因式分解培优训练

合集下载

2024年中考数学复习-因式分解的多种方法考点培优练习

2024年中考数学复习-因式分解的多种方法考点培优练习

因式分解的多种方法考点培优练习 考点直击 1.因式分解的常见方法:(1)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式,这种分解因式的方法叫作提公因式法.(2)运用公式法: a²−b²=(a +b )(a −b );a²±2ab +b²=(a ±b )²2.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公因式,然后再考虑是否能用公式法分解.3.分解因式时常见的思维误区:(1)提公因式时,其公因式应找字母指数最低的,而不是以首项为准.(2)提取公因式时,若有一项被全部提出,括号内的项“1”易漏掉.(3)分解不彻底,如保留中括号形式、还能继续分解等.4.因式分解的特殊方法:分组分解法和十字相乘法.其中,形如 x²+px +q 的二次三项式,如果常数项q 能分解为两个因数a ,b 的积,并且a+b 恰好等于一次项的系数p ,那么它就可以分解因式,即 x²+px +q =x²+(a +b )x +ab =(x+a)(x+b),这种因式分解的方法称为十字相乘法.例题精讲例 1 【例题讲解】因式分解: x³−1.∵x³−1为三次二项式,对于方程 x³−1=0,x =1是其1个解.∴ 我们可以猜想 x³−1可以分解成 (x −1)(x²+ax +b ),展开等式右边得 x³+(a −1)2 ²+(b −a )x −b.:x³−1=x³+(a −1)x²+(b −a )x −b 恒成立,∴ 等式两边多项式的同类项的对应系数相等,即 {a −1=0,b −a =0,−b =−1,解得 {a =1,b =1. ∴x³−1=(x −1)(x²+x +1).【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数对应相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法.【学以致用】(1)若 x²−mx −12=(x +3)(x −4),则 m =;(2)若 x³+3x²−3x +k 有一个因式是. x +1,,求 k 的值;(3)请判断多项式 x⁴+x²+1能否分解成两个整系数二次多项式的乘积.若能,请直接写出结果;若不能,请说明理由.【思路点拨】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘多项式的规律即可求得结论.举一反三1 (北京中考)因式分解:a²−4a+4−b².举一反三2 阅读下列材料:我们知道,多项式a²+6a+9可以写成( (a+3)²的形式,这就是将多项式a²+6a+9因式分解.当一个多项式(如a²+ 6a+8)不能写成两数和(或差)的平方的形式时,我们通常采用下面的方法:a²+6a+8=(a+3)²−1=(a+2)(a+4)请仿照上面的方法,将下列各式因式分解:(1)x²-6x-27;(2)a²+3a-28;(3)x²-(2n+1)x+n²+n.举一反三3 下面是某同学对多项式( (x²−4x+2)(x²−4x+6)+4进行因式分解的过程:解:设x²−4x=y,原式=(y+2)(y+6)+4 (第一步)=y²+8y+16 (第二步)=(y+4)² (第三步)=(x²−4x+4)² (第四步)(1)该同学第二步到第三步运用了因式分解的 (填字母).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? (填“是”或“否”).如果否,直接写出最后的结果: .(3)请你模仿以上方法尝试对多项式(x²−2x)(x²−2x+2)+1进行因式分解.例2 (吉林中考)在下列三个整式 x²+2xy,y²+2xy,x²中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【思路点拨】本题为开放性试题,在第一步组合过程中,考虑下一步因式分解的适当方法,可以用提取公因式法或公式法.举一反三4 (湖北中考)给出三个多项式: X =2a²+3ab +b²,Y =3a²+3ab, Z =a²+ab.请你任选两个进行加(或减)法运算,再将结果分解因式.举一反三5 阅读下列材料:利用完全平方公式,可以将多项式变形为 a (x +m )²+n 的形式,我们把这样的变形方法叫作多项式 ax²+bx +c (a ≠0)的配方法.运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如:x 2+9x −10=x 2+9x +(92)2−(92)2−10=(x +92)2−1214=(x +92+112)(x +92−112)=(x +10)(x −1)根据以上材料,解答下列问题:(1)用配方法及平方差公式把多项式 x²−7x +12进行因式分解;(2)用多项式的配方法将x²+6x−9化成a(x+m)²+n的形式,并求出多项式的最小值;(3)求证:x,y 取任何实数时,多项式x²+y²−4x+2y+6的值总为正数.例3 阅读材料:若m²−2mn+2n²−8n+16=0,求m,n 的值.解:∵m²-2mn+2n²-8n+16=0,∴ (m²-2mn+n²)+(n²-8n+16)=0, ∴(m−n)2+(n−4)2=0,∴(m−n)2=0,(n−4)2=0,∴n= 4,m=4.根据你的观察,探究下面的问题:(1) 已知x²+2xy+2y²+2y+1=0,求2x+y的值;(2)已知a−b=4,ab+c²−6c+13=0求a+b+c的值.【思路点拨】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x,y的值,再求得2x+y的值;(2)根据a−b=4,ab+c²−6c+13=0,可以得到a,b,c 的值,再求得a+b+c的值.