氧气顶吹转炉炼钢终点碳控制的方法
转炉炼钢5大制度

【本章学习要点】本章学习转炉炼钢的装入制度、供氧制度、造渣制度、温度制度及其操作,终点控制及出钢,脱氧及合金化,转炉吹损与喷溅,顶底复合吹炼,转炉操作事故及处理。
第一节转炉冶炼过程概述氧气顶吹转炉炼钢过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合金化等高温物理化学反应的过程,其工艺操作则是控制装料、供氧、造渣、温度及加入合金材料等,以获得所要求的钢液,并浇成合格钢锭或铸坯。
从装料起到出完钢、倒完渣为止,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉、倒渣等几个阶段。
一炉钢的吹氧时间通常为l2~18min ,冶炼周期(相邻两炉之间的间隔时间,即从装料开始到装料开始或者从出钢毕到出钢毕)通常为30~40min。
表10—1为氧气顶吹转炉生产一炉钢的操作过程,图10—1为转炉吹炼一炉钢过程中金属和炉渣成分的变化。
吹炼的前l/3—1/4时间,硅、锰迅速氧化到很低的含量。
在碱性操作时,硅氧化较彻底,锰在吹炼后期有回升现象;当硅、锰氧化的同时,碳也被氧化。
当硅、锰氧化基本结束后,随着熔池温度升高,碳的氧化速度迅速提高。
碳含量<0.15%以后,脱碳速度又趋下降。
在开吹后不久,随着硅的降低,磷被大量氧化,但在吹炼中后期磷下降速度趋缓慢,甚至有回升现象。
硫在开吹后下降不明显,吹炼后期去除速度加快。
熔渣成分与钢中元素氧化、成渣情况有关。
渣中CaO含量、碱度随冶炼时间延长逐渐提高,中期提高速度稍慢些;渣中氧化铁含量前后期较高,中期随脱碳速度提高而降低;渣中Si02,Mn0,P205含量取决于钢中Si,Mn,P氧化的数量和熔渣中其他组分含量的变化。
在吹炼过程中金属熔池升温大致分三阶段:第一阶段升温速度很快,第二阶段升温速度趋缓慢,第三阶段升温速度又加快。
熔池中熔渣温度比金属温度约高20-1000C。
根据熔体成分和温度的变化,吹炼可分为三期:硅锰氧化期(吹炼前期)、碳氧化期(吹炼中期)、碳氧化末期(吹炼末期)。
钢铁行业氮氧化物控制技术及对策

钢铁行业氮氧化物控制技术及对策所属行业: 大气治理关键词:钢铁行业烧结烟气脱硝技术根据2007年第一次全国污染源普查数据,钢铁行业氮氧化物排放量已达81.74万t,约占全国总排放量的4.55%,是继火力发电、机动车、水泥工业后第四大氮氧化物排放源。
针对中国重要氮氧化物来源———钢铁工业的氮氧化物生成机制,排放节点及特征,国内外控制技术现状开展综述研究。
研究表明,钢铁工业中的氮氧化物的产生以高温型为主。
烧结、焦化、炼铁、炼钢、轧钢等过程为主要的氮氧化物排放源。
收集并整理了国外在钢铁各工序上的主要氮氧化物控制技术及其在国内的应用状况。
在回顾中国钢铁大气污染物控制历程的基础上,提出了中国钢铁行业氮氧化物控制的对策建议。
氮氧化物具有多重的环境效应。
我国的氮氧化物排放近年来增长迅猛,导致区域O3和PM2.5污染的加重,大范围的灰霾现象时有发生。
我国酸雨正在由硫酸型酸雨向硫酸/硝酸复合型过渡,氮氧化物排放增加引起的氮沉降成为我国水体富营养化的重要原因之一。
氮氧化物中的NO2更对人体健康也有着直接的危害。
根据研究者的评估,我国氮氧化物排放量已由1980年的486万t增至2000年的1177万t。
而据最新统计的结果,我国2011年氮氧化物排放量已达2273.6万t,呈加速上升态势。
为了进一步扼制氮氧化物不断增长的趋势,我国《国民经济和社会发展十二五规划纲要》已明确在“十二五”期间将氮氧化物排放量减少10%作为主要目标之一。
本研究针对我国重要氮氧化物来源———钢铁工业的氮氧化物生成机制,排放节点及特征,国内外控制技术现状开展研究分析,并提出了我国钢铁行业氮氧化物控制的对策建议。
1 我国钢铁工业的发展及氮氧化物排放现状我国钢铁工业经历了不平凡的发展历程,改革开放以来取得了举世瞩目的成就。
建国初期,粗钢产量只有15.8万t,而到2011年粗钢产量已达6.955亿t,是建国初期的4400倍,占世界总产量的45.5%。
然而钢铁工业快速发展所引起的环境污染问题也不容忽视。
转炉炼钢的基本任务及原理

脱碳反应的作用
脱碳反应除了调整钢液碳含量的作用 外,其反应产物CO气体的上浮排除 使得脱碳反应给炼钢带来独特的作用。
➢ 促进熔池成分﹑温度均匀; ➢ 提高化学反应速度; ➢ 降低钢液中的气体含量和夹杂物数量: ➢ 造成喷溅和溢出:
. 22
2.2.1 脱碳反应
转炉中的脱碳反应以间接氧化为主:(FeO)+[C]={CO}+Fe。这是一 个吸热反应,因此,熔池温度升高至1500℃左右后脱碳反应方能激烈 进行。
如:
2[O]+[Si]=(SiO2)
或 2(FeO)+[Si]=2Fe+(SiO2)
在渣-金界面上往往产生元素的间接氧化反
应。
. 18
2.1.4炼钢熔池中元素的氧化次序
溶解在铁液中的元素的氧化次序可以通过 与1molO2的氧化反应的标准吉布斯自由能 变化来判断。
在标准状态下,反应的ΔGo负值越多,该 元素被氧化的趋势就越大,则该元素就优 先被大量氧化。
氧化性——炉渣向金属熔池传氧的能力,一般以 渣中氧化铁( %∑ FeO)含量来表示。
把Fe2O3折合成FeO有两种计算方法:全氧法和全 铁法。全铁法较合理。
炉渣的氧化能力是个综合的概念,其传氧能力还 受炉渣粘度、熔池搅拌强度、供氧速度等因素的 影响。
. 11
1.3.4炉渣成分的变化规律
冶炼过程中,转炉中熔渣成分的变化规律大致如下:
. 5
1.2.2转炉里的氧气射流
3、射流的温度渐高 射流进入炉膛后被1450℃的炉气逐渐加
热,加之混入射流的炉气(CO)及金属滴被 氧化放热,使射流的温度逐渐升高。模拟实 验表明,距喷头孔径15~20倍处射流的温度 在1300~1600℃之间;距喷头孔径35~40倍 处射流的温度高达2150~2300℃,有人称转 炉里的氧气射流就象一个高温火炬。
碳钢和不锈钢冶炼基本知识

3.3.4第四阶段熔清(炉料熔毕):主要是熔化低温区的炉料。吹氧助熔 可缩短熔化时间20—30分。熔化时部分元素要蒸发和氧化。熔化期造碱性渣 (一般炉底加入石灰)碱度在2.5—3.0,(FeO)在15—20%可达到较好的脱 磷效果。
三、不锈钢的品种及其应用
3.1品种分类: 200系:Cr—Ni型系: Cr—Ni型不锈钢,典型代表18—8型(304、321)。 400系:含铬不锈钢,Cr13型、Cr17型、409型等。 3.2应用:
碳钢和不锈钢冶炼基本知识
钢铁厂生产工艺流程图
碳钢部分 一、碳钢冶炼的基本方法 1、转炉炼钢:底吹转炉、顶吹转炉、顶底复合吹炼 2、电弧炉炼钢 3、炉外精炼
二、转炉炼钢
1、冶炼用原材料: 炼钢用原材料分为金属料和非金属料两种。
1.1 金属料:包括铁水、废钢、合金 1.2 非金属料:造渣材料、氧化剂 、冷却剂 、还原剂和 增碳剂
3.2装料 除对装料的外观尺寸有一定的要求外,对装料的要求总结如下:下部致密、上 部疏松、中间高四周低、穿井快、不搭桥、炉门口无大料。
3.3熔化 人为地划分为四个阶段: 3.3.1第一阶段起弧:开始通电时电极下降触及炉料,发生短路,在强大的短路 电流的作用下,电极与炉料间的空气被电离,形成电弧。
3.3.2第二阶段“穿井”:随着电极下面炉料的熔化,电极不断向下移动 ,逐渐在炉料中间三根电极下面形成3个洞,既所谓穿井。约经15—25分后 电极达到最低位置。
2.1.5脱氧、合金:
吹炼终点时钢中残留一定量的溶解氧,不脱除就不能顺利浇铸,而且 会使钢老化,使钢的脆性和电阻系数增大,影响钢的磁性,因此要脱氧。
氧气顶底复吹转炉炼钢

复吹底部吹惰性气体后钢水中 O - O 关系
吹入惰性气体 后,钢水中 C - O 的关系线下移,原 因是吹入熔池中 的N或Ar气泡降低 CO的分压,为脱碳 反应提供场所, 因此,在相同含碳 量时,复吹含氧量 低于顶吹,
3 钢水中的碳
复吹转炉钢水的脱碳速度高而且比
较均匀,原因是从顶部吹入大部分氧,从 底部吹入少量氧,供氧比较均匀,脱碳反应 也就比较均匀,使渣中∑ω FeO 含量始终 不高,在熔池底部生成的FeO与 C 有更 多的机会反应,FeO不易聚集,从而很少产 生喷溅,
复吹.顶吹.底吹转炉吹炼终点ω C 和ω O
9.3 侧吹氧气转炉炼钢法
1952年,唐山钢厂用碱性侧吹空气转 炉吹炼中磷铁水 ω P %=0.2~O.6 获得 成功,它是通过摇炉,调节熔池面与风眼 的相对位置和吹炼深度,控制造渣,进行钢 水脱碳和脱磷,1958年普遍推广,但空 气侧吹风眼侵蚀严重,吹损大,热量不充裕 等缺点,
1973年,沈阳第一炼钢厂和东北工学 院提出了转炉侧吹全氧炼钢法,并在3吨 侧吹转炉上进行试验获得成功,
9.4.2 顶底复吹转炉内的反应
1 成渣速度 复吹转炉与顶吹、底吹两种转炉相
比,熔池搅拌范围大,而且强烈,从底部喷 入石灰粉造渣,成渣速度快,通过调节氧 枪枪位化渣,加上底部气体的搅动,形成高 碱度、流动性良好和一定氧化性的炉渣, 需要的时间比顶吹转炉或底吹转炉的都
短,
2 复吹转炉渣中∑ FeO 含量变化
②改善了渣-金属间的平衡条件,减少了钢和渣的过 氧化现象, ③提高了钢液中的残锰含量, ④降低了钢液中的磷含量,减少了喷溅, ⑤金属中的碳氧更接近于平衡,对降低钢中的溶解 氧有明显效果,这对冶炼低碳钢十分有利,
转炉炼钢氧化还原终点控制方法

题目:转炉炼钢氧化还原终点控制方法一、引言转炉炼钢是一种重要的钢铁冶炼工艺,其氧化还原终点控制是影响钢水质量的关键因素之一。
本文将介绍转炉炼钢的氧化还原终点控制方法,包括主要的控制参数和常见的控制手段。
二、转炉炼钢氧化还原终点控制参数1. 氧气流量:氧气是转炉炼钢中的主要氧化剂,在氧气吹炼过程中,通过控制氧气流量可以调节炉内氧化还原反应的进程,从而控制钢水的氧化还原程度。
2. 废钢加入量:废钢是转炉炼钢中的一种重要原料,其氧化还原性能直接影响到炉内氧化还原反应的平衡状态。
3. 利用率控制:利用率是炼钢过程中的重要参数,通过控制利用率可以调节转炉炼钢的氧化还原终点。
三、转炉炼钢氧化还原终点控制方法1. 控制氧气流量:通过调节氧气流量的大小,可以实现炉内氧气含量的控制,进而控制炼钢过程的氧化还原程度。
一般来说,增加氧气流量可以提高炉内氧化反应的速度,减少氧气流量可以减缓炉内氧化反应的速度。
通过对氧气流量的调节,可以控制转炉炼钢的氧化还原终点,达到预期的钢水质量。
2. 控制废钢加入量:废钢是转炉炼钢的一种重要原料,其氧化还原性能直接影响到炉内氧化还原反应的平衡状态。
通过控制废钢的加入量,可以影响炉内氧化还原反应的平衡状态,进而控制转炉炼钢的氧化还原终点。
3. 控制利用率:利用率是炼钢过程中的重要参数,通过控制利用率可以调节转炉炼钢的氧化还原终点。
利用率是指在炼钢过程中废气、废热、废渣等的综合利用程度,通过控制利用率,可以实现炼钢过程中的能量平衡和物质平衡,进而影响炉内氧化还原反应的平衡状态。
四、结论通过对转炉炼钢氧化还原终点控制方法的介绍,我们可以看到,氧化还原终点控制是影响转炉炼钢钢水质量的重要因素。
我们可以通过控制氧气流量、废钢加入量和利用率来实现对转炉炼钢氧化还原终点的控制,进而实现炼钢过程中的氧化还原平衡。
这些控制方法对提高转炉炼钢的生产效率和钢水质量具有重要的意义。
五、氧化还原终点控制方法的改进传统的转炉炼钢氧化还原终点控制方法虽然能够实现对钢水质量的控制,但仍然存在一些问题,比如控制精度不高、操作复杂等。
炼钢过程中气体和夹杂物的冶金控制

1.降低钢的塑性 一般来说,钢的塑性随其含氢量的增加而降 低,但降低的程度一方面取决于钢的成分和 结构,另一方面则与加荷速度、试验温度等试 验条件有关。 2,使钢产生氢脆 氢脆属于应变时效型脆性,亦称滞后破坏, 表现为数情况下 沿晶界断裂。
一般来讲,(H)(N)在钢中的溶解度随 温度下降而变小,在转变温度和熔点处跳跃式 地变化。图4-1是一个大气压下,两种气体在 钢中的溶解度随温度变化的曲线。
二、钢中氢的行为及去除 (一)钢中氢的来源 钢中的氢主要来源于炼钢原料、耐火材料和 炉气中的水分。当高温钢液与含有大量水蒸气 的炉气相接触时,水蒸气在高温作用下分解并 被钢液吸收,使钢液中氢、氧含量同时增加, 其分解反应如下式所示 H2O(g)=2〔H〕+〔O〕 根据上式,可得出 ω(H)=√KH2PH2O/ωO
(二)氢对钢质量的影响 氢的原子半径小(0.053nm),进入钢中后, 相当容易移动。由于氢在铁中移动的激活能 只为碳在铁中移动激活能的1/10,以致钢中的 氢容易在应力(主要指外加应力、残余应力、原 子之间相互作用力等)作用下,向钢中一些危险 区域扩散,以不同形式危害钢的性能。 钢中氢的危害主要表现在以下几个方面:
Triano在1955年提出的应变时效型氢脆的 解释,目前已为较多的人所接受,其概念如 下:含氢试样受载后,在其缺口尖端处产生应力 集中。氢原子在应力作用下向这里扩散聚集, 使缺口尖端处的位错周围形成柯氏气团,对位 错产生钉扎作用,导致位错难以运动,表现为 缺口尖端处被局部硬化。在外加应力作用下, 如果试样缺口尖端处的基体不能通过位错运动 产生局部塑性变形而使应力集中松弛的话,此 处就会萌生裂纹并由此扩展长大。
尔后,当裂纹尖端扩展到贫氢区后,由于贫 氢区的位错在应力作用下易于运动,所以裂纹 尖端的基体可以通过塑性变形使应力集中有所 松弛,此时裂纹停止长大。一旦氢原子在应力 作用下又扩散聚集到裂纹尖端时,此处位错又 被钉扎,应力集中加剧,以致裂纹又开始扩展 长大……如此循环下去,裂纹不断扩展,到一 定程度后试样突然脆断。
炼钢过程钢中氧的控制

炼钢过程钢中氧的控制(三种脱氧方式)1 钢中的氧——钢洁净度的量度炼铁是一个还原过程。
高炉内加入还原剂(C、CO)把铁矿石中的氧(Fe3O4、Fe2O3)脱除,使其成为含有C、Si、Mn、P、S的生铁。
炼钢是一个氧化过程。
把纯氧吹入铁水熔池,使C、Si、Mn、P氧化变成不同碳含量的钢液。
当吹炼到终点时,钢水中溶解了过多的氧,称为溶解氧[O]D或a[O]。
出钢时,在钢包内必须进行脱氧合金化,把[O]D转变成氧化物夹杂,它可用[O]I表示,所以钢中氧可用总氧T[O]表示:T[O]=[O]D+[O]I出钢时,钢水中[O]I→0,T[O]→[O]D;脱氧后:根据脱氧程度的不同[O]D→0,T[O]=[O]I。
因此,可以用钢中总氧T[O]来表示钢的洁净度,也就是钢中夹杂物水平。
钢中T[O]越低,则钢就越“干净”。
为使钢中T[O]较低,必须控制:(1)降低[O]D:控制转炉终点a[O],它主要决定于冶炼过程;转炉采用复吹技术和冶炼终点动态控制技术可使转炉终点氧[O]D控制在(400~600)×10-6范围。
(2)降低夹杂物的[O]I:控制脱氧、夹杂物形成及夹杂物上浮去除——夹杂物工程概念(Inclusion Engineering)。
随着炉外精炼技术的发展,钢中的总氧含量不断减低,夹杂物越来越少,钢水越来越“干净”,甚至追求“零夹杂物”,钢材性能不断改善。
1970~2000年钢中T[O]演变,由于引入炉外精炼,对于硅镇静钢,T[O]可达(15~20)×10-6,对于铝镇静钢,T[O]可达到<10×10-6。
(3)连铸过程:一是防止经炉外精炼的“干净”的钢水不再污染,二是要进一步净化钢液,使连铸坯中的T[O]达到更低的水平。
钢中T[O]量与产品质量关系举例如下:(1)轴承钢T[O]由30×10-6降到5×10-6,疲劳寿命提高100倍。
(2)钢中T[O]与冷轧板表面质量存在明显的对应关系。
转炉炼钢终点控制技术

转炉炼钢终点控制技术摘要:本文首先简要概述了转炉炼钢的终点控制,基于此,详细论述了转炉炼钢终点的静态控制、转炉炼钢终点的人工经验控制、转炉炼钢终点的动态控制以及转炉炼钢终点的自动控制,分析了其中的关键环节,仅供大家参考。
关键词: 炼钢、转炉、终点控制一、前言现阶段,转炉炼钢终点人工经验控制碳温命中率一般为60%~80%。
转炉炼钢终点动态控制终点碳温命中率一般可达70%~85%。
自动化炼钢终点碳温命中率一般可达85%以上。
本文将深入分析这几种转炉炼钢终点控制技术。
二、转炉炼钢终点静态控制炼钢静态模型是转炉炼钢终点静态控制的基础,根据原材料条件以及吹炼钢种的温度和目标成分,利用物料平衡和热平衡,通过由操作经验和统计分析等所得到公式,计算出废钢、铁水、渣料、冷却剂、铁合金的加入量及供氧量,并根据计算结果进行装料和吹炼操作,对转炉炼钢终点进行控制。
建立准确的静态模型是终点静态控制的关键。
静态控制借助吹炼过程的初始条件进行定量计算,从而免受人工经验控制时随机性的影响,然而静态控制无法针对冶炼状况修正吹炼过程,所以提高终点命中率较难的提高。
转炉炼钢静态控制常用的模型主要有: 经验模型、机理模型、统计模型以及人工神经网络模型。
增量模型是利用本次初始数据及历史数据和目标状态增量来进行本次的操作变量计算和确定,又称为静态经验控制模型或静态增量控制模型。
机理模型是分析假设冶炼过程中各种参数,计算热平衡、物料平衡,得到关于铁水、废钢以及石灰的装料模型,在生产中的转炉炼钢过程复杂程度很大,有很多因素的影响,部分热平衡、物料平衡数据的确定,必须要根据假设(经验)条件进行,所以常规的机理模型,大部分是半机理半经验模型,参数较多难以控制。
统计模型是以黑箱原理为依据,对过程中物理化学规律不予以考虑,仅仅对系统输入量与输出量的实际关系加以考虑,以收集大量试验数据为基础,利用数学统计,对各主要变量变化以及数值进行统计计算。
该类模型具有比较简单的结构,鉴于仅需考虑输出量与输入量间的统计关系,能够分析随机偏差,还能够克服随机因素的影响,所以可以确保一定的精度。
转炉炼钢终点控制技术探讨

转炉炼钢终点控制技术探讨转炉炼钢是目前钢铁生产中最主要的方法之一。
在转炉炼钢过程中,钢铁生产商通常会追求高效、低成本和高质量的钢铁生产。
要实现这些目标,需要对转炉炼钢终点控制技术进行深入的研究和探讨。
转炉炼钢的终点控制技术主要用于确定何时停止加入废钢和脱氧合金等原料,并进行钢水出钢操作。
正确的终点控制技术可以确保钢水成分达到规定的要求,并保证生产过程的稳定性和可控性。
目前,常用的终点控制技术有温度法、气体法和电磁法等。
温度法是一种基于测量钢水中的温度来确定终点的技术。
利用温度计等温度传感器可以测量钢水的温度,并根据温度变化来判断终点。
这种方法简单直观,但受到钢水温度分布不均匀和测温传感器精度影响,不够准确。
气体法是一种基于测量和分析钢水中的气体成分来确定终点的技术。
通过测量钢水中的氧含量、氢含量等气体成分,可以判断钢水中残留的还原剂是否已经完全消耗,从而确定终点。
这种方法比较准确,但需要对气体分析设备进行维护和校准,成本较高。
电磁法是一种利用电磁感应原理来测量钢水中的物理参数来确定终点的技术。
通过测量钢水的电导率、温度等物理参数的变化,可以判断钢水的成分及其变化情况,从而确定终点。
这种方法准确度较高,但设备要求较高,需要配备精密的电磁感应器和数据采集系统。
除了上述的常用技术之外,还有其他一些新兴的研究方向和技术亟待探索和应用。
利用机器学习和人工智能等技术,在大量的历史数据和实时数据的基础上建立模型,实现精准的预测和控制。
还有利用光谱技术、振动传感技术等进行终点控制的研究。
转炉炼钢终点控制技术是钢铁生产中至关重要的环节。
目前已有多种技术可供选择,但各自存在一些限制和不足。
