第二讲 速算与巧算(1)-小学奥数
四年级奥数--速算巧算(一)

计算下面各题 1,1208-569-208 2,283+69-183 3,132-85+68 4,2318+625-1318+375
1. 248+(152-127) 2. 324-(124-97) 3. 283+(358-183)
在计算有括号的加减混合运算时,有时为 了使计算简便可以去括号,如果括号前面 是“+”号,去括号时,括号内的符号不变; 如果括号前面是“-”号,去括号时,括 号内的加号就要变成减号,减号就要变成 加号。
(2)812-593+193
分析与解答:
在计算没有括号的加减法混合运算式题时, 有时可以根据题目的特点,采用添括号的 方法使计算简便,与前面去括号的方法类 似,我们可以把这种方法概括为:
括号前面是加号,添上括号不变号; 括号前面是减号,添上括号要变号。
(1)286+879-679 =286+(879-679) =286+200 =868 (2)812-593+193 =812-(593-193) =812-400 =412
我们可以把上面的计算方法概括为:括号 前面是加号,去掉括号不变号;括 号前面是减号,去掉括号要变号。
1.248+(152-127) 2 . 324-(124-97)
=248+152-127
=324-124+97
=400-127
=200+97
=273
=297
3. 283+(358-183) =283+358-183 =283-183+358 =100+358=458
认真观察每个加数,发现 它们都和整数490接近, 所以选490为基准数。
四年级奥数知识点:速算与巧算(一)

四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990497+9951990497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389+387+383+385+384+386+388=3907137564=273028=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=3807+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)6=(49406+2+321+1+3)6=(49406+6)6(这里没有把49406先算出来,而是运=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算 99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
小学奥数--速算巧算方法(二)

小学奥数--速算巧算方法目录1 (3) (5) (8) (10) (14) (16)181920222323252729 注:《速算技巧》 (33)第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1)拆成两个分数相减。
例如又如(2)拆成两个分数相加。
例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如(注意:分数减法要用减数的原分母减去被减数的原分母。
)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。
例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。
例如做这道题,按先通分后相加的一般办法,势必影响解题速度。
现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。
第六讲常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。
(1)分母相同的所有真分数相加。
求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。
比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。
比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。
二年级奥数:《速算与巧算》

二年级奥数:《速算与巧算》(预热)前铺知识复习一、凑整法(计算的核心)好朋友:两个数相加(相减)和为整十、整百、整千的两个数,我们称之为好朋友。
1)加法凑整:好朋友:个位相加和为十。
口诀:看个位,手拉手,凑完整,再计算。
例:13+27=402)减法凑整:好朋友:个位相同。
例:132-32=100二、递等式按照运算顺序把计算过程依次用等式表示出来,这样的等式叫做递等式。
写法:在算式下面、第一个数的左边写等号“=”;等号后面写计算过程,第一个数要与算式的第一个数上下对齐;每一步的等号对整齐,等号的两条线要平行。
例:52+36-23=88-23=65三、抱符号搬家抱符号搬家可以改变运算顺序,抱着前面的符号搬家。
每个数前面都有符号,第一个数前面的加号被省略了;数搬家时不要忘记带上它前面的符号。
例:=100-45=55四、变加为乘相同的数相加变乘法。
例:5+5+5+5+5+6=5x5+6=25+6=31五、认识小括号“()”小括号能改变运算顺序,小括号里面的要先算。
例:53+(36-16)【先算小括号里面的“36-16”】=53+20=73新授一、添(去)括号(1)括号前面是减号,括号里面要变号;例:9=19(2)括号前面是加号,括号里面不变号。
例:=9+()=9+10=19二、拆补凑整任意数可以写成一个整数(整十,整百,整千)加(减)一个数的形式。
例:9+999最接近的整十数:1099最接近的整百数:100则原式=10-1+100-1=110-2=108三、基准数法特点:算式中的数都接近同一个整十(百)数基准数只有一个例:-1 +2 +319+22+23 【算式中的数都最接近20】20 +20 +20=3×20-1+2+3=64如何预习?为了保护孩子课前的好奇心和学习兴趣,以及保证课堂效果,家长在给孩子预习的时候,一定要把握好度。
预习,切忌给孩子讲解书本上的例题和知识点,因为孩子容易先入为主,如果家长选取的方式方法不当,那么孩子很难转换思路了;另外,家长给孩子讲过例题后,孩子可能会觉得自己已经学会了,上课的时候就不愿意认真听了。
二年级奥数-速算与巧算