举一反三6 (南通中考)已知A=a+2,B=a²−a+5,C=a²+5a−19,其中a>2.(1) 求证: B−A>0,,并指出 A 与 B 的大小关系;(2)指出A与C哪个大?说明理由.举一反三7 (杭州中考)已知a,b,c 为. △ABC的三边,且满足a²c²−b²c²=a⁴−b⁴,试判断△ABC的形状.过关检测基础夯实1.(自贡中考)把多项式a²−4a因式分解,结果正确的是 ( )A. a(a-4)B.(a+2)(a-2)C. a(a+2)(a-2)D.(a−2)²−42.(桂林中考)因式分解a²−4的结果是( )A.(a+2)(a-2)B.(a−2)²C.(a+2)²D. a(a-2)3.(中山中考)因式分解1−4x²−4y²+8xy,正确的分组是 ( )A.(1−4x²)+(8xy−4y²)B.(1−4x²−4y²)+8xyC.(1+8xy)−(4x²+4y²)D.1−(4x²+4y²−8xy)4.(潍坊中考)下列因式分解正确的是 ( )A.3ax²−6ax=3(ax²−2ax)B.x²+y²=(−x+y)(−x−y)C.a²+2ab−4b²=(a+2b)²D.−ax²+2ax−a=−a(x−1)²5.(聊城中考)因式分解:x(x—2)—x+ 2= .6.(漳州中考)若x²+4x+4=(x+2)(x+n),则n= .7.(湖州中考)因式分解:a³−9a.8.因式分解: a²−b²+a−b.9.(北京中考)因式分解:m²−n²+2m−2n.能力拓展10.(临沂中考)多项式mx²−m与多项式x²−2x+1的公因式是 ( )A. x-1B. x+1C.x²−1D.(x−1)²11.(盘锦中考)下列等式从左到右的变形,属于因式分解的是 ( )A.x²+2x−1=(x−1)²B.(a+b)(a−b)=a²−b²C.x²+4x+4=(x+2)²D.ax²−a=a(x²−1)12.(兰州中考)因式分解: m³−6m²+ 9m= .13.(宜宾中考)因式分解:b²+c²+2bc− a²= .14.(常德中考)多项式ax²−4a与多项式x²−4x+4的公因式是 .15.(杭州中考)化简: (a−b)(a+b)²−(a+b)(a−b)²+2b(a²+b²).16.(茂名中考)因式分解:9(a+b)²−(a−b)².17.(扬州中考)(1) 计算: √9−(−1)2+(−2012)0;(2)因式分解: m³n −9mn.18.(十堰中考)已知::a+b=3, ab=2,求下列各式的值:(1)a²b +ab²;(2)a²+b².19.(济南中考)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解:4a²,(x+y)²,1,9b².综合创新20.设正整数a,b,c>100,满足 c²−1=a²(b²−1),且a>1,则a/b 的最小值是 ( )A. 13B. 12 C. 2 D.3 21.求证:对任何整数x 和y ,下式的值都不会等于33.x⁵+3x⁴y −5x³y²−15x²y³+4xy⁴+12y ⁵.【例题精讲】1.(1)1 (2) -5 ( (3)x⁴+x²+1=(x²+ x +1)(x²−x +1)解析: (1)∵(x +3)(x −4)=x²−x −12,∴--m=-1,∴m=1;(2) 设另一个因式为 (x²+ax +k ),(x +1)(x²+ax +k )= x³+ax²+kx +x²+ax +k =x³+(a + 1)x²+(a +k )x +k,∴x³+(a +1). x²+(a +k )x +k =x³+3x²−3x +k,∴a+1=3,a+k=-3,解得a=2,k=-5;(3)设多项式 x⁴+x²+1能分解成 ①(x²+1)(x²+ax +b )或( ②(x²+x + (1)(x²+ax +1),①(x²+1)(x²+ax + b)=x⁴+ax³+bx²+x²+ax +b =x⁴+ ax³+(b +1)x²+ax +b,∴a =0,b +1=1,b=1,由b+1=1得b=0≠1,矛盾; ②(x²+x +1)(x²+ax +1)=x⁴+(a + 1)x³+(a +2)x²+(a +1)x +1,∴a +1=0,a+2=1,解得a=-1.即. x⁴+x²+ 1=(x²+x +1)(x²−x +1).2.方法一:( (x²+2xy )+x²=2x²+2xy =2x(x+y)方法二:( (y²+2xy )+x²=(x +y )²方法三: (x²+2xy )−(y²+2xy )=x²− y²=(x +y )(x −y )方法四: (y²+2xy )−(x²+2xy )=y²− x²=(y +x )(y −x )3.(1)1 (2)3解析: (1):x 2+2xy +2y 2+2y +1=0,∴(x²+2xy +y²)+(y²+2y +1)=0, ∴(x +y )²+(y +1)²=0,∴x +y =0,y+1=0,解得x=1,y=-1,∴2x+y=2×1+(-1)=1;(2) ∵a-b=4,∴a=b+4,∴将a=b+4代入( ab +c²−6c +13=0,得 b²+4b +c²−6c +13=0, ∴(b²+4b +4)+(c²−6c +9)=0,∴(b +2)²+(c-3)²=0,∴b+2=0,c-3=0,解得b=-2,c=3,∴a=b+4=-2+4=2,∴a+b+c=2-2+3=3.【举一反三】1. 原式: =(a²−4a +4)−b²=(a −2)²−b²=(a-2+b)(a-2-b).2.(1) 原式=x²--6x+9-36=(x-3)²-6²=(x-3-6)(x-3+6)=(x+3)(x-9)(2)原式 =a 2+3a +(32)2−(32)2−28= (a +32)2−1214=(a +32−112)(a +32+ 112)=(a −4)(a +7) (3) 原式 =x²− (2n +1)x +(n +12)2−(n +12)2+n 2+ n =[x −(n +12)]2−(12)2=(x −n − 12−12)(x −n −12+12)=(x −n −1)(x-n)3.