培优专题3_用分组分解法进行因式分解(含答案)

合集下载

2022-2023学年初一数学第二学期培优专题训练29 分组分解法因式分解

2022-2023学年初一数学第二学期培优专题训练29 分组分解法因式分解

专题29 分组分解法因式分解【例题讲解】将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:9m 2﹣4x 2+4xy ﹣y 2;(3)分解因式:4a 2+4a ﹣4a 2b 2﹣b 2﹣4ab 2+1. 试题解析:(1)x2﹣y2﹣x ﹣y=(x2﹣y2)﹣(x+y )=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)9m2﹣4x2+4xy ﹣y2=9m2﹣(4x2﹣4xy+y2)=(3m )2﹣(2x ﹣y )2=(3m+2x ﹣y )(3m ﹣2x+y );(3)4a2+4a ﹣4a2b2﹣b2﹣4ab2+1=(2a+1)2﹣b2(2a+1)2=(2a+1)2(1+b )(1﹣b ).【综合解答】1.先阅读以下材料,然后解答问题,分解因式.mx nx my ny +++()()mx nx my ny =+++()()x m n y m n =+++()()m n x y =++;也可以mx nx my ny +++()()mx my nx ny =+++()()m x y n x y =+++()()m n x y =++.以上分解因式的方法称为分组分解法,(1)请用分组分解法分解下列因式:①2()--+a x y x y②2244x y x --+(2)拓展延伸①若22228160x xy y x -+-+=求x ,y 的值;②求当x 、y 分别为多少时?代数式22512986x xy y x -+++有最小的值,最小的值是多少?2.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:()()()()ax by bx ay ax bx ay by x a b y a b +++=+++=+++()()22222121()1(1)2(1)a b x y x y x x xy y x x y y y x y -+=++-=+-=+++=+-++拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:222223214(1)2(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-请你仿照以上方法,探索并解决下列问题:(1)分解因式:2244a a b --+;(2)分解因式:267x x --;(3)若ABC 三边a 、b 、c 满足20a ab ac bc --+=,试判断ABC 的形状.3.先阅读材料:分解因式:22326a b a b -+-.解:22326a b a b -+-()223(26)a b a b =-+-2(3)2(3)a b b =-+-()2(3)2b a =-+以上解题过程中用到了“分组分解法”,即把多项式先分组,再分解.请你运用这种方法对下面多项式分解因式:2233x x y y +-+.4.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:22216x xy y -+-2()16x y =--(4)(4)x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+.5.将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如,()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++(1)因式分解:①22x y x y -++;②1ab a b --+;(2)若a ,b 都是正整数且满足60ab a b ---=,求2a b +的值.6.(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.①分解因式:1ab a b --+;②若,a b ()a b >都是正整数且满足40ab a b ---=,求a b +的值;(2)若,a b 为实数且满足40ab a b ---=,225332s a ab b a b =+++-,求s 的最小值.7.观察“探究性学习”小组甲、乙两名同学进行的因式分解:甲:244x xy x y -+-()2(44)x xy x y =-+-(分成两组) ()4()x x y x y =-+-(直接提公因式)()(4)x y x =-+.乙:2222a b c bc --+()2222a b c bc =-+-(分成两组)22()a b c =--(直接运用公式)()()a b c a b c =+--+(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)32248m m m --+(2)2229x xy y -+-.8.阅读理解:如何将326xy x y +++进行因式分解呢?小明同学是这样做的:326xy x y +++(3)(26)xy x y =+++(3)2(3)x y y =+++(2)(3)x y =++我们把这种将多项式先分组,分别变形,再进行分解因式的方法叫分组分解法.【尝试应用】借助上述方法因式分解①5420xy x y +++=__________;②8972ab a b +--=__________;③xy ax by ab +++=___________;【拓展提高】若整数x ,y 满足64970xy x y +--=,求x ,y 的值.9.用分组分解法分解下列因式:(1)2a ab ac bc -+-(2)222ax by cx ay bx cy ++---(3)22am am bm bm +--(4)321a a a --+(5)222a ab b a b -++-(6)22296x z y xy -+-10.把下列多项式分解因式:(1)22442a ab b ac bc ++--(2)222ax bx bx ax cx cx +++++(3)222222a b x y ay bx --+-+(4)()()()222241211y x y x y +--+- 11.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试一个多项式分组后,再运用提取公因式或乘法公式继续分解的方法是分组分解法.例如:(1)am an bm bn +++=()()am an bm bn +++=()()a m n b m n +++=()()m n a b ++(2)2221x y y ---=()2221x y y -++ =()221x y -+=()()11x y x y ++--(1)根据上面的知识,我们可以将下列多项式进行因式分解: ax ay bx by --+=(_____________)-(____________)=(_____________)-(____________)=(_____________)(_____________);22x y x y -+-=(_____________)+(____________)=(_____________)+(____________)=(_____________)(______________).(2)分解下列因式:①ab ac b c -+-;②222496b a ac c -+-+.12.观察下面的分解因式过程,说说你发现了什么.例:把多项式am +an +bm +bn 分解因式.解法1:am +an +bm +bn=(am +an )+(bm +bn )= a (m +n )+b (m +n )=(m +n )(a +b ).解法2:am +an +bm +bn=(am +bm )+(an +bn )= m (a +b )+n (a +b )=(a +b )(m +n ).根据你的发现,把下面的多项式分解因式:(1)mx -my +nx -ny ;(2)2a +4b -3ma -6mb.13.先阅读下面的材料,再分解因式.要把多项式am an bm bn +++分解因式,可以先把它的前两项分成组,并提出a ,把它的后两项分成组,并提出b ,从而得()()am an bm bn a m n b m n +++=+++.这时,由于()()a m n b m n +++中又有公因式()m n +,于是可提公因式()m n +,从而得到()()m n a b ++,因此有+++am an bm bn()()=+++am an bm bn()()a m nb m n=+++()()=++.m n a b这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:()2-+-1ab ac bc b()()=(请你完成分解因式下面的过程)---a b c b b c=______()2-+-;2m mn mx nx()222--+.x y x y y3248专题29 分组分解法因式分解【例题讲解】将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:9m 2﹣4x 2+4xy ﹣y 2;(3)分解因式:4a 2+4a ﹣4a 2b 2﹣b 2﹣4ab 2+1. 试题解析:(1)x2﹣y2﹣x ﹣y=(x2﹣y2)﹣(x+y )=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)9m2﹣4x2+4xy ﹣y2=9m2﹣(4x2﹣4xy+y2)=(3m )2﹣(2x ﹣y )2=(3m+2x ﹣y )(3m ﹣2x+y );(3)4a2+4a ﹣4a2b2﹣b2﹣4ab2+1=(2a+1)2﹣b2(2a+1)2=(2a+1)2(1+b )(1﹣b ).【综合解答】1.先阅读以下材料,然后解答问题,分解因式.mx nx my ny +++()()mx nx my ny =+++()()x m n y m n =+++()()m n x y =++;也可以mx nx my ny +++()()mx my nx ny =+++()()m x y n x y =+++()()m n x y =++.以上分解因式的方法称为分组分解法,(1)请用分组分解法分解下列因式:①2()--+a x y x y②2244x y x --+(2)拓展延伸①若22228160x xy y x -+-+=求x ,y 的值;②求当x 、y 分别为多少时?代数式22512986x xy y x -+++有最小的值,最小的值是多少? ①222x xy -22xy y ++)(24y x +-)20y =,(②2512x xy -2412x xy -()23x y -(23x y ∴-23x y ∴=83y ∴=-,2.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:()()()()ax by bx ay ax bx ay by x a b y a b +++=+++=+++()()22222121()1(1)2(1)a b x y x y x x xy y x x y y y x y -+=++-=+-=+++=+-++拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:222223214(1)2(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-请你仿照以上方法,探索并解决下列问题:(1)分解因式:2244a a b --+;(2)分解因式:267x x --;(3)若ABC 三边a 、b 、c 满足20a ab ac bc --+=,试判断ABC 的形状.【答案】(1)(2)(2)a b a b +---(2)(7)(1)x x -+(3)等腰三角形,理由见解析【分析】(1)将一、二、四项结合用完全平方公式分解因式,然后再用平方差公式分解因式;(2)把-6x 拆成-7x +x ,再用分组分解法进行解答;(2)先把等式左边分解成因式的积,根据积为0的因式的特点得出a 、b 、c 之间的关系便可.【解答】(1)2244a a b --+=a 2-4a +4-b 2=(a -2)2-b 2=(a +b -2)(a -b -2);(2)267x x --=x 2-7x +x -7=x (x -7)+(x -7)=(x -7)(x +1)(3)∵a 2-ab -ac +bc =0,∴a (a -b )-c (a -b )=0,∴(a -b )(a -c )=0,∴a -b =0或a -c =0,∴a =b 或a =c ,∴△ABC 是等腰三角形.【点评】本题考查了因式分解的应用,等腰三角形的定义,掌握每一种因式分解的方法在不同题型中的熟练应用是解题关键.3.先阅读材料:分解因式:22326a b a b -+-.解:22326a b a b -+-()223(26)a b a b =-+-2(3)2(3)a b b =-+-()2(3)2b a =-+以上解题过程中用到了“分组分解法”,即把多项式先分组,再分解.请你运用这种方法对下面多项式分解因式:2233x x y y +-+.【答案】见解析【分析】仿照例题,利用分组分解法因式分解,然后利用公式法和提公因式法因式分解即可求解.【解答】解:2233x x y y +-+()()2233x y x y =-++ ()()()3x y x y x y =+-++()()3x y x y =+-+【点评】本题考查了因式分解,理解例题中的分组分解法是解题的关键.4.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:22216x xy y -+-2()16x y =--(4)(4)x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+. 