速算与巧算一、寓言小故事:朝三暮四从前,宋国有一个老人,他在家中养了许多猴子。
老人每天都会给每只猴子八颗栗子,早晚各四颗。
后来,猴子越来越多,老人也越来越穷,所以他想每天只给猴子七颗栗子,于是他就和猴子们商量:“从今天开始,我每天早上给你们四颗粟子,晚上给你们三颗栗子,行不行?”猴子们想了一想,晚上怎么少了一颗呢?于是大叫起来,非常不愿意。
老人一看,连忙说:“那么我早上给你们三颗,晚上再给你们四颗,可以了吧?”猴子们听了,以为晚上的栗子已经由三个变成四个,跟以前一样,就高兴地同意了。
老人也偷着乐了!计算:3+4= 4+3=操场上28 个男生在跳绳,17 个女生在跳绳,问:操场上一共有多少人在跳绳?计算:28+17= 17+28=加法交换律:两个数相加,交换加数的位置,他们的和不变,这叫加法交换律。
用字母表示:a+b=b+a;推广:多个数相加,任意改变加数的顺序,它们的和不变。
例如:1+2+3+4=1+3+2+4=……身边的数学问题:操场上28 个男生在跳绳,17 个女生在跳绳,23 个女生在踢毽子。
问:(1)参加跳绳的有多少人?(2)参加活动的有多少人?(3)参加活动的女生有多少人?(4)参加跳绳和踢毽子的一共有多少人?从以上的计算结果我们可以得到一个等式:先计算,再比较大小:1、(13+28)+12 13+(28+12)2、(16+17)+13 16+(17+13)根据以上的例子,你能发现在加法运算中,有什么规律吗?加法结合律:三个数相加,先把前面两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变,这叫做加法结合律。
用字母表示:(a+b)+c=a+(b+c)说明:一般地,多个数相加(三个数以上),可以先对其中几个数相加,再与其它几个数相加。
把加法交换律与加法结合律综合起来应用,就能得到加法的一些巧算方法。
1、凑整法:在进行加减法运算时,先把加在一起为整十、整百、整千……的数加起来,然后再与其它的数相加,这样计算比较方便。
三年级奥数专题 速算与巧算二(学生版)

学科培优数学速算与巧算二学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
重点难点:找出题目中可以进行“凑整”的数。
利用运算律或者公式调整运算顺序。
考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。
适当调整运算顺序。
知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
2年级小学生奥数精选:速算和巧算

2年级小学生奥数精选:速算和巧算以下是笔者为大家整理的关于二年级小学生奥数精选:速算与巧算的文章,希望大家能够喜欢!一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.。
四年级思维拓展-速算与巧算(一)