需要进一步深入研究和探讨,不断完善和发展终点控制技术,以满足钢铁生产的需求,并推动钢铁行业的发展。
氧气顶吹转炉炼钢工艺

第四章氧气顶吹转炉炼钢工艺内容提要一炉钢的吹炼过程装入制度供氧制度造渣制度温度制度终点控制和出钢脱氧合金化吹损与喷溅操作事故及处理转炉炼钢仿真操作训练§4—1 一炉钢的吹炼过程一.钢与铁的区别及炼钢的任务1.钢与铁的性能比较钢和铁都是铁碳合金,同属于黑色金属,但它们的性质有明显不同.生铁硬而脆,焊接性差.钢具有很好的物理化学性能与力学性能,可进行拉,压,轧,冲,拔等深加工,其用途十分广泛;用途不同对钢的性能要求也不同,从而对钢的生产也提出了不同的要求.2.钢与铁性能差别的原因:碳和其它合金元素的含量不同.在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度,硬度增加,而塑性和冲击韧性降低.钢和生铁含碳量的界限通常是:生铁: [C]=1.7~4.5%钢: [C]≤ 1.7%生铁和钢的化学成分材料化学成分%CSiMnPS炼钢生铁3.5~4.00.6~1.60.2~0.80.0~0.40.03~0.07静钢0.06~1.500.1~0.370.25~0.80≤0.045≤0.05沸腾钢0.05~0.27≤0.070.25~0.70≤0.045≤0.054.炼钢的基本任务:⑴脱碳;将铁水中的碳大部分去除,同时随着脱碳的进行,产生大量CO气泡,在CO排出过程中,搅拌熔池促进化渣,同时脱除[H],[N]和夹杂.⑵去除杂质(去P,S和其它杂质);铁水中[P],[S]含量高,而钢中[P]会造成"冷脆",[S]造成"热脆".通常大多数钢种对P,S含量均有严格要求,炼钢必须脱除P,S等有害杂质.⑶去除气体及夹杂物;在炼钢过程中通过熔池沸腾(碳氧反应,底吹惰性气体搅拌)脱除H],[N]和非金属夹杂物.⑷脱氧合金化;在炼钢过程中因为脱碳反应的需要,要向钢液中供氧,就不可避免地使后期钢中含有较高的氧,氧无论是以液体形态还是以氧化物形态存在于钢中都会降低钢的质量,所以必须在冶炼后期或出钢过程中将多余的氧去除掉.在冶炼过程中,铁水中的Si, Mn大部分氧化掉了,为了保证成品钢中的规定成分,要向钢水中加入各种合金元素,这个过程与脱氧同时进行,称为合金化.⑸升温(保证合适的出钢温度).铁水温度一般在1250~1300℃,而钢水的出钢温度一般在1650℃以上,才能顺利浇注成铸坯,因此炼钢过程也是一个升温过程.5.完成炼钢各项任务的基本方法⑴氧化为了将铁水等炉料中的硅,锰,碳等元素氧化掉,可以采用"吹氧"方法,即直接喷吹氧气,或加入其它氧化剂,如铁矿石,铁皮等.⑵造渣为了去除炉料中的P,S等杂质,在炼钢过程中加入渣料(石灰,白云石,熔剂等),形成碱度合适,流动性良好,足够数量的炉渣,一方面完成脱除P,S的任务,同时减轻对炉衬对侵蚀.转炉主要是依靠碳,硅,锰等元素氧化放出等热量,以及铁水的物理热实现升温.⑷加入脱氧剂和合金料通过向炉内或钢包内加入各种脱氧剂和合金料的方法,完成脱氧及合金化的任务.二.金属成分和炉渣成分的变化规律1.Si在吹炼前期(一般在3~4分钟内)即被基本氧化.在吹炼初期,铁水中的[Si]和氧的亲和力大,而且[Si]氧化反应为放热反应,低温下有利于此反应的进行,因此,[Si]在吹炼初期就大量氧化.[Si]+O2=(SiO2) (氧气直接氧化)[Si]+2[O]= (SiO2) (熔池内反应)[Si]+(FeO)=(SiO2)+2[Fe] (界面反应)2(FeO)+(SiO2)=(2FeO·SiO2)随着吹炼的进行石灰逐渐溶解,2FeO·SiO2转变为2CaO·SiO2,即SiO2与CaO牢固的结合为稳定的化合物,SiO2活度很低,在碱性渣中FeO的活度较高,这样不仅使[Si]被氧化到很低程度,而且在碳剧烈氧化时,也不会被还原,即使温度超过1530℃,[C]与[O]的亲和力也超过[Si]与[O]的亲和力,终因(CaO)与(SiO2)结合为稳定的2CaO.SiO2,[C]也不能还原(SiO2).硅的氧化对熔池温度,熔渣碱度和其他元素的氧化产生影响:[Si]氧化可使熔池温度升高;[Si]氧化后生成(SiO2),降低熔渣碱度,熔渣碱度影响脱磷,脱硫;熔池中[C]的氧化反应只有到[%Si]P0.⑵喷嘴前氧压P0:其选用应考虑以下因素:A.氧气流股出口速度要达到超音速(450~530cm∕s),即M=1.8~2.1.B.出口的氧压应稍高于炉膛内气压.通常P0=0.784~1.176MPa.⑶出口氧压P:应稍高于或等于周围炉气的压力.通常P=0.118~0.125MPa.六.枪位及其控制所谓枪位,是指氧枪喷头端面距静止液面的距离,常用H表示,单位是m.目前,一炉钢吹炼中的氧枪操作有两种类型,一种是恒压变枪操作,一种是恒枪变压操作.比较而言,恒压变枪操作更为方便,准确,安全,因而国内钢厂普遍采用.1.枪位的变化范围和规律关于枪位的确定,目前的做法是经验公式计算,实践中修正.一炉钢冶炼中枪位的变化范围可据经验公式确定:H=(37~46)P×D出式中 P——供氧压力,MPa;D——喷头的出口直径,mm;H——枪位,mm.具体操作中,枪位控制通常遵循"高-低-高-低"的原则:⑴前期高枪位化渣但应防喷溅.吹炼前期,铁水中的硅迅速氧化,渣中的(SiO2)较高而熔池的温度尚低,为了加速头批渣料的熔化(尽早去P并减轻炉衬侵蚀),除加适量萤石或氧化铁皮助熔外应采用较高的枪位,保证渣中的(FeO)达到并维持在25~30%的水平;否则,石灰表面生成C2S 外壳,阻碍石灰溶解.当然,枪位亦不可过高,以防发生喷溅,合适的枪位是使液面到达炉口而又不溢出.⑵中期低枪位脱碳但应防返干.吹炼中期,主要是脱碳,枪位应低些.但此时不仅吹入的氧几乎全部用于碳的氧化,而且渣中的(FeO)也被大量消耗,易出现"返干"现象而影响S,P的去除,故不应太低,使渣中的(FeO)保持在10~15%以上.⑶后期提枪调渣控终点.吹炼后期,C-O反应已弱,产生喷溅的可能性不大,此时的基本任务是调好炉渣的氧化性和流动性继续去除硫磷,并准确控制终点碳(较低),因此枪位应适当高些.⑷终点前降枪点吹破坏泡沫渣.接近终点时,降枪点吹一下,均匀钢液的成分和温度,同时降低炉渣的氧化铁含量并破坏泡沫渣,以提高金属和合金的收得率.2.枪位的调节⑴开吹前必须了解的情况A.喷嘴的结构特点及氧气总管氧压情况;B.铁水成分,主要是Si,P,S的含量;C.铁水温度,包括铁水罐,混铁炉或混铁车内存铁情况及铁水包的情况;D.