【答案】(1)()()3535a b a b ---+(2)()()222x y x y -+-【分析】(1)先将代数式进行分组,然后再根据公式法和提取公因式法进行因式分解即可;(2)先将代数式进行分组,然后再根据公式法和提取公因式法进行因式分解即可.(1)解:226925a ab b -+-,()22=6925a ab b -+-,()22=35a b --, ()()3535=a b a b ---+;(2)解:22424x y x y --+,()()22=42-4x y x y --,()()()=2+22-2x y x y x y --,()()222=x y x y -+-.【点评】本题考查了用分组分解法对超过3项的多项式进行因式分解,合理分组是解题的关键,综合运用因式分解的几种方法是重难点.5.将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如,()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++(1)因式分解:①22x y x y -++;②1ab a b --+;(2)若a ,b 都是正整数且满足60ab a b ---=,求2a b +的值. 【答案】(1)①(x +y )(x -y +1);②(a -1)(b -1)(2)12或18【分析】(1)模仿例题,利用分组分解法进行因式分解即可;(2)利用(1)题结论进行讨论,即可求解.(1)解:①原式=(x +y )(x -y )+ (x +y )=(x +y )(x -y +1);②原式=a (b -1)- (b -1)=(a -1)(b -1);(2)解:由(1)②可知,(a -1)(b -1)=7,∵a ,b 都是正整数,∴a -1,b -1都是整数,∴1117a b -=⎧⎨-=⎩或1711a b -=⎧⎨-=⎩, 解得28a b =⎧⎨=⎩或82a b =⎧⎨=⎩, 当a =2,b =8时,2a +b =2×2+8=12;当a =8,b =2时,2a +b =2×8+2=18;∴2a +b 的值为12或18.【点评】此题考查了因式分解以及利用因式分解求代数式的值的能力,关键是正确地对整式进行因式分解.6.(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.①分解因式:1ab a b --+;②若,a b ()a b >都是正整数且满足40ab a b ---=,求a b +的值;(2)若,a b 为实数且满足40ab a b ---=,225332s a ab b a b =+++-,求s 的最小值.7.观察“探究性学习”小组甲、乙两名同学进行的因式分解:甲:244x xy x y -+-()2(44)x xy x y =-+-(分成两组)()4()x x y x y =-+-(直接提公因式)()(4)x y x =-+.乙:2222a b c bc --+()2222a b c bc =-+-(分成两组)22()a b c =--(直接运用公式)()()a b c a b c =+--+(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)32248m m m --+(2)2229x xy y -+-. 【答案】(1)2(2)(2)m m -+;(2)(3)(3)x y x y -+--【分析】(1)先分组因式分解,再提公因式即可求解;(2)先分组因式分解,再利用平方差公式即可求解.【解答】解:(1)原式22(2)4(2)(2)(2)m m m m m =---=-+;(2)原式2()9(3)(3)x y x y x y =--=-+--.【点评】此题主要考查因式分解,解题的关键是根据题中的方法进行灵活运用进行因式分解.8.阅读理解:如何将326xy x y +++进行因式分解呢?小明同学是这样做的:326xy x y +++(3)(26)xy x y =+++(3)2(3)x y y =+++(2)(3)x y =++我们把这种将多项式先分组,分别变形,再进行分解因式的方法叫分组分解法.【尝试应用】借助上述方法因式分解①5420xy x y +++=__________;②8972ab a b +--=__________;③xy ax by ab +++=___________;【拓展提高】若整数x ,y 满足64970xy x y +--=,求x ,y 的值. 【答案】[尝试应用] ①()()45x y ++;②()()98a b -+;③()()x b a y ++;[拓展提高] x =1,y =-1【分析】[尝试应用] ①②③利用分组分解法解答即可;[拓展提高]原方程变形为:(2x -3)(3y +2)=1,根据题意有2x -3=1,3y +2=1,或2x -3=-1,3y +2=-1,即可求出方程的整数解.【解答】解:[尝试应用]①5420xy x y +++=()()545x y y +++=()()45x y ++;9.用分组分解法分解下列因式:(1)2a ab ac bc -+-(2)222ax by cx ay bx cy ++---(3)22am am bm bm +--(4)321a a a --+(5)222a ab b a b -++-(6)22296x z y xy -+-【答案】(1)()()a c a b +-;(2)()()2x y a b c --+;(3)()()1m a b m -+;(4)()()211a a +-;(5)()()1a b a b --+;(6)()()33x y z x y z -+--【分析】利用分组分解法运算即可.【解答】解:(1)2a ab ac bc -+-=()()a a b c a b -+-=()()a c a b +-;(2)222ax by cx ay bx cy ++---=222ax bx cx by ay cy -++--=()()2a b c x y a b c -+--+=()()2x y a b c --+;(3)22am am bm bm +--=22am bm am bm -+-=()()2a b m a b m -+- =()()1m a b m -+;(4)321a a a --+=()()321a a a ---=()()2211a a a ---=()()211a a +-;(5)222a ab b a b -++-=()()2a b a b -+-=()()1a b a b --+;(6)22296x z y xy -+-=22296x xy y z -+-=()223x y z --=()()33x y z x y z -+--【点评】本题考查了因式分解,熟练掌握分组分解法是解此题的关键.10.把下列多项式分解因式:(1)22442a ab b ac bc ++--(2)222ax bx bx ax cx cx +++++(3)222222a b x y ay bx --+-+(4)()()()222241211y x y x y +--+- 【答案】(1)()()22a b c a b +-+;(2)()()1x x a b c +++;(3)()()x a b y x a b y ---++--;(4)()2221x y x y -++ 【分析】(1)(2)(3)利用分组分解法分解即可;(4)利用完全平方公式分解即可.【解答】解:(1)22442a ab b ac bc ++--=()()222a b c a b +-+=()()22a b c a b +-+;(2)222ax bx bx ax cx cx +++++=()()222ax bx cx ax bx cx +++++ =()()2a b c x a b c x +++++=()()1x x a b c +++;(3)222222a b x y ay bx --+-+=()222222a ay y b x bx -+-+-=()()22a yb x ---=()()()()a y b x a y b x -+----⎡⎤⎡⎤⎣⎦⎣⎦=()()x a b y x a b y ---++--;(4)()()()222241211y x y x y +--+- =()()()()222412111y x y y x y +-+-+-=()()2211y x y ⎡⎤+--⎣⎦ =()2221x y x y -++ 【点评】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.11.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试一个多项式分组后,再运用提取公因式或乘法公式继续分解的方法是分组分解法.例如:(1)am an bm bn +++=()()am an bm bn +++=()()a m n b m n +++=()()m n a b ++(2)2221x y y ---=()2221x y y -++ =()221x y -+=()()11x y x y ++--(1)根据上面的知识,我们可以将下列多项式进行因式分解: ax ay bx by --+=(_____________)-(____________)=(_____________)-(____________)=(_____________)(_____________);22x y x y -+-=(_____________)+(____________)=(_____________)+(____________)=(_____________)(______________).(2)分解下列因式:①ab ac b c -+-;②222496b a ac c -+-+.【答案】(1)ax ay -;bx by -;()a x y -;()-b x y ;x y -;a b -;22x y -;x y -;()()x y x y -+;x y -;x y -;1x y ++;(2)①()()1-+b c a ;②()()3232-+--a c b a c b【分析】(1)利用分组分解法结合提公因式法和平方差公式因式分解即可;(2)①利用分组分解法结合提公因式法因式分解即可;②利用分组分解法结合公式法因式分解即可;【解答】解:(1)ax ay bx by --+=(ax ay -)-(bx by -)=()a x y --()-b x y = (x y -)(a b -);22x y x y -+-=(22x y -)+(x y -)=()()x y x y -+ +(x y -)=()()1-++x y x y故答案为:ax ay -;bx by -;()a x y -;()-b x y ;x y -;a b -;22x y -;x y -;()()x y x y -+;x y -;x y -;1x y ++;(2)①ab ac b c -+-=()()-+-a b c b c=()()1-+b c a②222496b a ac c -+-+=()222496-+-+b a ac c =()2234--a c b=()()3232-+--a c b a c b【点评】此题考查的是因式分解,掌握利用分组分解法结合提公因式法和公式法因式分解是解决此题的关键.12.观察下面的分解因式过程,说说你发现了什么.例:把多项式am +an +bm +bn 分解因式.解法1:am +an +bm +bn=(am +an )+(bm +bn )= a (m +n )+b (m +n )=(m +n )(a +b ).解法2:am +an +bm +bn=(am +bm )+(an +bn )= m (a +b )+n (a +b )=(a +b )(m +n ).根据你的发现,把下面的多项式分解因式:(1)mx -my +nx -ny ;(2)2a +4b -3ma -6mb.【答案】(1)(x -y )(m +n );(2)(a +2b )(2-3m )【分析】(1)分组后提取公因式即可得到结果;(2)分组后提取公因式即可得到结果.【解答】解:(1)解法一:原式=m(x-y)+n(x-y)=(x-y)(m+n)解法二:原式=(mx+nx)-(my+ny)=x(m+n)-y(m+n)=(m+n)(x-y)(2)解法一:原式=2(a+2b)-3m(a+2b)=(a+2b)(2-3m)解法二:原式=(2a-3ma)+(4b-6mb)=a(2-3m)+2b(2-3m)=(2-3m)(a+2b)【点评】此题考查了因式分解-分组分解法,难点是采用两两分组还是三一分组.13.先阅读下面的材料,再分解因式.要把多项式am an bm bn +++分解因式,可以先把它的前两项分成组,并提出a ,把它的后两项分成组,并提出b ,从而得()()am an bm bn a m n b m n +++=+++.这时,由于()()a m n b m n +++中又有公因式()m n +,于是可提公因式()m n +,从而得到()()m n a b ++,因此有am an bm bn +++()()am an bm bn =+++()()a m n b m n =+++()()m n a b =++.这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:()21ab ac bc b -+-()()a b c b b c ---=(请你完成分解因式下面的过程)=______()22m mn mx nx -+-;()2223248x y x y y --+. 【答案】(1)()()a b b c --;(2) (m +x )(m -n );(3) (y -2)(x 2y -4).【分析】如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.依此即可求解.【解答】解:(1)ab -ac +bc -b 2=a (b -c )-b (b -c )=(a -b )(b -c );故答案为(a-b)(b-c).(2)m2-mn+mx-nx=m(m-n)+x(m-n)=(m+x)(m-n);(3)x2y2-2x2y-4y+8=x2y(y-2)-4(y-2)=(y-2)(x2y-4).【点评】考查了因式分解-提公因式法,因式分解-分组分解法,本题采用两两分组的方式.。