(1) C (2) 否(x-2)⁴ (3) 原式= (x²−2x )²+2(x²−2x )+1=(x²−2x + 1)²=(x −1)⁴4.解答一: Y +Z =(3a²+3ab )+(a²+ab )= 4a²+4ab =4a (a +b )解答二: X −Z =(2a²+3ab +b²)−(a²+ ab)=a²+2ab +b²=(a +b )²解答三: Y −X =(3a²+3ab )−(2a²+ 3ab +b²)=a²−b²=(a +b )(a −b )(其他合理答案均可)5.(1) 原式 =x 2−7x +494−494+12= (x −72)2−14=(x −72+12)(x −72− 12)=(x −3)(x −4) (2) 原式 =x²+6x+9-18=(x+3)²-18,最小值为-18(3) 证明:. x²+y²−4x +2y +6=(x − 2)²+(y +1)²+1≥1>0,,则x,y 取任何实数时,多项式 x²+y²−4x +2y +6的值总为正数.6.(1) 证明: B −A =(a²−a +5)−(a + 2)=a²−2a +3=(a −1)²+2>0,所以B>A; ( (2)C −A =a²+5a −19−a −2=a²+4a-21=(a+7)(a--3),因为a>2,所以a+7>0,当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.7.等腰三 角形或直角三 角形 解析: ∴a²c²−b²c²=a⁴−b⁴,∴c²(a²−b²)= (a²+b²)(a²−b²),∴c²=a²+b²或 a²=b²,∴△ABC 是等腰三角形或直角三角形.【过关检测】1. A2. A3. D4. D 解析:3ax²-6ax=3ax(x-2),A 错误; x²+y²无法因式分解,B 错误; a²+ 2ab −4b²无法因式分解,C 错误.5.(x--2)(x-1)6. 2 解析: ∴(x +2)(x +n )=x²+(n +2)x+2n,∴n+2=4,2n=4,解得n=2.7. a(a+3)(a-3)解析:原式 =a(a²−9)=a(a+3)(a-3).8.(a-b)(a+b+1)解析:原式 =(a²−b²)+(a-b)=(a+b)(a-b)+(a-b)=(a-b)(a+b+1).9.(m-n)(m+n+2) 解析:原式 =(m²−n²)+(2m--2n)=(m+n)(m--n)+2(m--n)=(m-n)(m+n+2).10. A 解析:mx²-m=m(x--1)(x+1), x²−2x +1=(x −1)²,多项式 mx²−m 与多项式 x²−2x +1的公因式是x-1.11. C 解析: x²+2x −1≠(x −1)²,, A 错误; a²−b²=(a +b )(a −b )不是因式分解,B 错误;( ax²−a =a (x²−1)=a (x +1)(x −1),分解不完全,D 错误.12. m(m-3)² 解析:原式; =m(m²−6m + 9)=m (m −3)².13.(b+c+a)(b+c-a) 解析:原式=(b+ c)²−a²=(b+c+a)(b+c−a).14. x--2 解析: ∴ax²−4a=a(x²−4)=a(x+2)(x−2),x²−4x+4=(x−2)²,∴多项式ax²−4a与多项式x²−4x+4的公因式是x-2.15. 4a²b 解析:( (a−b)(a+b)²−(a+b)(a−b)²+2b(a²+b²)=(a−b)(a+b).(a+b−a+b)+2b(a²+b²)=2b(a²−b²)+2b(a²+b²)=2b(a²−b²+a²+b²)=4a²b.16.4(2a+b)(a+2b) 解析: 9(a+b)²−(a−b)²=[3(a+b)]²−(a−b)²=[3(a+b)+(a-b)][3(a+b)-(a-b)]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).17.(1) 3 (2) mn(m+3)(m-3)解析:(1)√9−(−1)2+(−2012)0=3−1+1=3;(2)m³n−9mn=mn(m²−9)=mn(m+3)(m-3).18.(1) 6 (2)5解析:( (1)a²b+ab²=ab(a+b)=2×3=;(2):(a+b)²=a²+2ab+b²,∴a²+( b²=(a+b)²−2ab=3²−2×2=5.19. 4a²--9b²=(2a+3b)(2a-3b) (x+y)²-1=(x+y+1)(x+y-1) (x+y)²−4a²=(x+y+2a)(x+y−2a)(x+y)²−9b²=(x+y+3b)(x+y−3b)4a²−(x+y)²=[2a+(x+y)][2a−(x+y)]=(2a+x+y)(2a−x−y)9b²−(x+y)²=[3b+(x+y)][3b−(x+y)]=(3b+x+y)(3b−x−y)1−(x+y)²=[1+(x+y)][1−(x+y)]=(1+x+y)(1-x--y)20. C 解析: ∴c²−1=a²(b²−1),正整数a,b,c>100,∴c²=a²(b²−1)+1=a²b²−a²+1<a²b²,∴c<ab,∴c≤ab--1, ∴a²b²−a²+1=c²≤(ab−1)²,化简得a2≥2ab,∴a≥2.b21. 证明:原式=(x⁵+3x⁴y)−(5x³y²+15x²y³)+(4xy⁴+12y⁵)=x⁴(x+3y)−5x²y²(x+3y)+4y⁴(x+3y)=(x+ 3y)(x⁴−5x²y²+4y⁴)=(x+3y).(x²−4y²)(x²−y²)=(x+3y)(x−2y)(x+2y)(x+y)(x-y).当y=0时,原式=x⁵≠33;;当y≠0时,x+3y,x-y,x+y,x-2y,x+2y为互不相同的整数,而33 不可能分解为5个不同因数的积. ∴x⁵+3x⁴y−5x³y²−15x²y³+4xy⁴+12y⁵的值不会等于33.。