炉役期为多少,是否补炉,相应的装入量是多少,上炉钢水是否出净,是否有残渣;E.吹炼钢种及其对造渣和温度控制的要求;F.上一班操作情况,并测量熔池液面高度.⑵枪位的调节生产条件千变万化,因此具体操作中还应根据实际情况对枪位进行适当的调节.A.铁水温度:若遇铁水温度偏低,应先压枪提温,而后再提枪化渣,以防渣中(FeO)积聚引发大喷,即采用低-高-低枪位操作.铁水温度高时,碳氧反应会提前到来,渣中∑(FeO)降低,枪位可稍高些,以利成渣.B.铁水成分:铁水硅,磷高时,若采用双渣操作,可先低枪位脱硅,磷,倒掉酸性渣;若单渣操作,由于石灰加入量大,应较高枪位化渣.铁水含锰高时,有利于化渣,枪位则可适当低些.C.装入量变化:炉内超装时,熔池液面高,枪位应相应提高,否则,不仅化渣困难而且易烧坏氧枪.D.炉内留渣:采用双渣留渣法时,由于渣中(FeO)高,有利于石灰熔化,因此吹炼前期的枪位适当低些,以防渣中(FeO)过高引发泡沫喷溅.E.供氧压力:高氧压与低枪位的作用相同,故氧压高时,枪位应高些.F.废钢中生铁块多导热性差,不易熔化,应降低枪位,以防吹炼后期没有完全熔化.G.炉龄a 开新炉,炉温低,应适当降低枪位;b 炉役前期液面高,可适当提高枪位;c 炉役后期装入量增加,熔池面积增大,不易化渣,可在短时间内采用高低枪位交替操作以加强熔池搅拌,利于化渣.H.渣料a 石灰质量差和加入量多,则渣量大,枪位应相应提高;b 使用活性石灰成渣快,整个过程枪位都可以稍低些;c 铁矿石,氧化铁皮和萤石用量多时,熔渣容易形成,同时流动性较好,枪位可适当低一些. I.钢种炼高碳钢时,由于脱磷困难,应采用较高的枪位,特别是在吹炼后期.同理,在吹炼含磷很低的钢种时,应采用较高枪位.七.恒压变枪操作的几种模式由于各厂的转炉吨位,喷嘴结构,原材料条件及所炼钢种等情况不同,氧枪操作也不完全一样.现介绍如下几种氧枪操作方式.1.高—低—高的六段式操作开吹枪位较高,及早形成初期渣;二批料加入后适时降枪,吹炼中期炉渣返干时又提枪化渣;吹炼后期先提枪化渣后降枪;终点拉碳出钢.2.高—低—高的五段式操作五段式操作的前期与六段式操作基本一致,熔渣返干时可加入适量助熔剂调整熔渣流动性,以缩短吹炼时间,见下图.3.高一低一高一低的四段式操作在铁水温度较高或渣料集中在吹炼前期加入时可采用这种枪位操作.开吹时采用高枪位化渣,使渣中含(FeO)量达25~30%,促进石灰熔化,尽快形成具有一定碱度的炉渣,增大前期脱磷和脱硫效率,同时也避免酸性渣对炉衬的侵蚀.在炉渣化好后降枪脱高—低—高五段式操作示意图碳,为避免在碳氧化剧烈反应期出现返干现象,适时提高枪位,使渣中(FeO)保持在10~15%,以利磷,硫继续去除.在接近终点时再降枪加强熔池搅拌,继续脱碳和均匀熔池成分和温度,降低终渣(FeO)含量.例:马钢一钢厂95T转炉氧枪操作A.全程枪位:高—低—高式或高—高—低式过程枪位:要力求稳定,尽量少波动,每次动枪波动范围≯200mm.补吹枪位:必须按最低枪位控制(1.1m).B.高枪位:1.7~2.0m;基本吹炼枪位:1.4~1.7m;拉碳枪位:1.2~1.4m;吹炼中,高碳钢拉碳枪位应提高0.1~0.2m.例:马钢一钢厂95T转炉开吹枪位的确定(a)铁水Si>0.70%时渣量大,易喷溅,枪位应比正常情况下低0.1~0.2m;铁水Si ,P含量低,特别是Si1%),P,S较高,或生产优质钢时采用.倒渣时机:这是双渣法操作的关键.选择在渣中含P量最高,含铁量最低的时刻,以获得高脱磷率和低铁损的效果.同时,应在Si已氧化完毕,炉渣已基本化好,P在渣钢之间的分配已接近平衡时进行. 生产实践证明,顶吹转炉在吹炼时间25%左右,复吹转炉为30%左右时倒渣脱磷率最高;若是因铁水硫高而采用双渣法,则应在吹炼10min左右倒渣.注意:倒渣前1分钟适当提枪或加些熔剂改善炉渣的流动性,以便于倒渣操作.3.双渣留渣法定义:将上一炉的终渣(高碱度,高温度和较高(FeO)含量)部分地留在炉内,并在吹炼中途倒出部分炉渣再造新渣的操作方法.特点:初渣早成而前期的去硫及去磷效率高,总去硫率可达60%~70%,总去磷率更是高达95%,适合于吹炼中,高磷铁水.注意:装料时应先加一批石灰稠化所留炉渣,而且兑铁水时要缓慢进行,以防发生爆发性碳氧反应而引起喷溅.若上一炉钢终点碳过低,不宜进行留渣操作.应当指出,顶吹转炉虽能将高磷铁水炼成合格的钢,但技术经济指标较差,与吹炼中,低磷铁水相比,每吨钢的金属料消耗高30~100kg,石灰多用40~100kg,炉龄大幅降低;产量也仅为吹炼低磷铁水时的70%~80%;另外,单渣法生产稳定,操作简单,便于实行计算机控制.因此,对于含硅,磷及硫较高的铁水,入炉前进行预处理使之达到单渣法操作的要求,不仅技术上可行而且工艺上经济合理.七.渣料的加入方法关于渣料的加入,关键是要注意渣料的分批和把握加入的时间.1.渣料分批加入目的:渣料应分批加入以加速石灰的熔化(否则,会造成熔池温度下降过多,导致渣料结团且石灰块表面形成一层金属凝壳而推迟成渣).批次:单渣操作时,渣料通常分成两批:第一批1/2~2/3及白云石全部(冶炼初期炉衬侵蚀最严重);第二批1/2~1/3.2.加料时间⑴第一批渣料在开吹的同时加入.⑵第二批渣料,一般是在硅及锰的氧化基本结束,头批渣料已经化好,碳焰初起的时候(30吨的转炉开吹6 min左右)加入(如果加入过早,炉内温度还低且头批渣料尚未化好又加冷料,势必造成渣料结团难化;反之,如果加入过晚,正值碳的激烈氧化时期,渣中的(∑FeO)较低渣料亦难化.问题的关键是正确判断炉况,头批渣料化好的标志是:火焰软且稳定,炉内发出柔和的嗡嗡声,喷出物为片状,落在炉壳上不粘贴;未化好的情况是:炉口的火焰发散且不稳定,炉内发出尖锐的吱吱声,喷出物是金属火花和石灰粒).有的厂二批料分小批多次加入以利熔化,但最后一小批料必须在终点前3~4分钟加入八.石灰,白云石加入量的确定加入炉内的渣料主要是石灰和白云石,还有少量的萤石或氧化铁皮等熔剂.1.石灰加入量的确定⑴首先根据铁水的硅,磷含量和炉渣碱度计算A.铁水含磷较低([P]<0.3%)时,(kg∕t铁)%CaO有效—石灰中的有效CaO,%CaO有效=(%CaO)石灰-R×(%SiO2)石灰废钢,生铁块也应根据上式计算需补加的石灰量.例:B.铁水含磷较高([P]≥0.3%)时,(kg∕t铁)⑵其次,当加入含(%SiO2)的辅助原料时(如:矿石,白云石萤石,菱镁矿等),应补加石灰. 