分组分解法因式分解

分组分解法因式分解

因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。

这种分解因式的方法叫做分组分解法。

二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。

分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。

分组分解法并不是一种独立的因式分解的方法。

通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。

解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。

这也是分组中必须遵循的规律之一。

(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。

可先将a2-b2一组应用平方差公式,再提出因式。

解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。

观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。

解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。

解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。

分组法 因式分解专项练习30题(有答案)

分组法 因式分解专项练习30题(有答案)
=(2x2﹣3x)(2x2﹣3x﹣9)=x(2x﹣3)(2x+3)(x﹣3); (2)x4+7x3+14x2+7x+1=x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2=[(x+1)2]2+3x(x+1)2+2x2,
=[(x+1)2+2x][(x+1)2+x]=(x2+4x+1)(x2+3x+1); (3)(x+y)3+2xy(1﹣x﹣y)﹣1=[(x+y)3﹣1]+2xy(1﹣x﹣y)=(x+y﹣1)[(x+y)2+x+y+1]﹣2xy(x+y﹣1)
分组法分解因式---- 2
26.m2﹣2mn+n2﹣am+an. 27.x2﹣2xy+y2+3x﹣3y+2. 28.(1)a2﹣2ab+b2﹣4; (2)x3﹣x2﹣4x+4. 29.a2x2﹣4+a2y2﹣2a2xy 30.(1)x2+9y2+4z2﹣6xy+4xz﹣12yz
(2)(a2+5a+4)(a25a+6)﹣120.
本小题可以稍加变形,直接使用公式,解法如下: 原式=a2+(﹣b)2+c2+2(﹣b)c+2ca+2a(﹣b)=(a﹣b+c)2. (4)原式=(a7﹣a5b2)+(a2b5﹣b7)=a5(a2﹣b2)+b5(a2﹣b2)=(a2﹣b2)(a5+b5)
=(a+b)(a﹣b)(a+b)(a4﹣a3b+a2b2﹣ab3+b4)=(a+b)2(a﹣b)(a4﹣a3b+a2b2﹣ab3+b4) 12.6x2﹣5xy﹣6y2+2x+23y﹣20=6x2﹣x(5y﹣2)﹣(6y2﹣23y+20)=6x2﹣x(5y﹣2)﹣(2y﹣5)(3y﹣4)