人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

 人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。

因式分解培优提高题

因式分解培优提高题

因式分解题一、选择题1.下列各题中,计算正确的有( )①3a 3·2a 3=6a 3; ②4a 3·ba n =4a 3n b ; ③(4x m +1z 3) ·(-2x 2y z 2)=-8x 2m +2yz 6; ④(-ab 3c 2)·(-4b c)·(-3ab 2)=-12a 2b 6c 3.A .1个B .2个C .3个D .4个2.计算(0.5×105)3×(4×103)2的结果是( )A .2×1013B .0.5×1014C .8×1021D .2×10216.计算(-2)2004+(-2)2005的结果是( ).A .-22004B .22004C .-2D .-220057.规定一种运算:a *b =ab +a +b ,则(-a )*(-b )+a *b 的计算结果为 ( )A .0B .2aC .2bD .2ab8.(x 2-m x +1)(x -2)的积中x 的二次项系数为零,则m 的值是( ).A .1B .-1C .-2D .210.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是( )A .(x +y +z)2=x 2+y 2+z 2+2y +x z +y zB .(x +y +z)2=x 2+y 2+z +2xy +x z +2y zC .(x +y +z)2=x 2+y 2+z 2+2xy +2x z +2y zD .(x +y +z)2=(x +y )2+2x z +2y z 11.-6xyz +3xy 2-9x 2y 的公因式是( )A.-3x B .3xz C .3yz D .-3xy12.把多项式(3a -4b )(7a -8b )+(11a -12b )(8b -7a )分解因式的结果是( )A .8(7a -8b )(a -b )B .2(7a -8b )2C .8(7a -8b )(b -a )D .-2(7a -8b )13.把(x -y )2-(y -x )分解因式为( )A .(x -y )(x -y -1)B .(y -x )(x -y -1)C .(y -x )(y -x -1)D .(y -x )(y -x +1)14.下列各个分解因式中正确的是( )A .10ab 2c +6ac 2+2ac =2ac (5b 2+3c )B .(a -b )3-(b -a )2=(a -b )2(a -b +1)C .x (b +c -a )-y (a -b -c )-a +b -c =(b +c -a )(x +y -1)D .(a -2b )(3a +b )-5(2b -a )2=(a -2b )(11b -2a )15.观察下列各式①2a +b 和a +b ,②5m (a -b )和-a +b ,③3(a +b )和-a -b ,④x 2-y 2和x 2和y 2。

苏科版九年级数学上册 因式分解法解一元二次方程- 培优训练【含答案】

苏科版九年级数学上册 因式分解法解一元二次方程- 培优训练【含答案】

2、下列一元二次方程最适合用分解因式法来解的是( )
A.(x+1)(x-3)=2
B.2(x-2)2=x2-4
C.x2+3x-1=0
D.5(2-x)2=3
[解析] A,C,D 项不适合用分解因式法解方程,B 项最适合用分解因式法解方程.故选 B.
3、下列方程能用因式分解法求解的有( )
① x2 x ;
A.x=k
B.x=±k
C.x=k 或 x=﹣k﹣1
D.x=k 或 x=﹣k+1
10、定义一种新运算:a♣b=a(a-b).例如,4♣3=4×(4-3)=4.若 x♣2=3,则 x 的值是( )
A.x=3 二、填空题
B.x=-1 C.x1=3,x2=1 D.x1=3,x2=-1
11、用因式分解法解方程 5(x+3)-2x(x+3)=0,可将其化为两个一元一次方程:
2
0
,故②能用分解因式法求解;
方程 x x2 3 0 不能用因式分解法求解;
方程 (3x 2)2 16 可变形为 3x 2 43x 2 4 0 ,即 3x 23x 6 0 ,故④能用
分解因式法求解.
综上,能用因式分解法求解的方程有 3 个,故选:C.
4、用因式分解法解方程 3x(2x-1)=4x-2,则原方程应变形为( ) A.2x-1=0 B.3x=2 C.(3x-2)(2x-1)=0 D.6x2-7x+2=0 [解析] 3x(2x-1)=4x-2,3x(2x-1)-(4x-2)=0,3x(2x-1)-2(2x-1)=0,(2x-1)(3x-2)=0. 故选 C.
B.函数思想 C.数形结合思想 D.公理化思想
2、下列一元二次方程最适合用分解因式法来解的是( )
A.(x+1)(x-3)=2

因式分解精练(培优)

因式分解精练(培优)