速算与巧算(一)☜知识要点速算与巧算是学习数学、解决生活中数学问题的基础,只有掌握了速算与巧算才能又快又准的计算出正确的结果。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
1.找互补数:两个数相加和是10、100、1000、10000、、、、、、我们就称这两个数互为补数。
☜精选例题【例1】(1)72+28 ;(2)654+346;(3)8742+42+1258;(4)2345+3243+7655+6757;☝思路点拨:对于算式(1)72+28 、(2)654+346,同学们会很快得出答案为100、1000。
对于算式(3)、(4)我们可以运用加法交换律:a+b=b+a 和加法结合律:(a+b)+c=a +(b+c),先把相加能得到10000的加起来再和其它数相加。
☝标准答案:解:(1)72+28=100 (2)654+346=1000(3)8742+42+1258 (4)2345+3243+7655+6757=8742+1258+42 =(2345+7655)+(3243+6757)=10000+42 =10000+10000=10042 =20000✌活学巧用1. 327+43+6732. 8973+342+1027+6583. 785342+________=10000004. 3270+______=10000总结:找互补数的方法:知道一个互补数求另一个互补数,如果知道的这个互补数个位不为零,它的互补数就等于用10来减去这个数的最高位与最低位,其它位上的数字用9来减。
注意个位为零时看前一位。
2.凑整:把相加能得到整十、整百、整千、整万、、、、、、的数先加起来有利于我们的计算简便。
【例2】简便计算:(1)48+54;(2)3999+5+456+539+5+6;(3)79998+7998+798+78+8;☝思路点拨:题目中没有能够凑成整十、整百、整千、、、、、的数,但是有些数很接近,我们可以把(1)的48分成2+46,这样46就可以和54凑成整百了,(2)中的5可以分解成1+4,分别加到前后的数上凑整,(3)式可以分别给这五个数添加上他们凑整所需的2,最后再减去5个2就行了。
小学奥数知识点详解与试题

第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
下面利用“补数”巧算加法,通常称为“凑整法”。
例1 巧算下面各题:①36+87+64②99+136+101 ③ 1361+972+639+282.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+2033.竖式运算中互补数先加。
如:4.把几个互为“补数”的减数先加起来,再从被减数中减去。
例3① 300-73-27 ② 1000-90-80-20-105.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)② 2356-159-2566.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397 ②323-189 ③467+997 ④987-178-222-390二、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a-(b-c)=a-b+c例6 ①100+(10+20+30)② 100-(10+20+3O)③ 100-(30-10)2.带符号“搬家”例8 计算 325+46-125+543.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+34.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
二年级奥数速算、巧算方法及习题

二年级奥数速算、巧算方法及习题速算与巧算在日常生活中,我们经常需要进行简单的数学计算,如加减乘除等。
但是,有些计算可能会让我们感到困惑和繁琐。
为了解决这个问题,我们可以使用速算和巧算的方法。
1.凑整法例如,对于43+88+57这个计算,我们可以将88和57凑成100,然后再加上43,就可以得到188.2.带符号搬家法对于43+88-33这个计算,我们可以将88和33相加,然后再加上43,就可以得到98.这个方法也适用于更复杂的计算。
3.变加为乘法对于8+8+8+8+8+8+8+7这个计算,我们可以将,然后再加上7,就可以得到71.4.加减抵消法对于92-16+23-23+16这个计算,我们可以将16和-16抵消掉,然后再加上23和-23,就可以得到76.5.减法巧算法对于100-36-24和88-(28+15)这两个计算,我们可以直接计算出结果,分别为40和45.6.找基准数法对于52+50+49+46这个计算,我们可以将50和50相加,然后再加上49和51,就可以得到200.7.分组法对于90-89+88-87+86-85+84-83这个计算,我们可以将相邻的数分成一组,然后将每组相加,最后将所有组的结果相加,就可以得到8.8.等差数列法对于1+2+3+……+998+999+1000这个计算,我们可以使用高斯公式,即n×(n+1)÷2,其中n为1000,就可以得到.9.金字塔数列法对于1+2+3+……+98+99+100+99+98+……+3+2+1这个计算,我们可以将它分成两个部分,即1+2+3+……+98+99+100和99+98+……+3+2+1,然后将两部分相加,就可以得到.在使用速算和巧算的方法时,我们需要注意以下几点:1.观察数字和符号的特点,是否能用公式或其他简便方法进行计算。
2.整数比散数好算,小数比大数好算。
3.掌握加法的交换律和结合律,以及带符号搬家、加减括号、减括号等基本理论。
二年级奥数-速算与巧算一