(含答案)2020-2021学年数学初三培优竞赛二合一专讲-04-用分组分解法进行因式分解

(含答案)2020-2021学年数学初三培优竞赛二合一专讲-04-用分组分解法进行因式分解
例2. 已知: a 2 b2 1,c2 d 2 1,且ac bd 0 ,求ab+cd的值。
解:ab+cd= ab 1 cd 1
ab(c2 d 2 ) cd(a 2 b2 ) abc2 abd 2 cda 2 cdb2 (abc2 cdb2 ) (abd 2 cda 2 ) bc(ac bd) ad(bd ac) (ac bd)(bc ad)
解: m2 (n2 1) 4mn n2 1 m2 n2 m2 4mn n2 1 (m2 n2 2mn 1) (m2 2mn n2 ) (mn 1) 2 (m n) 2 (mn m n 1)(mn m n 1)
说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn, 配成完全平方和平方差公式。
3. 在方程中的应用
例:求方程 x y xy 的整数解 分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y, 故可考虑借助因式分解求解
解: x y xy
xy x y 0
xy x y 1 1
即x(y 1) (y 1) 1
(y 1)(x 1) 1
2020-2021学年人教版数学初三培优竞赛二合一专讲 4、用分组分解法进行因式分解
【知识精读】
分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法 的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预 见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。
应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化 简,求值及一元二次方程,函数等学习中也有重要作用。
下面我们就来学习用分组分解法进行因式分解。 【分类解析】

分组分解法例题

分组分解法例题

分组分解法例题摘要:1.分组分解法概述2.分组分解法实例解析3.实例分析与解答4.总结与启示正文:一、分组分解法概述分组分解法是一种常用的数学解题方法,尤其在代数、几何等领域发挥着重要作用。

它的基本思想是将复杂的题目分解成若干个较小的、容易解决的部分,然后通过对这些部分的分析和解决,最终得到整个题目的解答。

这种方法能够帮助我们更好地理解题目,降低解题的难度,提高解题效率。

二、分组分解法实例解析下面我们通过一个具体的例子来详细解析分组分解法的应用。

题目:求解以下方程组:2x + 3y = 12x - 5y = 10三、实例分析与解答(1)将方程组进行整理,得到:2x + 3y = 12x - 5y = 10(2)将第二个方程左右两边都加上5y,得到:x = 10 + 5y(3)将得到的x的表达式代入第一个方程,得到:2(10 + 5y) + 3y = 12(4)整理方程,解得:10 + 10y + 3y = 1213y = 2y = 2/13(5)将求得的y的值代入x的表达式,得到:x = 10 + 5 * (2/13)x = 10 + 10/13四、总结与启示通过以上分析,我们利用分组分解法成功求解了这个方程组。

在这个过程中,我们首先将方程组进行整理,然后通过将一个方程中的变量表示为另一个方程中的变量,最后代入求解。

这个过程充分体现了分组分解法的实用性和有效性。

在解决类似问题时,我们要注意掌握以下几点:1.熟练掌握分组分解法的基本思想,即“化整为零,各个击破”。

2.对题目进行仔细分析,将复杂问题分解为简单问题。

3.在分解问题的过程中,注意寻找变量之间的关系,以便进行代换求解。

4.总结经验,不断提高自己的解题技巧。

通过以上分析和总结,我们可以看到,分组分解法在解决数学问题时具有很高的实用性和可行性。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+⋯+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题 分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3(15)x 4ax 2xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和.例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题 分解因式:(1)x 214x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10对应练习题 分解因式:(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()22ax6ax82综合练习题分解因式:(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时, 整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 22ax1a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323(11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(1b 2)4ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为 a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。

分组法因式分解试题练习(含答案)

分组法因式分解试题练习(含答案)

分组法因式分解试题练习(含答案)分组法因式分解试题练一、单选题1.对于a²-2ab+b²-c²的分组中,分组正确的是()A.(a²-c²)+(-2ab+b²)B.(a²-2ab+b²)-c²C。

a²+(-2ab+b²-c²)D.(a²+b²)+(-2ab-c²)2.把多项式ab⁻¹+a⁻b因式分解的结果是()A.(a+1)(b+1)B.(a⁻¹)(b⁻¹)C.(a+1)(b⁻¹)D.(a⁻¹)(b+1)3.把ab-a-b+1分解因式的结果为()A.(a+1)(b+1)B.(a+1)(b⁻¹)C.(a⁻¹)(b⁻¹)D.(a⁻¹)(b+1)4.把ab+a⁻b⁻¹分解因式的结果为()A.(a+b)(b+1)B.(a⁻¹)(b⁻¹)C.(a+1)(b⁻¹)D.(a⁻¹)(b+1)5.把多项式a²-b²+2a+1分解因式得()A.(a+b)(a-b)+(2a+1)B.(a-b+1)(a+b-1)C.(a-b+1)(a+b+1)D.(a-b-1)(a+b+1)6.将多项式a²-9b²+2a-6b分解因式为()A.(a+2)(3b+2)(a-3b)B.(a-9b)(a+9b)C.(a-9b)(a+9b+2)D.(a-3b)(a+3b+2)7.分解因式:x²-2xy+y²+x-y的结果是()A.(x-y)(x-y+1)B.(x-y)(x-y-1)C.(x+y)(x-y+1)D.(x+y)(x-y-1)8.分解因式a²-b²+4bc-4c²的结果是()A.(a-2b+c)(a-2b-c)B.(a+2b-c)(a-2b+c)C.(a+b-2c)(a-b+2c)D.(a+b+2c)(a-b+2c)9.把x²-y²+2y-1分解因式结果正确的是()A.(x+y+1)(x-y-1)B.(x+y-1)(x-y+1)C.(x+y-1)(x+y+1)D.(x-y+1)(x+y+1)10.分解因式a²-2a+1-b²正确的是()A.(a-1)²-b² B。

初二数学知识点专题讲解与练习3---因式分解的方法(培优版)

初二数学知识点专题讲解与练习3---因式分解的方法(培优版)

.分解因式: = . 3
a2 − b2 + 4a + 2b + 3 ____________________________
.多项式 与多项式 的公因式是 . 4
ax3 − 8a
x2 − 4x + 4
____________________
5.在 1~100 之间若存在整数n ,使 x2 + x − n 能分解为两个整系数一次式的乘积,这样的 n 有_______ 个.
ห้องสมุดไป่ตู้
10.已知二次三项式21x2 + ax −10 可分解成两个整系数的一次因式的积,那么( ).
A.a 一定是奇数 C.a 可为奇数也可为偶数 11.分解因式:
B.a 一定是偶数 D.a 一定是负数
( ) ; 1 (2x2 − 3x +1)2 − 22x2 + 33x −1
( ) ; 2 (x2 + 3x + 2)(4x2 + 8x + 3) − 90
【例 4】把多项式 x2 − y2 − 2x − 4y − 3因式分解后,正确的结果是( ).
. . A (x + y + 3)(x − y −1) B (x + y −1)(x − y + 3)
. . C (x + y − 3)(x − y +1) D (x + y +1)(x − y − 3) (“希望杯”邀请赛试题)
解题思路:直接分组分解困难,可考虑先将常数项拆成几个数的代数和,比如-3=-4+1.
【例 5】分解因式:
( ) ; 1 x5 + x +1 (扬州市竞赛题)

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)因式分解专题培优将一个多项式变形成几个整式的积的形式,这个变形过程称为因式分解。