因式分解精选练习一分解因式 1.2x 4y 2-4x 3y 2+10xy 4 、2. 5x n+1-15x n +60x n —1 、 3.()()431241a b a b ---4. (a+b)2x 2-2(a 2-b 2)xy+(a-b)2y 2 、5. x 4-1、6.-a2-b2+2ab +47. 134+--x x x 、 8.()()422223612y y y y x y y x -++-+9. ()()()()422223612y x y x y x x y x x +-+++-+、10.a 2+b 2+c 2+2ab+2bc+2ac11.x 2-2x-8、 12.3x 2+5x-2 、13. (x+1)(x+2)(x+3)(x+4)+1、14. (x 2+3x+2)(x 2+7x+12)-120.15.把多项式3x 2+11x+10分解因式。

16.把多项式5x 2―6xy ―8y 2分解因式。

因式分解精选练习二、证明题17.求证:32000-4×31999+10×31998能被7整除。

18.设n 为正整数,且64n -7n 能被57整除,证明:21278+++n n 是57的倍数.19.求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正。

20.已知x 2+y 2-4x+6y+13=0,求x,y 的值。

三 求值。

21.已知a,b,c 满足a-b=8,ab+c 2+16=0,求a+b+c 的值 .22.已知x 2+3x+6是多项式x 4-6x 3+mx 2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。

因式分解精选练习1. 解:原式=2xy 2·x 3-2xy 2·2x 2+2xy 2·5y 2 =2xy 2 (x 3-2x 2+5y 2)。

2.解:原式=5 x n--1·x 2-5x n--1·3x +5x n--1·12=5 x n--1 (x 2-3x +12)3.解:原式=3a(b-1)(1-8a 3) =3a(b-1)(1-2a)(1+2a+4a 2)*4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)25.解:原式=(x 2+1)(x 2-1)=(x 2+1)(x+1)(x-1)6.解:原式=-(a 2-2ab +b 2-4)=-(a-b+2)(a-b-2)7. 解: 原式= x 4-x 3-(x-1)= x 3(x-1)-(x-1)=(x-1)(x 3-1)=(x-1)2(x 2+x+1)*提8. 解:原式=y 2[(x+y)2-12(x+y)+36]-y 4=y 2(x+y-6)2-y 4=y 2[(x+y-6)2-y 2]=y 2(x+y-6+y)(x+y-6-y)= y 2(x+2y-6)(x-6)9. 解:原式== (x+y)2(x 2-12x+36)-(x+y)4=(x+y)2[(x-6)2-(x+y)2]=(x+y)2(x-6+x+y)(x-6-x-y)=(x+y)2(2x+y-6)(-6-y)= - (x+y)2(2x+y-6)(y+6)10.解:原式=.(a 2+b 2 +2ab )+2bc+2ac+c 2=(a+b)2+2(a+b)c+c 2 =(a+b+c)211.解:原式=x 2-2x+1-1-8 =(x-1)2-32=(x-1+3)(x-1-3)=(x+2)(x-4)12.解:原式=3(x 2+53x)-2 =3(x 2+53x+2536-2536)-2 =3(x+56)2-3×2536-2=3(x+56)2-4912 =3[(x+56)2-4936]=3(x+56+76)(x+56-76)=3(x+2)(x-13) =(x+2)(3x-1)13.解:原式=[(x+1)(x+4)][(x+2)(x+3)]+1=(x 2+5x+4)(x 2+5x+6)+1令x 2+5x=a,则 原式=(a+4)(a+6)+1=a 2+10a+25=(a+5)2=(x 2+5x+5)14. 解 原式=(x+2)(x+1)(x+4)(x+3)-120=(x+2)(x+3)(x+1)(x+4)-120=(x 2+5x+6)(x 2+5x+4)-120令 x 2+5x=m, 代入上式,得原式=(m+6)(m+4)-120=m 2+10m-96=(m+16)(m-6)=(x 2+5x+16)(x 2+5x-6)=(x 2+5x+16)(x+6)(x-1)15.解:原式=(x+2)(3x+5)提示:把二次项3x 2分解成x 与3x (二次项一般都只分解成正因数),常数项10可分成1×10=-1×(-10)=2×5=-2×(-5),其中只有11x =x ×5+3x ×2。