例: 铁矿石中SiO2的含量为8%,碱度按3.0控制,石灰的有效氧化钙为80%,则每kg矿石补加石灰量 = 8×3.0/80 = 0.3(kg)⑶石灰加入总量废钢中含有一定量的Si,但成分通常不知,一般按每吨废钢补加石灰15~20kg.2.白云石用量的确定白云石的加入量应根据炉渣要求的饱和MgO含量来确定.通常渣中MgO含量控制在8%~10%,除了加入的白云石含有MgO外,石灰和炉衬也会带入一部分.理论用量W(kg/t)=实际加入量W/=W-W灰-W衬3.熔剂的用量萤石用量:尽量少用或不用,部标要求≤4kg/t.矿石用量:铁矿石及氧化铁皮也具有较强的化渣能力,但同时对熔池产生较大的冷却效应,其用量应视炉内温度的高低,一般为装入量的2~5%.4.计算举例例题1:1t金属料中铁水占85%,废钢占10%,生铁块占5%,每T金属料加矿石5kg,萤石3kg,铁水带渣比为0.5%,石灰熔化率为85%,各原材料成分列在下表中.炉渣碱度为3.5.计算:1t金属料所需石灰加入量为多少原料成分铁水废钢生铁块铁水带渣石灰矿石萤石[%Si]0.500.101.40%CaO37.583%SiO2362.56.05.0解:石灰加入量铁水带渣量为:1000×85%×0.5% = 4.25 (kg)铁水带渣带入的SiO2应考虑铁水渣中CaO相当的SiO2量:辅助原料及铁水带渣需补加石灰量(kg))例题2:用轻烧白云石作为调渣剂其成分如下表:原料成分石灰轻烧白云石炉衬%CaO%SiO2%MgO832.54.09502.03777计算条件:终渣成分要求(MgO)=9.66%,渣量为金属装入量的8.2%,炉衬侵蚀量是装入量的0.05%,其它条件同上述例题.解题思路:终渣(MgO)来源:A. 加入的轻烧白云石.C.石灰中的MgO.D.炉衬被侵蚀下来的MgO.⑴计算轻烧白云石加入量由例题1计算的结果是不加轻烧白云石时石灰加入量为68.39kg∕t.石灰带入MgO量:68.39×4.09% =2.80 (kg)炉衬蚀损带入MgO量:1000×0.05%×77%=0.385 (kg)根据1t装入量计算终渣MgO量:1000×8.2%×9.66%=7.92 (kg∕t)⑵计算轻烧白云石需补加石灰量⑶计算轻烧白云石相当的石灰量石灰加入总量= 68.39 - 8.62 + 1.21= 60.98 (kg)例题3:某转炉铁水装入量为100t,铁水含Si:0.4%,P:0.1%.采用单渣法造渣,终渣碱度为3.5,每炉加矿石3000kg,为保证渣中MgO,每炉加轻烧白云石2500kg.已知:石灰:CaO: 91.6% SiO2: 1.6%矿石:SiO2: 8%轻烧白云石:MgO:35% CaO:55% SiO2: 2%计算石灰加入量(单位kg,保留整数).解:⑴计算未加白云石时石灰加入量⑵计算轻烧白云石需补加石灰量⑶计算轻烧白云石相当的石灰量⑷计算石灰加入总量石灰加入总量= 5454+203-1599 = 4085 (kg)九.渣量计算渣量可以用元素平衡法计算.由铁水炼成钢,各元素一部分被氧化,一部分残留在钢中.如果知道某一元素在钢中的数量,该元素其余部分全部进入了熔渣,则通过这个元素在渣中的百分含量,就可以计算出熔渣的数量.Mn和 P两元素,从渣料及炉衬中的来源很少,其数量可以忽略不计.因而可以用Mn或 P的平衡来计算渣量.例:渣量计算(单渣法)装入量 Mn P Fe装 (kg) % kg % kg % kg入铁水28000 0.40 112 0.20 56料废钢4000 0.50 20 0.02 0.8数铁矿石1000 0.30 3 0.10 1.0 56.0 560据小计 135 57.8 560(MnO)% [%Mn] (P2O5)% [%P]终点钢水 0.12 0.03数炉渣 3.30 2.56 2.86 1.25据金属装入量 28000+4000+560=32560kg出钢量(按装入量的90%计算)32560×90%=29304kg钢水中Mn 量 29304×0.12%=35.16kg钢水中P量 29304×0.03%= 8.79kg进入渣中Mn 量 135-35.16=99.84kg进入渣中P量 57.8 - 8.79=49.01kg用Mn 平衡法熔渣占装入量的百分比用P平衡法熔渣占装入量的百分比习题:1名词解释:泡沫渣,单渣法双渣法双渣留渣法2造渣方法如何选择采用双渣法操作时,倒渣的时间应如何掌握3石灰加入量如何计算渣料如何加入4影响石灰溶解的因素有哪些5炉渣严重泡沫化的原因是什么如何控制泡沫渣6.吹炼过程中为什么会出现炉渣"返干"现象§4—5 温度制度氧气转炉的温度制度包括两方面的内容:一是准确控制终点温度,二是恰当控制冶炼过程温度. 温度对于转炉吹炼过程既是重要的热力学参数,又是重要的动力学参数.它既对各个化学反应的反应方向,反应程度和各元素之间的相对反应速度有重大影响,又对熔池的传质和传热速度有重大影响.因此,为了快而多地去除钢中的有害杂质,保护或提取某些有益元素,加快吹炼过程成渣速度,加快废钢熔化,减少喷溅,提高炉龄等,都必须控制好吹炼过程温度.此外,对各钢种都有其要求的出钢温度.出钢温度过低会造成回炉,短锭,包底凝钢及钢锭的各种低温缺陷和废品;过高则会造成跑漏钢,钢锭上涨,粘模及钢锭的各种高温缺陷和废品,并影响炉衬和氧枪的寿命.一.转炉温度控制的目标及温度控制内容1.目标希望吹炼过程中均衡升温,吹炼终点时钢水的温度和化学成分同时命中钢种要求的范围.2.内容⑴确定合适的钢种出钢温度;⑵确定熔池富裕热量的数值,选择冷却剂并确定其冷却效果和加入量;⑶掌握影响熔池温度变化的因素,及进行温度控制操作.二.热量来源与热量支出1.热量来源氧气转炉炼钢的热量来源主要是铁水的物理热和化学热.物理热是指铁水带入的热量,它与铁水温度有直接关系,化学热是铁水中各元素氧化后放出的热量,它与铁水化学成分直接相关. 在炼钢温度下,各元素氧化放出的热量各异,它可以通过各元素氧化放出的热效应来计算确定.例如铁水温度1200℃,吹入的氧气25℃,碳氧反应生成CO时:[C]1473+{O2}298={CO}1473 ΔH1473K= -137520 J/mol则1kg[C]氧化生成CO时放出的热量为137520/12≈11300kJ/kg.现以100kg金属料为例,计算各元素的氧化热能使熔池升温多少.设炉渣量为装入金属料的15%,炉衬吸热为装入金属料的10%,计算热平衡公式如下:Q=∑MCT式中 Q—1kg元素氧化放出的热量,kJ/kg;M——受热金属液,炉衬和炉渣重量,kg;C——各物质比热,已知钢液CL为0.84~1.0kJ/kg·℃,炉渣和炉衬的CS为1.23kJ/ kg·℃.