式。
(分母含有字母的代数式不是整式) 12
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
13
4.整式的加减就是合并同类项的过程。
5.整式去括号变化规律: (1).如果括号外的因数是正数,去括号后原括号内 各项的符号与原来的符号相同;如:+(x-3)=x-3 (2).如果括号外的因数是负数,去括号后原括号内 各项的符号与原来的符号相反。如:-(x-3)=-x+3
6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
注意:①.若两个同类项的系数互为相反数,则两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。
②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从 大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或 写5+5x-4x2。
b
(a)2n a2n
(a) a 2n1
2n1 注意:-14=– (1×1×1×17)=–1
(-1)4=(-1) ·(-1) ·(-1) ·(-1)=1
运算律 1、加法交换律:a b b a
2、加法结合律:a b c a (b c)
3、乘法交换律:ab ba
4、乘法结合律:abc a(bc)
⑥单独的一个数字是单项式,它的系数是它本身;非零常数
的次数是0。
11
(2)多项式:几个单项式的和叫做多项式。 1、多项式中的每一个单项式叫做多项式的项。 2、多项式中不含字母的项叫做常数项。 3、一个多项式有几项,就叫做几项式。 4、多项式的每一项都包括项前面的符号。 5、多项式中次数最高的项的次数,叫做这个多项式的次数。
2、将用科学计数法表示的数还原,如: 1.52×104=15200
(5)、有效数字、近似数 一个数字从左边第一个非0的数字起到末位止,
叫做这个数的有效数字。 如:0.003020有四个有效数字,分别是3、0、2、0。
9
减第 二 章 整 式 的 加
10
1.整式的概念:
(1)单项式:都是数字与字母的乘积的代数式叫做单项式。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为0
5
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。 ②两个正数比较大小,绝对值大的数大;
两个负数绝对值大的反而小。 ③正数都大于零,负数都小于零,正数大于负数。 ④作差法:a-b>0↔a>b ⑤作商法:a/b>1,b>0↔a>b
2
1.2有理数
任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的三要素
、 正方向、单位长度。
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
①单项式的系数:单项式中的数字因数。
②单项式的次数:单项式中所有的字母的指数和
※注意
①圆周率π是常数;
②只含有字母因式的单项式的系数是1或-1时,“1”通常
省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。如23a6的次数为6
④单项式的系数是带分数时,应化成假分数。
⑤单项式的系数包括它前面的符号。
6
★有理数的运算
加法
减法
乘法 除法
乘方
符号
计算绝对值
同号
取相同的符号
绝对值相加
异号 取绝对值大的符号 较大绝对值减较小绝对值
减去一个数等于加上这个数的相反数 a b a (b)
同号
得正
异号
得负
绝对值相乘
同号
得正
绝对值相除
异号
得负
除以一个数等于 乘以这个数的倒数
ab a1
a n a a a a(n个a相乘)
然后再合并同类项.
14
第三章 一元一次方程
1:等式的概念:用等号表示相等关系的式子叫做等式.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
3
有理数的两种分类:
有理数
整数 分数
正整数 0
负整数 正分数
负分数
有理数
正整数
正数 正分数 0 …………….
非负数
负数 负整数
来自百度文库
负分数
4
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数 a的绝对值,符号表示为( |a| )
A
B
-5 -4 -3 -2 -1 0 1 2 3 4
新人教版 七年级数学上册 (各章知识点课件)
1
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
把一些数放在一起,就组成一个数的集合,简称数集(set of number)。 所有正数组成的集合,叫 做正数集合; 所有负数组成的集合叫做负数集合; 所有整数组成的集合叫整数集合; 所有分数组成的集合叫分数集合; 所有有理数组成的集合叫有理数集合; 所有正整数和零组成的集合叫做自然数集。