速算与巧算一知识定位本讲主要介绍速算与巧算的相关方法。
主要针对配对求和、等差数列求和、减法退位巧算、乘法巧算等方法进行学习和运用。
重点难点1.配对求和2.等差数列求和3.减法退位求和4.乘法巧算考点熟练运用速算与巧算的方法进行计算知识梳理1、配对求和2.等差数列求和3.减法退位巧算4.乘法巧算例题精讲【试题来源】【题目】下图是用大小一样的三角形搭成的“宝塔”。
仔细观察后请完成下面的问题。
⑴“宝塔”每层所包含的小三角形的个数。
⑵每个“宝塔”所包含的小三角形的个数。
⑶列式计算6层“宝塔”小三角形的个数。
⑷列式计算7层“宝塔”小三角形的个数【试题来源】【题目】用“配对”的思考方法,在□中填入合适的数。
让下面的算式中的数组成一个等差数列。
⑴□+□+12+□+□=60⑵12+□+□+□+□=40⑶□+□+42+58+□+□=300【试题来源】【题目】绝对差减法——退位减法的另一种算法!【试题来源】【题目】下面的算式,你能口算吗?⑴300×5=308×5=348×5=⑵700×8=706×8=736×8=⑶900×4=902×4=932×4=【试题来源】【题目】下面的算式,你能口算吗?⑴3746×11=8472×11=93741×11=⑵45×45=19×11=67×63=84×86=【试题来源】【题目】观察下面式子的数和符号,有什么特征吗?怎么解决下面这样的计算问题呢?⑴20-19+18-17+16-15+…+4-3+2-1⑵1-2+3-4+5-6+7-8+…-18+19-20+21⑶3-4-5+6+7-8-9+10+…+35-36-37+38⑷(2+4+…+48+50)-(1+3+…+47+49)【试题来源】【题目】下面的题目,我们能怎么巧算呢?⑴123+312+231⑵9267+7485+3752+1716【试题来源】【题目】这一天,阿呆家的四个兄弟因为分到的糖数不一样开始吵架。
奥数第二讲巧算与速算

345345 ÷ 15015
B 级练习 计算下列各题并写出简算过程: 1.5.467+3.814+7.533+4.186 2.6.25×1.25×6.4 3.3.997+19.96+1.9998+199.7 4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99 5.0.8÷0.125 6.6.734-1.536+3.266-4.464 计算下列各题并写出简算过程: 1.23.75×3.987+6.013×92.07+6.832×39.87 2. 199.9×19.98-199.8×19.97 3.89.1+90.3+88.6+92.1+88.9+90.8 4.4.83×0.59+0.41×1.59-0.324×5.9 5.37.5×21.5×0.112+35.5×12.5×0.112 6..20042005×20052004-20042004×20052005 7.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
【名师精点:典型例题】 名师精点:典型例题】 例 1:计算 9+99+999+9999+99999 解:在涉及所有数字都是 9 的计算中,常使用凑整法.例如将 999 化成 1000—1 去计算. 这是小学数学中常用的一种技巧. 9+99+999+9999+99999 =(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1) =10+100+1000+10000+100000-5 =111110-5 =111105. 例 2: 计算 199999+19999+1999+199+19 解:此题各数字中,除最高位是 1 外,其余都是 9,仍使用凑整法.不过这里是加 1 凑整. (如 199+1=200) 199999+19999+1999+199+19 =(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5
五年级奥数专题 速算与巧算二(学生版)

学科培优数学速算与巧算二学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
重点难点:找出题目中可以进行“凑整”的数。
利用运算律或者公式调整运算顺序。
考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。
适当调整运算顺序。
知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
小学数学奥数基础教程(打印版)

- 1 -小学奥数基础教程第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
小学三年级奥数--第二讲--速算与巧算(一)(学生版)