计算在1200℃时C—O反应生成CO时,氧化1kg碳可使熔池温度升高数为:℃1kg元素是100kg金属料的1%,因此,根据同样道理和假设条件,可以计算出其它元素氧化1%时使熔池的升温数.碳完全燃烧生成CO2时其发热量最高,使熔池升温数最大,其次是磷和硅.但是碳大部分没有完全燃烧,因此,在氧气转炉吹炼中采用双流氧枪,可有助于CO进一步燃烧生成CO2,使转炉热效率提高.哪些元素是转炉炼钢的主要热源,不仅要看其热效应大小,还要视其氧化总量的多少而定.例如,在1400℃时,硅氧化0.5%,碳氧化3%,则分别使熔池升温数为71℃和249℃,可见碳氧化产生的总热量要比硅的总热量多得多.2.热量支出热量支出主要包括:钢水物理热;炉渣物理热;炉气物理热;烟尘物理热;渣中金属铁珠物理热;喷溅金属物理热;矿石分解热;废钢物理热(见热平衡表).其中,钢水的物理热约占70%,这是一项主要的支出,熔渣带走的热量大约占10%,它与渣量的多少有关.因此在保证去除P,S的条件下,采用最小的渣量.渣量过大不仅增加渣料的消耗,也增加热量的损失,所以要求铁水进行预处理,这样既可实现少渣操作;同时在吹炼过程中也可减少喷溅,缩短吹炼时间,减少炉与炉的间隔时间,减少热损失,提高转炉的热效率.转炉热效率提高以后,可以提高废钢比.3.转炉炼钢的热平衡指炼钢过程的热量来源与支出之间的平衡关系(见热平衡表).为了准确的控制转炉的吹炼温度,需要知道铁水中各成分氧化反应放出的总热量;这些热量除了把熔池加热到出钢温度外,富余多少热量需要加多少冷却剂这要经过热平衡计算才能得出,具体物料平衡,热平衡计算参看教材中物料平衡与热平衡计算内容.热平衡表的分析:根据转炉吹炼过程中热量的收入与支出,作出热平衡计算列出热平衡表,得出氧气转炉热工特点如下:⑴热量收入主要是铁水的物理热和化学热;⑵尚有大量的富余热量,必须加入冷却剂;⑶元素氧化放热中,C,Si,P都是重要的发热元素,其中碳占有主要地位(占氧化总放热的一半以上).⑷转炉热效率为60~70%左右.转炉总热效率计算公式如下:总热效率=×100%在转炉炼钢过程中,真正有用的热量占整个热量收入的70%左右,在热量的利用上还是有一定潜力的,应努力提高热效率.三.出钢温度的确定出钢温度的高低受钢种,锭型和浇注方法的影响.1.出钢温度的确定依据:⑴保证浇注温度高于所炼钢种凝固温度20~30℃(小炉子偏上限,大炉子偏下限).⑵考虑出钢过程和钢水运输,镇静时间,钢液吹氩时的降温,一般为80~120℃.⑶考虑浇注方法和浇注锭型大小所用时间的降温.2.确定出钢温度T出钢T出钢 =T凝 +△t过热+△T总式中 T凝——钢液的熔点即液相线温度,根据钢种的化学成分而定.T凝=1539-∑△ti×[%i]-7 ℃;△t过热—钢水过热度,℃.即高于熔点的温度值,与钢种,坯型有关.△T总—从出钢→精炼→浇注过程中的温降值.△T总=△t1+△t2+△t3+△t4+△t5△t1—出钢过程温降,℃.△t2—出钢毕至精炼开始之前的温降,℃.△t3—钢水精炼过程温降,℃.△t4—钢水精炼完毕至开浇前的温降,℃.△t5—钢水从钢包至中间包的温降,℃.四.确定冷却剂用量1.冷却剂及其特点转炉炼钢的冷却剂主要是废钢和矿石.比较而言,废钢的冷却效应稳定,而且硅磷含量也低,渣料消耗少,可降低生产成本;但是,矿石可在不停吹的条件下加入,而且具有化渣和氧化的能力.因此,目前一般是矿石,废钢配合冷却,而且是以废钢为主,且装料时加入;矿石在冶炼中视炉温的高低随石灰适量加入.另外,冶炼终点钢液温度偏高时,通常加适量石灰或白云石降温(前两种均不能用).2.各冷却剂的冷却效应冷却效应是指每kg冷却剂加入转炉后所消耗的热量,常用q表示,单位是kJ/kg.⑴矿石的冷却效应:矿石冷却主要靠Fe2O3的分解吸热,因此其冷却效应随铁矿的成分不同而变化,含Fe2O370%,FeO10%时铁矿石的冷却效应为:q矿=1×C矿×△t+λ矿+1×(Fe2O3%×112/160×6456+FeO%×56/72×4247)=1×1.02×(1650-25)+209+1×(0.7×112/160×6456+0.1×56/72×4247)=5360 kJ/kg⑵废钢的冷却效应:废钢主要依靠升温吸热来冷却熔池,由于不知准确成分,其熔点通常按低碳钢的1500℃考虑,入炉温度按25℃计算,于是废钢的冷却效应为:q废=1×[C固(t熔-25)+λ废+ C液(t出-t熔)]=1×[0.7×(1500-25)+272+0.837(1650-1500)]=1430 kJ/kg⑶氧化铁皮的冷却效应:计算方法同矿石,对于50%FeO,40%Fe2O3 的氧化铁皮,其冷却热效应为:q皮=5311 kJ/kg。
氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法氧气顶吹转炉炼钢终点碳控制的方法终点碳控制的方法有三种,即一次拉碳法、增碳法和高拉补吹法。
一次拉碳法按出钢要求的终点碳和终点温度进行吹炼,当达到要求时提枪。
这种方法要求终点碳和温度同时到达目标,否则需补吹或增碳。
一次拉碳法要求操作技术水平高,其优点颇多,归纳如下:(1) 终点渣TFe含量低,钢水收得率高,对炉衬侵蚀量小。
(2) 钢水中有害气体少,不加增碳剂,钢水洁净。
(3) 余锰高,合金消耗少。
(4) 氧耗量小,节约增碳剂。
增碳法是指吹炼平均含碳量≥0.08%的钢种,均吹炼到ω[C]=0.05%~0.06%提枪,按钢种规范要求加入增碳剂。
增碳法所用碳粉要求纯度高,硫和灰分要很低,否则会玷污钢水。
采用这种方法的优点如下:(1)终点容易命中,比“拉碳法”省去中途倒渣、取样、校正成分及温度的补吹时间,因而生产率较高;(2)吹炼结束时炉渣Σ(FeO)含量高,化渣好,去磷率高,吹炼过程的造渣操作可以简化,有利于减少喷溅、提高供氧强度和稳定吹炼工艺;(3)热量收入较多,可以增加废钢用量。
采用“增碳法”时应严格保证增碳剂质量,推荐采用C>95%、粒度≤10毫米的沥青焦。
增碳量超过0.05%时,应经过吹Ar等处理。
高拉补吹法当冶炼中、高碳钢钢种时,终点按钢种规格稍高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。
由于在中、高碳(ω[c]>0.40%)钢种的碳含量范围内,脱碳速度较快,火焰没有明显变化,从火花上也不易判断,终点人工一次拉碳很难准确判断,所以采用高拉补吹的办法。