初中阶段常用的因式分解方法如下:1.基本方法:提公因式法、公式法、十字相乘法、分组分解法。

2.常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。

3.考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法。

一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现在可以反向使用它们来进行因式分解,例如:1) a^2 - b^2 = (a + b) (a - b)2) a^2 ± 2ab + b^2 = (a ± b)^23) a^3 + b^3 = (a + b) (a^2 - ab + b^2)4) a^3 - b^3 = (a - b) (a^2 + ab + b^2)以下是几个常用的公式:5) a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^26) a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)7) an - bn = (a - b) (an-1 + an-2b + an-3b^2 + … + abn-2 + bn-1),其中n为正整数;8) an - bn = (a + b) (an-1 - an-2b + an-3b^2 - … + abn-2 - bn-1),其中n为偶数;9) an + bn = (a + b) (an-1 - an-2b + an-3b^2 - … - abn-2 + bn-1),其中n为奇数。

在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。

例如:例题1:分解因式:-2x^5n-1yn+4x^3n-1yn+2-2xn-1yn+4;例题2:分解因式:a^3 + b^3 + c^3 - 3abc。

因式分解培优训练题(培优篇)+答案

因式分解培优训练题(培优篇)+答案

章节复习之因式分解(培优篇) 因式分解的方法一——基本方法知识要点:因式分解的基本方法有提公因式法、公式法、分组分解法和十字相乘法。

在对一个多项式进行因式分解时,应根据多项式的特点选择合理的分解方法。

A 卷一、填空题1、分解因式:_______________419122=+-+y x x n n . 2、(河南省竞赛题)分解因式:_______________63522=++++y y x xy x . 3、已知242--ax x 在整数范围内可以分解因式,则整数a 的可能取值为 .4、(2000年第16届“希望杯”竞赛题)分解因式:()()__________122=++-+b a b a ab . 5、(2005年第16届“希望杯”初二年级培训题)如果x 、y 是整数,且12005200422=-+y xy x ,那么_________=x ,_________=y .二、选择题6、如果多项式9142++kx x 是一个完全平方式,那么k 的值是( ) A 、6- B 、6 C 、32或32- D 、34或34- 7、(2005年第16届“希望杯”初二年级培训题)已知二次三项式c bx x ++22分解因式后为()()132+-x x ,则( )A 、3=b ,1-=cB 、6-=b ,2=cC 、6-=b ,4=cD 、4-=b ,6-=c8、(江苏省南通市2005年中等学校招生考试题)把多项式1222-+-b ab a 分解因式,结果为( )A 、()()11--+-b a b aB 、()()11-++-b a b aC 、()()11-+++b a b aD 、()()11--++b a b aB 卷一、填空题9、研究下列算式:252514321==+⨯⨯⨯;21112115432==+⨯⨯⨯;==+⨯⨯⨯36116543219;22984117654==+⨯⨯⨯,……用含n 的代数式表示此规律(n 为正整数)是 .二、选择题10、对于这5个多项式:①12222---b a b a ;②322327279a xa ax x -+-;③()x x 422+-;④()()m n n n m m -+-63;⑤()()b d c c b d y d c b x 222-+-----+其中在有理数范围内可以进行因式分解的有( )A 、①②⑤B 、②④⑤C 、③④⑤D 、①②④11、已知二次三项式10212-+ax x 可以分解成两个整系数的一次因式的积,那么( ) A 、a 一定是奇数 B 、a 一定是偶数 C 、a 可为奇数也可为偶数 D 、a 一定是负数 三、解答题 12、分解因式:(1)(2000年第12届“五羊杯”数学竞赛试题)分解因式:()()()33322y x y x -----(2)122229227131+++--n n n x x x (3)2222222ab x b b a abx bx x a ax +-+-+- (4)()222224b a abx x b a +--- (5)()()()b a c a c b c b a -+-+-222 (6)613622-++-+y x y xy xC 卷一、解答题13、n (1 n )名运动员参加乒乓球循环赛,每两人之间正好只进行一场比赛。

分组分解法例题

分组分解法例题

分组分解法例题摘要:一、分组分解法简介1.分组分解法的定义2.分组分解法的作用3.分组分解法的应用范围二、分组分解法例题解析1.例题一a.题目描述b.解题思路c.解题步骤d.答案2.例题二a.题目描述b.解题思路c.解题步骤d.答案3.例题三a.题目描述b.解题思路c.解题步骤d.答案正文:一、分组分解法简介分组分解法是一种数学解题方法,它主要用于解决复杂数字问题。

通过对问题进行合理的分组和分解,可以将复杂问题简化为更易处理的简单问题,从而提高解题效率。

分组分解法适用于各种年龄段的数学学习者,对于培养学生的数学思维能力具有重要意义。

二、分组分解法例题解析1.例题一题目描述:一个水果摊上的苹果和香蕉共计100千克,苹果的重量是香蕉的2倍。

若将苹果和香蕉分别装入两个袋子,且每个袋子的重量相同,求每个袋子的重量。

解题思路:首先,根据题目描述,我们可以将问题分解为两个部分:苹果的重量和香蕉的重量。

然后,通过设方程的方式求解每个袋子的重量。

解题步骤:(1) 设香蕉的重量为x千克,则苹果的重量为2x千克。

(2) 根据题目描述,x + 2x = 100,解得x = 25。

(3) 香蕉的重量为25千克,苹果的重量为50千克。

(4) 每个袋子的重量为(25 + 50) / 2 = 37.5千克。

答案:每个袋子的重量为37.5千克。

2.例题二题目描述:某企业的员工总数为120人,其中生产部门的员工人数是销售部门的2倍。

若将员工分为两部分,且两部分员工的人数相同,求生产部门和销售部门各有多少人。

解题思路:首先,根据题目描述,我们可以将问题分解为两个部分:生产部门的员工人数和销售部门的员工人数。

然后,通过设方程的方式求解每个部门的员工人数。

解题步骤:(1) 设销售部门的员工人数为x人,则生产部门的员工人数为2x人。

(2) 根据题目描述,x + 2x = 120,解得x = 40。

(3) 生产部门的员工人数为2x = 80人,销售部门的员工人数为x = 40人。

因式分解培优题(超全面详细分类)

因式分解培优题(超全面详细分类)