2023年九年级中考数学专题培优训练:因式分解【含答案】

2023年九年级中考数学专题培优训练:因式分解【含答案】

2023年九年级中考数学专题培优训练:因式分解一、选择题1.对于①x-3xy=x(1-3y),②(x+3)(x-1)=x2+2x-3,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解2.下列各式中计算正确的是( )A.(a+b)(b﹣a)=a2﹣b2B.(﹣m﹣n)2=m2+2mn+n2C.2m3÷m3=2mD.(﹣bc)4÷(﹣bc)2=﹣b2c23.多项式12ab3+8a3b的各项公因式是( )A.abB.2abC.4abD.4ab24.把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )A.ax(x2﹣2x)B.ax2(x﹣2)C.ax(x+1)(x﹣1)D.ax(x﹣1)25.把多项式x2+ax+b分解因式,得(x+1)(x-3).则a,b的值分别是( )A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-36.已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a、b、c均为整数,则a+b+c=( )A.﹣12B.﹣32C.38D.727.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?( )A.2x+19B.2x﹣19C.2x+15D.2x﹣158.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形二、填空题9.多项式ax2﹣a与多项式x2﹣2x+1的公因式是.10.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).11.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是_________.12.一个长方形的面积为a3﹣2ab+a,宽为a,则长方形的长为.13.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b= ________14.观察下列式:(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1.①(x7﹣1)÷(x﹣1)= ;②根据①的结果,则1+2+22+23+24+25+26+27= .三、解答题15.因式分解:(a+4)(a﹣4)+3(a+2)16.因式分解:(p-4)(p+1)+3p.17.因式分解:6xy2-9x2y-y3;18.因式分解:m4﹣2m2+1.19.若多项式x2+ax+b可分解为(x+1)(x﹣2),试求a,b的值.20.阅读理解题:我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.如:(1)x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);(2)x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5).请你仿照上述方法,把多项式分解因式:x2﹣7x﹣18.21.在形如a b=N的式子中,我们已经研究过两种情况:已知a和b求N,这是乘方运算:已知b和N求a,这是开方运算,现在我们研究第三种情况:已知a和N求b,我们称这种运算为对数运算.定义:如果23=8,所以log28=3:因为32=9,所以log39=2,根据以上信息回答下列问题:(1)计算:log381= ,log33= ,log636= ,logx16=4,则x= .(2)设a x=M,a y=N(a>0,且a≠1,M>0,N>0),猜想loga MN和loga的结果,并证明.(3)计算:①log2(2×4×8×16×32×64);②log3;③log93+log927.22.若z=3x(3y﹣x)﹣(4x﹣3y)(x+3y).(1)若x,y均为整数,求证:当x是3的倍数时,z能被9整除;(2)若y=x+1,求z的最小值.参考答案1.C2.B3.C.4.D.5.B6.A7.A8.C9.答案为:x﹣110.答案为:﹣111.答案为:2m+312.答案为:a2﹣2b+1.13.答案为:15.14.答案为:①x6+x5+x4+x3+x2+x+1;② 28﹣1.15.解:原式=a2﹣16+3a+6=a2+3a﹣10=(a﹣2)(a+5).16.解:原式=(p+2)(p-2).17.解:原式=-y(3x-y)2.18.解:原式=(m+1)2(m﹣1)2.19.解:由题意,得x2+ax+b=(x+1)(x﹣2).而(x+1)(x﹣2)=x2﹣x﹣2,所以x2+ax+b=x2﹣x﹣2.比较两边系数,得a=﹣1,b=﹣2.20.解:x2﹣7x﹣18=x2+(﹣9+2)x+(﹣9)×2=(x﹣9)(x+2).21.解:(1)log381=log334=4,log33=1,log636=log662=2,logx16=4,则x=2;(2)loga MN=logaM+logaN;loga=logaM﹣logaN;证明:loga MN=logaa x•a y=logaa x+y=x+y;logaM+logaN=x+y,则loga MN=logaM+logaN;loga =loga=logaa x﹣y=x﹣y;logaM﹣logaN=x﹣y,则loga=logaM﹣logaN;(3)①原式=log22+log24+log28+log216+log232+log264=1+2+3+4+5+6=21;②原式=log3243﹣log381=5﹣4=1;③原式=log93×27=log981=2.22.解:(1)z=3x(3y﹣x)﹣(4x﹣3y)(x+3y) =9xy﹣3x2﹣(4x2+9xy﹣9y2)=9xy﹣3x2﹣4x2﹣9xy+9y2=﹣7x2+9y2,∵x是3的倍数,∴z能被9整除.(2)当y=x+1时,则z=﹣7x2+9(x+1)2=2x2+18x+9=2(x+92)2﹣632,∵2(x+92)2≥0,∴z的最小值是﹣632.。

初中数学因式分解的应用培优练习题3(附答案详解)

初中数学因式分解的应用培优练习题3(附答案详解)

根据阅读材料用配方法解决下列问题:
(1)分解因式:m2-4m-5=

(2)当 a,b 为何值时,多项式 a2+b2-4a+6b+18 有最小值,并求出这个最小值.
(3)当 a,b 为何值时,多项式 a2-2ab+2b2-2a-4b+27 有最小值,并求出这个最小值.
22.阅读理解:
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,
若 F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n.
19.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数
为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如
果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如 321, 3 2 1,
数”,例如在自然数 12321 中,3=2+1,则 12321 是一个“对称数”. 同时规定:若该“对称 数”的前两位数与后两位数的平方差被 693 的奇数倍,则称该“对称数”为“智慧对称数”.
如在“对称数”43734 中, 432 342 693,则 43734 是一个“智慧对称数”.
(1)将一个“对称数”的个位上与十位上的数字交换位置,同时,将千位上与万位上的
小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是
边长为(a+b)的正方体,被如图所示的分割线分成 8 块.
(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为:

(4)已知 a+b=4,ab=2,利用上面的规律求 a3+b3 的值. 11.一个四位正整数 m 各个数位上的数字互不相同且都不为 0,四位数 m 的前两位数 字之和为 5,后两位数字之和为 11,称这样的四位数 m 为“半期数”;把四位数 m 的各

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+⋯+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题 分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3(15)x 4ax 2xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和.例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题 分解因式:(1)x 214x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10对应练习题 分解因式:(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()22ax6ax82综合练习题分解因式:(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时, 整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 22ax1a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323(11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(1b 2)4ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为 a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。

初中数学因式分解综合训练培优练习2(附答案详解)