用高拉补吹法冶炼中、高碳钢时,根据火焰和火花的特征,参考供氧时间及氧耗量,按所炼钢种碳规格要求稍高一些来拉碳,使用结晶定碳和钢样化学分析,再按这一碳含量范围内的脱碳速度补吹一段时间,以达到要求。
高拉补吹方法只适用于中、高碳钢的吹炼。
根据某厂30 t 转炉吹炼的经验数据,补吹时的脱碳速度一般为0.005%/s。
转炉炼钢工初中高级复习题

转炉炼钢工初、中、高级培训复习题纲一、填空(注:1-45题为初级复习提纲,1-50题为中级复习提纲,1-60题为高级复习提纲)1.氧气顶吹转炉的传氧方式为:直接传氧和间接传氧。
2.转炉炼钢厂所用的主要金属料是铁水和废钢。
3.炼钢所需的热源主要来源于铁水的物理热和铁水中各元素反应的化学热。
4.吹损和喷溅是造成金属和热量损失的主要原因。
5.向镇静钢中加Al是为了保证完全脱氧和细化晶粒。
6.炼钢常用的脱氧方法有:沉淀脱氧法、扩散脱氧法、真空脱氧法。
7.炉容比是炉子的有效容积与装入量的比值。
8.吹炼中期脱碳反应激烈,(∑FeO)含量往往较低,易发生炉渣返干现象。
9.马赫数是气体流速与当地音速之比。
10.在转炉炼钢中,为减少侵蚀,一般选用碱性耐火材料。
11.沸腾钢和镇静钢的区别是脱氧程度不同。
12.碱度小于1的炼钢炉渣是酸性炉渣。
13.N2能引起钢的冷脆和时效性硬化现象,恶化钢的塑性和韧性。
14.氧枪是由三层同心钢管组成,内管是氧气通道,内管和中层管之间是冷却水的进水通道,中层管和外层管之间是冷却水的出水通道。
15.当温度升高时,化学平衡向吸热的一方进行;当温度降低时,化学平衡向放热的一方进行。
16.转炉氧枪的喷头多为拉瓦尔型多孔喷头。
17.钢中加入少量的钒,可与钢中的碳或氮生成细小而质硬的金属碳化钒或氮化钒,起到细化晶粒和沉淀强化作用,提高钢的机械性能。
18.兑铁水产生大喷主要发生在留渣操作或钢水未出完、残渣未倒净的情况。
19.氧气顶吹转炉的装入制度一般分为定量装入、定深装入和分阶段定量装入三种。
20.出完钢后,钢水吹氩(氮)有均匀钢水成份和温度、减少钢液非金属夹杂物含量、减少钢中气体含量三方面的作用。
21.在合金化过程中,Mn、Si增加时钢液的粘度会降低。
22.钢中有害气体[N]、[O]增加时,钢液粘度会增加。
23.碳元素对钢性能的影响主要是提高钢的强度。
24.氧气顶吹转炉炼钢过程的自动控制分为静态控制和动态控制两类。
底吹氧气转炉炼钢法

Q-BOP和LD炉内渣中(FeO)
• 在低碳范围内,底吹氧气转炉的脱磷并不逊色LD 炉。其原因可归纳为在底吹喷咀上部气体中O2分 压高,产生强制气化,P生成PO(气),并被固体
石灰粉迅速化合为3CaO.P2O5,具有L.P2O5则比较稳定,再还原速度缓慢,尤其是 在低碳范围时,脱磷明显。
• 底吹氧气转炉设有顶吹氧气转炉那样的氧枪,不需要高厂房, 这对生产率不高的平炉改为底吹氧气的转炉十分有利。
3.3.2底吹氧气转炉炉内反应
• 吹炼初期,铁水中 [Si]、[Mn]优先氧化,但 [Mn]的氧化只有30~40%,这与LD转炉吹炼初 期有70%以上锰氧化不同。
• 吹炼中期,铁水中碳大量氧化,氧的脱碳利用 率几乎100%,而且铁矿石、铁皮分解出来的氧, 也被脱碳发应消耗了。这体现了底吹氧气转炉 比顶吹氧气转炉具有熔池搅拌良好的特点。由 于良好的熔池搅拌贯穿整个吹炼过程,所以渣 中的(FeO)被[C]还原,渣中(FeO)含量低于 LD转炉,铁合金收得率高。
• 1971年,美国钢铁公司引进了OBM法,1972年建设了3座200吨底 吹氧气转炉,命名为Q-BOP法(Quiet-BOP)。此后,底吹转炉在 欧洲、美国和日本又得到了进一步发展。
3.3.1底吹氧气转炉结构特点
• 炉身和炉底可差拆卸分开,不同吨位的炉子,在 底吹上安装不同数目的吹氧喷咀,一般为6-22支。 例如230t底吹氧气转炉有18-22个喷咀,150t有 12-18个喷咀。
4 脱硫反应
• 230t底吹转炉吹炼过程中,当熔池中的碳达到 0.8%左右时,[S]达到最低值,说明吹炼初期固 体CaO粉末有一定的直接脱硫能力。但随着炉渣 氧化性的提高,熔池一定回硫,吹炼后期随着流 动性的改善,熔池中[S]又降低。与顶吹相比, 底吹氧转炉具有较强的脱硫能力,特别是炉渣碱 度为2.5以上时表现得更明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧气顶吹转炉炼钢终点碳控制的方法
终点碳控制的方法有三种,即一次拉碳法、增碳法和高拉补吹法。
一次拉碳法
按出钢要求的终点碳和终点温度进行吹炼,当达到要求时提枪。
这种方法要求终点碳和温度同时到达目标,否则需补吹或增碳。
一次拉碳法要求操作技术水平高,其优点颇多,归纳如下:
(1) 终点渣TFe含量低,钢水收得率高,对炉衬侵蚀量小。
(2) 钢水中有害气体少,不加增碳剂,钢水洁净。
(3) 余锰高,合金消耗少。
(4) 氧耗量小,节约增碳剂。
增碳法
是指吹炼平均含碳量≥0.08%的钢种,均吹炼到ω[C]=0.05%~0.06%提枪,按钢种规范要求加入增碳剂。
增碳法所用碳粉要求纯度高,硫和灰分要很低,否则会玷污钢水。
采用这种方法的优点如下:
(1)终点容易命中,比“拉碳法”省去中途倒渣、取样、校正成分及温度的补吹时间,因而生产率较高;
(2)吹炼结束时炉渣Σ(FeO)含量高,化渣好,去磷率高,吹炼过程的造渣操作可以简化,有利于减少喷溅、提高供氧强度和稳定吹炼工艺;
(3)热量收入较多,可以增加废钢用量。
采用“增碳法”时应严格保证增碳剂质量,推荐采用C>95%、粒度≤10毫米的沥青焦。
增碳量超过0.05%时,应经过吹Ar等处理。
高拉补吹法
当冶炼中、高碳钢钢种时,终点按钢种规格稍高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。
由于在中、高碳(ω[c]>0.40%)钢种的碳含量范围内,脱碳速度较快,火焰没有明显变化,从火花上也不易判断,终点人工一次拉碳很难准确判断,所以采用高拉补吹的办法。
用高拉补吹法冶炼中、高碳钢时,根据火焰和火花的特征,参考供氧时间及氧耗量,按所炼钢种碳规格要求稍高一些来拉碳,使用结晶定碳和钢样化学分析,再按这一碳含量范围内的脱碳速度补吹一段时间,以达到要求。
高拉补吹方法只适用于中、高碳钢的吹炼。
根据某厂30 t 转炉吹炼的经验数据,补吹时的脱碳速度一般为0.005%/s。
当生产条件变化时,其数据也有变化。