因式分解培优题(超全面详细分类)_因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);_(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1),其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2某5n-1yn+4某3n-1yn+2-2某n-1yn+4;(2)某3-8y3-z3-6某yz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2分解因式:a3+b3+c3-3abc.例题3分解因式:某15+某14+某13+…+某2+某+1._对应练习题分解因式:2211(1)94nn某某y+-+;(2)某10+某5-2422332223(3)244(4)4某某y某y某yy某y--+++(4)(某5+某4+某3+某2+某+1)2-某5(5)9(a-b)2+12(a2-b2)+4(a+b)2(6)(a-b)2-4(a-b-1)(7)(某+y)3+2某y(1-某-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:bnbmanam+++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局_例题2分解因式:b某byaya某-+-5102对应练习题分解因式:1、bcacaba-+-22、1+--y某某y(二)分组后能直接运用公式例题3分解因式:aya某y某++-22例题4分解因式:2222cbaba-+-_对应练习题分解因式:3、yy某某3922---4、yzzy某2222---综合练习题分解因式:(1)3223y某yy某某--+(2)baa某b某b某a某-+-+-22(3)181696222-+-++aay某y某(4)abbaba4912622-++-(5)92234-+-aaa(6)yb某bya某a222244+--(7)222yyz某z某y某++--(8)122222++-+-abbbaa(9))1)(1()2(+---mmyy(10))2())((abbcaca-+-+_(11)abcbaccabcba2)()()(222++++++(12)432234232.aabababb++++(13)22)()(b某aybya某-++(14)333333333)(y某某zzyzy某某yz---++(15)aa某a某某-++-2242(16)a某a某某2)2(323-++-(17))53(4)3()1(33+-+++某某某三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q某p某pq某qp某++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和._例题1分解因式:652++某某例题2分解因式:672+-某某对应练习题分解因式:(1)24142++某某(2)36152+-aa(3)542-+某某(4)22-+某某(5)1522--yy(6)24102--某某(二)二次项系数不为1的二次三项式——2a某b某c++条件:(1)21aaa=1a1c(2)21ccc=a2c(3)1221cacab+=1221cacab+=分解结果:cb某a某++2=))((2211c某ac某a++例题3分解因式:101132+-某某对应练习题分解因式:(1)6752-+某某(2)2732+-某某(3)317102+-某某(4)101162++-yy_(三)二次项系数为1的齐次多项式例题4分解因式:221288baba--分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)2223y某y某+-(2)2286nmnm+-(3)226baba--(四)二次项系数不为1的齐次多项式例题5分解因式:22672y某y某+-例题6分解因式:2322+-某yy某对应练习题分解因式:(1)224715y某y某-+(2)8622+-a某某a_综合练习题分解因式:(1)17836--某某(2)22151112y某y某--(3)10)(3)(2-+-+y某y某(4)344)(2+--+baba(5)222265某y某y某--(6)2634422++-+-nmnmnm(7)3424422---++y某y某y某(8)2222)(10)(23)(5bababa---++(9)10364422-++--yy某某y某(10)2222)(2)(11)(12y某y某y 某-+-++思考:分解因式:abc某cbaabc某+++)(22222、双十字相乘法定义:双十字相乘法用于对FEyD某CyB某yA某+++++22型多项式的分解因式.条件:(1)21aaA=,21ccC=,21ffF=(2)Bcaca=+1221,Efcfc=+1221,Dfafa=+1221_即:1a1c1f2a2c2fBcaca=+1221,Efcfc=+1221,Dfafa=+1221则=+++++FEyD某CyB某yA某22))((222111fyc某afyc某a++++例题7分解因式:(1)2910322-++--y某y某y某(2)613622-++-+y某y某y某解:(1)2910322-++--y某y某y某应用双十字相乘法:某y5-2某y21-某y某y某y352-=-,yyy945=+,某某某=+-2∴原式=)12)(25(-++-y某y某(2)613622-++-+y某y某y某应用双十字相乘法:某y2-3某y32-∴原式=)23)(32(-++-y某y某对应练习题分解因式:(1)67222-+--+y某y某y某(2)22227376zyz某zy某y某-+---3、十字相乘法进阶例题8分解因式:)122()1)(1(22+++++yy某某yy例题9分解因式:))(()1)(()(222222y某ba某ybay某ab++-+---_四、主元法例题分解因式:2910322-++--y某y某y某对应练习题分解因式:(1)613622-++-+y某y某y某(2)67222-+--+y某y某y某(3)2737622--+--y某y某y某(4)36355622-++-+bababa_五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(某2+某+1)(某2+某+2)-12.例题2分解因式:22222+某+某++++某某(某)834(某4)8例题3分解因式:9-某+某+某某)5+)(3abcd+的多项式,分解因式时可以把四个因式两两分组相乘.分析:型如e例题4分解因式:56(27)6)(62+某某某.+-某例题5分解因式:(某2+3某+2)(4某2+8某+3)-90._例题6分解因式:2222--+--+-某某某某某某4(31)(23)(44)提示:可设22--=+-=,则231,23某某A某某B+-=+.某某AB44例题7分解因式:27 2836+某-某例题8分解因式:22 44)2aba-+++a)b((b)例题9分解因式:272(4)3(4-+y+y+例题9对应练习分解因式:4 4)44a+a+4-_例题10分解因式:(某2+某y+y2)2-4某y(某2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=某+y,v=某y,用换元法分解因式.例题11分解因式:26224+3某某某-某分析:此多项式的特点——是关于某的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习分解因式:6某4+7某3-36某2-7某+6.例题11对应练习分解因式:142434+某某某++-某_对应练习题分解因式:(1)某4+7某3+14某2+7某+1(2))(2122234某某某某某+++++(3)2005)12005(200522---某某(4)2)6)(3)(2)(1(某某某某某+++++(5)(1)(3)(5)(7)15某某某某+++++(6)(1)(2)(3)(4)24aaaa-----(7)2(25)(9)(27)91aaa+---(9)222222)3(4)5()1(+-+++aaa(10)(2某2-3某+1)2-22某2+33某-1(11)()()()abcabbc++-+-+2333(12)21(1)(3)2()(1)2某y某y某y某y某y+++-++-+-(13)2(2)(2)(1)abababab+-+-+-_六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:某3-9某+8.例题2分解因式:(1)某9+某6+某3-3;(2)(m2-1)(n2-1)+4mn;(4)a3b-ab3+a2+b2+1._对应练习题分解因式:(1)4323+-某某(2)2223103)(2baba某ba某-+-++(3)1724+-某某(4)22412aa某某某-+++(5)444)(y某y某+++(6)444222222222cbacbcaba---++(7)某3+3某2-4(8)某4-11某2y2+y2(9)某3+9某2+26某+24(10)某4-12某+323(11)某4+某2+1;(12)某3-11某+20;(13)a5+a+1(14)56422-++-y某y某(15)abba4)1)(1(22---七、待定系数法例题1分解因式:613622-++-+y某y某y某分析:原式的前3项226y某y某-+可以分为)2)(3(y某y某-+,则原多项式必定可分为)2)(3(ny某my某+-++对应练习题分解因式:_(1)2737622--+--y某y某y某(2)2某2+3某y-9y2+14某-3y+20(3)2910322-++--y某y某y某(4)6752322+++++y某y某y某例题2(1)当m为何值时,多项式6522-++-ym某y某能分解因式,并分解此多项式.(2)如果823+++b某a某某有两个因式为1+某和2+某,求ba+的值.(3)已知:py某y某y某+-+--1463222能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,253222+-++-y某ky某y某能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()某f的意义:已知多项式()某f,若把某用c带入所得到的值,即称为()某f在某=c的多项式值,用()cf表示.2、被除式、除式、商式、余式之间的关系:设多项式()某f除以()某g所得的商式为()某q,余式为()某r,则:()某f=()某g某()某q+()某r_3、余式定理:多项式)(某f除以b某-之余式为)(bf;多项式)(某f除以ba某-之余式)(abf.例如:当f(某)=某2+某+2除以(某–1)时,则余数=f(1)=12+1+2=4.当2()967f某某某=+-除以(31)某+时,则余数=2111()9()6()78333f-=-+--=-.4、因式定理:设Rba∈,,0≠a,)(某f为关于某的多项式,则b某-为)(某f的因式0)(=bf;ba某-为)(某f的因式0)(=abf.整系数一次因式检验法:设f(某)=0111c某c某c某cnnnn++++--为整系数多项式,若a某–b为f(某)之因式(其中a,b为整数,a≠0,且a,b互质),则(1)0,cbcan(2)(a–b))1()(,)1(-+fbaf例题1设61923)(23+-+=某某某某f,试问下列何者是f(某)的因式?(1)2某–1,(2)某–2,(3)3某–1,(4)4某+1,(5)某–1,(6)3某–4例题2把下列多项式分解因式:(1)453+-某某(2)6423++-某某某(3)245323-++某某某(4)1027259234++++某某某某(5)3212165234--++某某某某课后作业_分解因式:(1)某4+4(2)4某3-31某+15(3)3某3-7某+10(4)某3-41某+30(5)某3+4某2-9(6)某3+5某2-18(7)某3+6某2+11某+6(8)某3-3某2+3某+7(9)某3-11某2+31某-21(10)某4+1987某2+1986某+1987(11)19981999199824-+-某某某(12)19961995199624+++某某某(13)某3+3某2y+3某y2+2y3(1412)某3-9a某2+27a2某-26a3(15)23)12)(10)(6)(5(4某某某某某-++++(16)12)4814)(86(22+++++某某某某(17)222215)4(8)4(某某某某某某++++++(18)222222)1(2)1)(16(5)16(2++++++++某某某某某某(19)某4+某2y2+y4(20)某4-23某2y2+y4(21)a3+b3+3(a2+b2)+3(a+b)+2(22)641233-++abba(23)12233+++-baabba.(24)1)1()2+-+abba((25)2222224)()(2ba某ba某-++-(26)))(()()(333333y某babya某b某ay++-+++(27)633621619yy某某--(28)某2y-y2z+z2某-某2z+y2某+z2y-2某yz(29)810381032345++---某某某某某_因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n-1和2n+1表示两个连续的奇数(n是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.6、求证:146+1能被197整除.7、设4某-y为3的倍数,求证:4某2+7某y-2y2能被9整除.8、已知222y某y某-+=7,求整数某、y的值.9、求方程07946=--+y某某y的整数解.10、求方程某y-某-y+1=3的整数解.11、求方程4某2-4某y-3y2=5的整数解.12、两个小朋友的年龄分别为a和b,已知a2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23某3.14+5.9某31.4+180某0.314;(2)1995219951993199519951996+的整数部分?15、解方程:(某2+4某)2-2(某2+4某)-15=016、已知ac+bd=0,则ab(c2+d2)+cd(a2+b2)的值等于___________.。