初中数学因式分解综合训练培优练习2(附答案详解)

初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。

因式分解培优训练试题

因式分解培优训练试题

因式分解培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列等式从左到右的变形,属于因式分解的是( ) A .()()y x y x y x +-=+22422B .()2244aya ya -=-C .()130132-+==-+x x x x D .()222329124y x y xy x --=-+-2.多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2,则n m -的值是( ) A . 2 B . ﹣2 C . 4 D . ﹣43.下列各式分解因式正确的是( )A. 22269(3)x xy y x y ++=+B. 222249(23)x xy y x y -+=- C. 22282(4)(4)x y x y x y -=+- D. ()()()()x x y y y x x y x y -+-=-+ 4.把a a 43-多项式分解因式,结果正确的是( )A. ()4-a aB.()()22-+a aC. ()()22-+a a aD. ()422--a5.已知0136422=+-++y x y x ,则代数式y x +的值为( ) A . ﹣1 B . 1C . 25D . 366.要在二次三项式62-+kx x 分解成()()b x a x ++的形式,那么k 为( ) A .1,﹣1 B .5,﹣5 C .1,﹣1,5,﹣5 D .以上答案都不对 7.要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A .2个 B .4个 C .6个D .无数个8.已知a 为实数,且0223=+-+a a a ,则()()()1098111+++++a a a 的值是( )A .﹣3B .3C .﹣1D .19.把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 10.已知正数b a ,满足87222233-=+-+ab ab b a ab b a 则=-22b a ( ) A .1B .3C .5D .不能确定二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.若多项式b ax x ++2分解因式的结果为()()21-+x x ,则b a +的值为12.若4,1a b ab +==,则22a b ab +的值为____________________13.已知0.2,31x y x y +=+=,则代数式2243x xy y ++的值为________________ 14.若关于x 的二次三项式b kx x ++2因式分解为()()31--x x ,则b k +的值为__________15.已知()()520192018=--a a ,则()()_________2019201822=-+-a a16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如22123-=,223516-=,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 019个“智慧数”是____________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题12分)因式分解下列各式:(1)()()x y b y x a -+-2249 (2)()()m m m 891+-+(3)411623++-x x x (4)x 2﹣2x ﹣2y 2+4y ﹣xy(5)2232y xy x +- (6)(m 2-2m -1)(m 2-2m +3)+4.18.(本题8分)学习了分解因式的知识后,老师提出了这样一个问题:设n 为整数,则(n +7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?19(本题8分).商贸大楼共有四层,第一层有商品(a +b)2种,第二层有商品a(a +b)种,第三层有商品b(a +b)种,第四层有商品(b +a)2种.若a +b =10,则这座商贸大楼共有商品多少种?20.(本题8分)(1)对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除? (2)已知y x ,都是正实数,且满足012222=-++++y x y xy x ,求()y x -1的最小值21(本题10分)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙 数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数. (1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么? (3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.22(本题10分)观察下列等式:12×231=132×21, 13×341=143×31, 23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×_________=__________×25;②__________×396=693×_______________a ≤9,写出表示“数字对称(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤ba,),并证明.等式”一般规律的式子(含b23(本题10分).先阅读下面的内容,再解决问题.如果一个整式A等于整式B与整式C之积,则称整式B和整式C为整式A的因式.如:①因为36=4×9,所以4和9是36的因数;因为x2﹣x﹣2=(x+1)(x﹣2),所以x+1和x+2是x2﹣x﹣2的因式.②若x+1是x2+ax﹣2的因式,则求常数a的值的过程如下:解:∵x+1是x2+ax﹣2的因式∴存在一个整式(mx+n),使得x2+ax﹣2=(x+1)(mx+n)∴当x=﹣1时,(x+1)(mx+n)=0∴当x=﹣1时,x2+ax﹣2=0∴1﹣a﹣2=0,∴a=﹣1(1)x+2是x2+x﹣6的因式吗?(填“是”或者“不是”);(2)若整式x2﹣1是3x4﹣ax2+bx+1的因式,求常数a,b的值.因式分解培优训练试题答案三.选择题:1.答案:D解析:A选项不能因式分解,故A错误;B选项是计算,故B错误;C选项右边是多项式,不是因式分解,故C错误;D选项是因式分解,故选择D2.答案:C解析:∵多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2, ∴()()()()n x m x x x ++=-+2222∴2,2-==n m ,∴422=+=-n m ,故选择C3.答案:A解析:∵22269(3)x xy y x y ++=+ ,故A 选项正确; ∵222(23)4129x y x xy y -=-+,故B 选项错误;∵()()()22222824222x y x y x y x y -=-=-+ ,故C 选项错误; ∵2()()()x x y y y x x y -+-=-,故D 选项错误,故选择A4.答案:C解析:()()()224423+-=-=-a a a a a a a ,故选择C5.答案:B解析:∵0136422=+-++y x y x ∴()()03222=-++y x ,∴3,2=-=y x ,∴132=+-=+y x ,故选择B6.答案:C解析:∵要在二次三项式62-+kx x 分解成()()b x a x ++的形式,∴()616⨯-=-或()616-⨯=-或()326-⨯=-或()326⨯-=-, ∴5=k 或5-=k 或1-=k 或1=k ,故选择C7.答案:D解析:∵要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,∴只要找两个数b a ,使5,-=+=b a p ab 即可,于是有无数多个,故选择D8.答案:D解析:∵0223=+-+a a a , ∴()01)1(23=+-++a a a , ∴()()()011122=+-++-+a a a a a∴()()0122=+-+a a a ,∵012≠+-a a ,∴,02=+a ∴11-=+a ,∴()()()()()()111111111110981098=+-=-+-+-=+++++a a a故选择D9.答案:B解析:22344x y xy x --()()222244y x x y xy x x --=+--=故选择B10.答案:B解析:∵87222233-=+-+ab ab b a ab b a ∴()()87222-=--+ab b a ab b a ab∴()()08722222=+---+-+ab b a ab ab ab b a ab ∴()()08722222=+-+---ab b a b a ab b a ab ,∴()()[]()044212222=+-++---ab b a b a b a ab∴()()022122=-+--ab b a ab∵b a ,均为正数,∴ab >0, ∴01=--b a ,02=-ab , 即2,1==-ab b a ,解方程⎩⎨⎧==-21ab b a ,解得1,2==b a 或2,1-=-=b a (不合题意,舍去), ∴31422=-=-b a .故选B .四.填空题:11.答案:3-解析:∵()()2212--=-+x x x x ,∴222--=++x x b ax x ,∴2,1-=-=b a ,∴321-=--=+b a12.答案:4解析:∵4,1a b ab +==, ∴()22144a b ab ab a b +=+=⨯=13.答案:2.0解析:∵0.2,31x y x y +=+=∴()()224330.210.2x xy y x y x y ++=++=⨯=14.答案: 1-解析:∵二次三项式b kx x ++2因式分解为()()31--x x ,∴b kx x x x ++=+-2234,∴3,4=-=b k ,∴134-=+-=+b k15.答案:11解析:∵()()520192018=--a a ,()()()()()()()()20192018220192019201822018201920182222--+-+----=-+-∴a a a a a a a a ()()()11521201920182201920182=⨯+=--++--=a a a a16.答案:2695解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n 组的第一个数为4n (n ≥2).因为67332019=÷,所以第2 019个“智慧数”是第673组中的第3个数,即为269536734=+⨯.三.解答题:17.解析:(1)()()()()()b a b a y x x y b y x a 23234922-+-=-+-(2)()()()()33998889122-+=-=-+-=+-+m m m m m m m m m(3)4566411622323++--=++-x x x x x x x()()()()()()()()4312145614511622-+-=---=+---=x x x x x x x x x x(4)x 2﹣2x ﹣2y 2+4y ﹣xy ()()()y x y x y x y x y xy x 22242222---+=+---=()()22-+-=y x y x(5)()()y x y x y xy x --=+-23222(6)(m 2-2m -1)(m 2-2m +3)+4()()()()422222112412412-=+-=+--+--=m m m m m m m18.解析:()()()()()()220102237373722+=⨯+=+-+-++=--+n n n n n n n n∴()()2237---n n 能被20整除。