第二讲速算与巧算(一)学习内容:加减法的巧算与速算学习目标:(1)学会“化零为整”的思想(2)灵活运用简便方法,提高做作业的计算速度以及准确率速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当、准确、灵活的运用定律、性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
一、凑十法同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=10 2+8=10 3+7=10 4+6=10 5+5=10巧用这些结果,可以使计算又快又准。
例1 计算:1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点就是麻烦、容易出错;而且一步出错,以后步步错。
若是利用凑十法,就能克服这种缺点。
练一练:8+5+6+7+3+4+2二、凑整法同学还知道,有些书相加之和是整十、整百的数,如:1+19=20 11+9=20 2+18=20 12+18=30 12+28=40 13+37=50 14+46=60 15+55=70 16+64=80 13+73=90又如:15+85=100 14+86=100 25+75=100 24+76=100 35+65=100 34+66=100 45+55=100 44+56=100 等等巧用这些结果,可以使那些较大的数相加又快又准、像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2 计算 1+3+5+7+9+11+13+15+17+19练一练:计算21+22+23+24+25+26+27+28+29的和等于多少?例3 计算 2+4+6+8+10+12+14+16+18+20练一练:计算22+24+26+28+30+32+34+16+18+20例4 计算 2+13+25+44+18+37+56+75练一练:计算17+26+82+59+13+24+18+21三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
奥数题 速算与巧算

四则混合运算的巧算【基础再现】四则混合运算要算得好、算得巧,既合理又灵活,就要掌握一定的方法技巧:当四则混合运算中有括号时,运算顺序是“先算括号内的,后算括号外的;先乘除,后加减”。
在具体计算过程中,我们还应该注意根据算式中运算符号及数字的特征,运用运算定律、性质以使运算简捷。
【重难考点】掌握四则混合运算的运算法则【知识扩展】1、加减法运算的性质①a+b-c=a-c+b ②a+(b-c)=a+b-c③a-b-c=a-c-b ④a-(b+c)=a-b-c ⑤a-(b-c)=a-b+c=a+c-b2、乘除法运算的性质①a÷b÷c=a÷c÷b=a÷(b×c)②a×b÷c=a÷c×b=b÷c×a③(a×b)÷c=a÷c×b=b÷c×a)④a×(b÷c)=a×b÷c⑤a÷(b÷c)=a÷b×c=a×c÷b⑥a÷b=(a×n)÷(b×n)=(a÷n)÷(b÷n)(n≠0)3、乘除分配的性质①(a-b)×c=a×c-b×c②(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c【典型例题】例一、计算。
1、843+78-432、843-86+157例二、计算下列各题。
1、25×96×1252、75000÷125÷53、81+791×94、53×50+50×475、395×27+395×72+395例三、计算下列各题。
小学奥数一年级 第二讲 速算与巧算