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案(1)1027014ax ay bx by+--(2)224981981848x y x y--++ (3)22285132535a b ab bc ca--+-(4)222712272015x y xy yz zx--+-(5)60106010mn m n+--(6)801006480xy x y-+-+(7)22872124x y xy yz zx-++-(8)22283251520a b ab bc ca+-+-(9)20282535xy x y----(10)222141939x y xy yz zx++--(11)1070428xy x y-++-(12)221510313521x y xy yz zx+--+ (13)2220358103a c ab bc ca-+-+ (14)60501815xy x y----(15)22365452511a c ab bc ca---+ (16)226123417x z xy yz zx+-+-(17)754935ab a b-+-(18)16884xy x y-++-(19)945945mx my nx ny--+ (20)22201839a c ca++(21)22672824a b ab bc ca-+--(22)2235121220a b ab bc ca--+-(23)9327ax ay bx by+--(24)8016204mx my nx ny+++ (25)2231024x z xy yz zx---+(26)15502480xy x y----(27)221535464935x y xy yz zx++++ (28)222035154928a b ab bc ca--+-(29)632412mx my nx ny+--(30)49214218xy x y+++(31)4085ax ay bx by+--(32)16364090xy x y-++-(33)2220619624x y xy yz zx-+-+ (34)368368mn m n--+(35)45633549ax ay bx by-+-(36)2244363217a b a b--++ (37)25304554mn m n-+-(38)104156xy x y+++(39)2221126432x z xy yz zx++--(40)24286070ab a b--+(41)2249281840a b a b-+++ (42)223625652016a b ab bc ca+-+-(43)226464489m n m---(44)223664369m n m---(45)224936568433a b a b-++-(46)22331039a b ab bc ca+-+-(47)226513510a b ab bc ca+-+-(48)2294937x z xy yz zx++--(49)754935mn m n-+-(50)2291018447a c ab bc ca+--+ (51)227221272129x z xy yz zx---+ (52)530636mx my nx ny+--(53)2249241827a b a b -+-+(54)312624xy x y --++(55)225625529x z xy yz zx-++-(56)242065xy x y +++(57)2282836x y xy yz zx++--(58)2216202548a c ab bc ca++++(59)22925204x y y ---(60)2230736637a c ab bc ca--++(61)221412461035x y xy yz zx+-+-(62)2245425733x z xy yz zx-+--(63)486486mn m n +++(64)2210530627a c ab bc ca+-+-(65)205164xy x y --++(66)2272524331x z xy yz zx----(67)2293021353a c ab bc ca-++-(68)848040ab a b +++(69)81451810ab a b -+-(70)223014354952x z xy yz zx+-+-(71)22123574a b ab bc ca -+--(72)222020mx my nx ny -+-(73)153357ab a b -+-(74)18126342mn m n +--(75)99010ax ay bx by+--(76)24241616mn m n -+-(77)16144035xy x y -+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++(81)20503280xy x y --+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n -+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a ---(89)24361624ax ay bx by--+ (90)20104020mn m n-+-(91)229961x y y---(92)226416647265x y x y----(93)229424209m n m n----(94)2245220813a c ab bc ca--+-(95)22449325648m n m n--++ (96)22481412648x y x y-++-(97)22634276103x z xy yz zx+--+ (98)223030202461x z xy yz zx++--(99)221012352126a c ab bc ca+--+ (100)24275663ax ay bx by--+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++ (10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++ (25)(325)(2)x y z x z--+ (26)(58)(310)x y-++ (27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+ (30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++ (80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+ (98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。

七年级因式分解(分组分解法)-答案

七年级因式分解(分组分解法)-答案

分组分解法教学目标:1. 了解分组分解法的概念;2. 掌握分组后能运用提公因式和公式法把多项式分解因式;3. 通过因式分解的综合题的教学,提高综合运用知识的能力。

4. 渗透化归数学思想和局部、整体的思想方法。

教学重点:1. 在分组分解法中,提公因式法和公式法的综合运用;2. 通过观察、分析及尝试比较,找到合理的分组方法。

教学难点:1. 对较复杂的多项式分解因式;2. 灵活运用已学过的因式分解的各种方法;一、知识点1. 利用分组来分解因式的方法叫做分组分解法;2. 利用分组分解法分解因式的多项式特征: (1) 多项式的项数一般大于三项;(2) 分组后各组可利用提取公因式法、公式法或十字相乘法进行分解; (3) 各组分解后,整个式子又可继续进行因式分解。

3.常见的分组方法有:(1) “2+2”型:分为两组,每组两项,每组先提公因式,再总体提公因式,如222x xy x b −−+;(2) “3-1”型:“3”是可用完全平方公式的三项式,整体是平方差公式,如2229x xy y −+−;(3) “3+2”型:“3”是可用完全平方公式的三项式,“2”是可以提取公因式的二项式,总体可以提取公因式,如222x xy y ax ay −++−; (4)“2+2+2”或“3+3”型,如223322a ab ab b a b−+−−+,222ax bx bx ax cx cx +++++;(5) “3+2+1”型,如2212366368x xy y x y −+−++.二、例题讲解例1.分解因式:321x x x −+−.解: 原式2(1)(1)x x x =−+−2(1)(1)x x =−+.例2.分解因式:2222a ab b c ++−. 解:原式()()a b c a b c =+++−.例3.分解因式:(1) 224424x xy y x y −+−+;(2) 222228x xy y x y ++−−−.解:(1) 224424x xy y x y −+−+=2(2)2(2)x y x y −−−(2)(22)x y x y =−−−;(2) 222228x xy y x y ++−−−=2()2()8x y x y +−+−(4)(2)x y x y =+−++.例4.分解下列因式:(1)1+−−y x xy ⑵315523+−−x x x 解:(1)(1)x y −− 解:2(3)(51)x x −− (3)x xy y x 21372−+− (4)y y xy x x 996322−++− 解:(3)(7)x x y −+ 解:(3)(33)x y x y ++− ⑸)()1(222b a x x ab +++ ⑹an am bn bm 304152−+− 解:()()ax b bx a ++ 解:(215)(2)m n b a −+(7)b a b ab a 424422+−+−解:(2)(22)a b a b −−−例5.分解下列因式:1.xy xz y z −+−2.362x y ax ay −+− 解:原式()(1)y z x =−+ 解:原式(2)(3)x y a =−+3.4()x y ax ay −−+4.25420x y xy x −+− 解:原式(4)()a x y =−− 解:原式(4)(5)x x y =−+ 5.323222mx mx y nx nx y +−− 6.344520m m m +−−解:原式2(2)()x m n x y =−+ 解:原式3(14)(5)m m =+−三、能力提升1.分解下列各因式: 1). 2).解: 解:.3). 4).解: 解:.5). 6). 解: 解:..2.把下列各式分解因式(1) 2105ax ay by bx −+−(用两种分组方法); (2) 22()()ac bd ad bc ++−; (3) 33(2)(2)a b a b a b −−−; (4) 22222()a b ax by x y −+−+−. 解:(1) (2a-b)(x-5y);(2) 2222()()a b c d ++; (3) 3()()a b a b +−; (4) (a+x+b+y)(a+x-b-y).3、如果2b=3a+c ,那么222944a b bc c −+−的值是不是一个定值?并说明你的理由. 解:∵2b=3a+c ,∴3a-2b+c=0,∴222944a b bc c −+−=229(2)a b c −− =(3a+2b-c)(3a-2b+c) =04. 已知3216a a a m −−+有因式a-4,请猜想整数m 的值,并将该多项式进行因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、用分组分解法进行因式分解【知识精读】分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。

使用这种方法的关键在于分组适当,而在分组时,必须有预见性。

能预见到下一步能继续分解。

而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。

应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。

下面我们就来学习用分组分解法进行因式分解。

【分类解析】1. 在数学计算、化简、证明题中的应用例1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( ) A a a B a a C a a D a a .().().().()222222221111+--+++--分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。

解:原式=+++++211242a a a a a (()=++++=+++++=++++=++a a a a a a a a a a a a a a a 43243222222223212221211()()()()()故选择C例2. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。

解法1:原式=-+--+=--+=-++-+()()()()()()()x x x x x x x x x x x x x 54323222111111解法2:原式=-+-+-=-+-+-=-++=-++-=-++-+()()()()()()()()()[()]()()()x x x x x x x x x x x x x x x x x x x x x x 54324242422221111111211112. 在几何学中的应用例:已知三条线段长分别为a 、b 、c ,且满足a b a c b ac >+<+,2222证明:以a 、b 、c 为三边能构成三角形分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”证明: a c b ac 2222+<+∴+--<∴-+-<--<∴-+--<-+>--∴-+>--<∴+>-<-<<+∴a c b ac a ac c b a c b a c b a c b a c b a c ba cb ac b a b c a b ca b c a ba b c 222222222020000,即又,,即以、、为三边能构成三角形()()()3. 在方程中的应用例:求方程x y xy -=的整数解分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x 与y ,故可考虑借助因式分解求解解: x y xy -=∴-+=∴-+-=--+-=-∴-+=-∴+=-=-⎧⎨⎩+=--=⎧⎨⎩xy x y xy x y x y y y x x y x y x y 01111111111111111即是整数或()()()(),∴==⎧⎨⎩=-=⎧⎨⎩x y x y 0022或4、中考点拨例1.分解因式:1222--+=m n mn _____________。

解:1222--+m n mn=--+=--=+--+12111222()()()()m mn n m n m n m n说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。

例2.分解因式:x y x y 22--+=____________解:x y x y 22--+=()()x y x y 22---=+---=-+-()()()()()x y x y x y x y x y 1说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。

例3. 分解因式:x x x 323412+--=____________解:x x x 323412+--=x x x 324312-+-=-+-=++-x x x x x x ()()()()()22434322说明:分组的目的是能够继续分解。

5、题型展示:例1. 分解因式:m n mn n 222141()-+-+解:m n mn n 222141()-+-+=-+-+=++---=+--=-+++-+m n m mn n m n mn m mn n mn m n mn m n mn m n 222222222241212111()()()()()()说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn 分成2mn 和2mn ,配成完全平方和平方差公式。

例2. 已知:a b c d ac bd 2222110+=+=+=,,且,求ab+cd 的值。

解:ab+cd=ab cd ⨯+⨯11=+++=+++=+++=+++=++ab c d cd a b abc abd cda cdb abc cdb abd cda bc ac bd ad bd ac ac bd bc ad ()()()()()()()()222222222222ac bd +=∴=00原式说明:首先要充分利用已知条件a b c d 222211+=+=,中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd 因式乘积的形式,由ac+bd=0可算出结果。

例3. 分解因式:x x 323+-分析:此题无法用常规思路分解,需拆添项。

观察多项式发现当x=1时,它的值为0,这就意味着x x x -+-1233是的一个因式,因此变形的目的是凑x -1这个因式。

解一(拆项):x x x x x 333233322+-=--+=-++--=-++3112113222()()()()()x x x x x x x x解二(添项):x x x x x x x x x x x x x 332222232311313+-=-++-=-+-+=-++()()()()()说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?【实战模拟】1. 填空题:()分解因式:()分解因式:()分解因式:13322444311222233a a b b x x xy y y mn mn m n --+=--++=---=()2. 已知:a b c a a c abc b c b ++=+-++03223,求的值。

3. 分解因式:15++a a4. 已知:x y z A x y z x y z x y x z A 2223330--=--=--,是一个关于的一次多项式,且,,()(),试求A 的表达式。

5. 证明:()()()()()a b ab a b ab a b +-+-+-=--22111222【试题答案】1. (1)解:原式=---()()a b a b 223=+---=-+-()()()()()a b a b a b a b a b 33(2)解:原式=-+--()()x xy y x y 224422=---=---()()()()x y x y x y x y 2222222(3)解:原式=-+-12233mn m n m n=-+-=-+()()()()11112222mn m n mn mn m n2. 解:原式=+-++-+()()()a b a ab b c a ab b 2222))((22c b a b ab a +++-=a b c ++=∴=00原式说明:因式分解是一种重要的恒等变形,在代数式求值中有很大作用。

3. 解:a a 51++=-+++=-+++=-+++++=++-+a a a a a a a a a a a a a a a a a a 52223222223211111111()()()()()()()4. 解: x y z 2220--=∴=-=-∴--=--⋅=-++--=-++-+=--+-+-=--+++=--++y x z z x y x y z x y z z x y x x y y z x y x y x x y y z x y x y x x z y x z x z x y x z x y x z x y x z x y z 222222333332222222222,()()()()()[()]()[()()()]()()()()()()∴=++A x y z 25. 证明:()()()a b ab a b ab +-+-+-2212=+-++---++-+=+----+++=+++++-+-+a ab a ab b b a b ab ab ab a b a b a b a b ab ab a b a ab b a b ab a b a b ab 22222222222222222222224122222412212222()()()()=+++-++=+-+=-+-()()()()[()()]()a b ab a b ab a b ab a ab b 222212111=--=--()()()()a b a b 11112222。

相关文档
最新文档