例1 哥哥和妹妹分糖。
哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。
你说谁拿得多,多几块?解:方法1:先算哥哥共拿了多少块?再算妹妹共拿了多少块?方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块。
1+2=1+2+3=1+2+3+4=1+2+3+4+5=1+2+3+4+5+6=1+2+3+4+5+6+7=1+2+3+4+5+6+7+8=1+2+3+4+5+6+7+8+9=1+2+3+4+5+6+7+8+9+10=例2 星期天,小明家来了9名小客人。
小明拿出一包糖,里面有54块。
小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分?”结果大家都无法分,你能帮他们分好吗?解:例3 时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,……照这样敲下去,从1点到12点,这12个小时时钟共敲了几下?解:方法1:凑十法方法2:如果能记住从1到10前十个自然数之和是,计算会更快。
(1+2+3+4+5+6+7+8+9+10)+11+12=习题二1.三个小朋友分5块糖。
要求每人都分到糖,但每人分到的糖块数不能一样多,你能分吗?2.①把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装?②按同样要求,把15只小鸡装进5个笼子能办得到吗?③按同样要求,把14只小鸡分装到5个笼子能办得到吗?3.①把100块糖分给10个小朋友。
要求每人都分到单数块糖,而且每人分到糖块数都不一样,如何分?②把99块糖按同样要求分给10个小朋友,你能分吗?4.从1到20这20个数中,所有的双数之和与所有的单数之和的差是多少?5.小方家的钟除了几点钟敲几下外,每半点钟也敲一下。
比如说,0点半敲1下,1点钟敲1下,1点半敲1下,2点敲2下,2点半敲1下,……照这样敲下去,从夜里0点开始,计到白天中午12点钟,在这12个小时之内时钟共敲了多少下?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 速算与巧算(1)
告诉你本讲的重点、难点
在四则混合运算中,可以根据数的分解、合并改变原来的运算顺序使计算简便,有时可以利用四则混合运算的定律和性质或利用和、差、积、商的变化规律,使计算简便.简便计算不仅可以使计算过程简捷,提高计算的正确率,而且还可以加深对数和运算性质的 理解.
看老师画龙点晴,教给你解题诀窍
【例l 】计算:999999999999999++++
分析与解 在涉及所有数字都是9的计算中,常使用凑整法,例如将999化成11000-去计算,这是小学数学中常用的一种技巧.
原式)1100000()110000()11000()1100()110(-+-+-+-+-=
510000010000100010010-++++=
5111110-=
111105=
【例2】 计算:901062++++
分析与解 这是一组等差数列,可以用等差数列求和公式“(首项十末项)×项数÷2”来计算,不过这道题目中,还需要用公式“项数=(末项一首项)÷公差+1”求出项数.
项数:2314)290(=+÷-
原式223)902(÷⨯+=
22392÷⨯=
2346⨯=
1058=
【例3】计算:2512532)1(⨯⨯ 999999)2(⨯+
分析与解 这两道题目需要利用乘法的分配律和乘法的结合律来进行简便计算,简算时要注意观察数字的特点,利用一些特殊的数字使计算简便.
(1)原式2512548⨯⨯⨯=
)254()1258(⨯⨯⨯=
1001000⨯=
100000=
(2)原式9999199⨯+⨯=
99)991(⨯+=
99100⨯=
9900=
【例4】计算:33334333332222299999⨯+⨯
分析与解 仔细观察第一个加数,22222
99999⨯可以利用积的变化规律把第一个因数缩小3倍,第二个因数扩大3倍,转化为,6666633333
⨯这样两个加数就有了一个相同的因数,可以利用乘法分配律简便计算了.
原式333343333322222333333⨯+⨯⨯=
33334333336666633333⨯+⨯=
)3333466666(33333+⨯=
10000033333⨯=
3333300000=
【例5】计算:20032003200220022003200220022003⨯-⨯
分析与解 因为被减数和减数中的第二个因数只相差1,因此通过乘法分配律可以把减数改成与被减数的第二个因数相同的数.有了相同的因数又可以进一步利用乘法分配律进行简便计算了.
原式)200220022003200220022002(2003200220022003+⨯-⨯=
2002200220032002200220022003200220022003-⨯-⨯=
20022002
20032002)0022002220022003(-⨯⋅-= 2002200220032002-=
10000=
【例6】计算:21877292438127931+++++++
分析与解 这是一组等比数列,公比是3,可以
设,2187
7292438127931+++++++=S 则 ,656121877292438127933+++++++=s 所以
,1656123-==-S s s 所以
3280=s
快来试一试像的身手吧!
计算下列各题:
19199199919999199999.1++++
101171411.2++++
789678567456345234123.3++++++
666666333333777778999999.4⨯+⨯
20122012201120112012201120112012.5⨯-⨯
2568421.6+++++
做题也有小窍门噢!
整数的速算巧算,关键是理解和熟练掌握数的运算定律和性质,以及对数字有敏锐的洞察力,多练才能生巧,
通往初中名校的班车
计算下列各题:
56575696562756356.1+⨯-⨯+⨯+⨯
+
+
-
-
+
+
-
-
+
1 -
-
+
+
.2-
+
6
7
5
4
2 1999
1992
3
1997
1998
1993
1996
1994
1995
+
-
+
-
-
+
+
+
-
+
-
+
-
-
2008
2004
1.3+
2005
2006
4017
2007
8
9
7
2
4
3
5
6
.4+
+
+
+
123455
234566
456788
567899
345677
⨯
⨯
⨯
5⨯
.(
⨯
⨯
⨯
⨯
⨯
÷
57
⨯
⨯
⨯
13
11
15
19
85
)
9
17
7
105
117
)
3
5
1(
+
+
+
÷
6+
-
.(
+
-
+
+
45123
2
12345
4
)5
1(
3
23451
{
34512
51234
)
答案。