八年级数学上册因式分解40题培优练习卷(含答案)

八年级数学上册因式分解40题培优练习卷(含答案)

八年级数学上册因式分解40题培优练习卷(含答案)2017-2018学年八年级数学上册因式分解培优练习卷1、分解因式:6xy2-9x2y-y3.2、分解因式:1-16y4.3、分解因式:4+12(x-y)+9(x-y)2.4、分解因式:(a-3)(a-5)+1.5、分解因式:4(a-b)2-9(a+b)2.6、分解因式:x3-4x2-45x.7、分解因式:(a2+b2)2-4a2b2.8、分解因式:(a+b)2-4b(a+b)+4b2.9、分解因式:(m+n)2-4m(m+n)+4m210、分解因式:x4-y411、分解因式:(x+2)(x+4)+x2-4.12、分解因式:(a+1)(a-1)-8.13、分解因式:4x3y+4x2y2+xy3.14、分解因式:4-12(x+y)+9(x+y)2.15、分解因式:x2-2xy+y2-z2.16、分解因式:36a2-(a2+9)2.17、分解因式:2a2-8axy+8ay2.18、分解因式:10b(x-y)2-5a(y-x)2;19、分解因式:x2-2xy+y2-9.20、分解因式:(x2+y2)2-4x2y2.21、分解因式:(a 2+1)2-4a222、分解因式:(1-x2)(1-y2)-4xy.23、分解因式:(x2+y2-z2)2-4x2y2.24、分解因式:a2(x-2a)2+a(2a-x)3.25、分解因式:(a+2b)2-10(a+2b)+25.26、分解因式:x n+4-169x n+2 (n是自然数);27、分解因式:9(2a+3b)2-4(3a-2b)2.28、分解因式:9(m+n)2-4(m-n)2.29、分解因式:8(x2-2y2)-x(7x+y)+xy30、分解因式:a2-b2+4b-4.31、分解因式:-4x3y+16x2y2-16xy3.32、分解因式:2x3(a-1)+8x(1-a).33、分解因式:81x4-72x2y2+16y434、分解因式:3a3-6a2b+3ab235、分解因式:(m2+3m)2-8(m2+3m)-20;36、分解因式:4x3-4x2y-(x-y)37、分解因式:(x2-3)2-12(x2-3)+36.38、分解因式:(a-b)m2+(b-a)n2;39、分解因式:(x2+x)2-8(x2+x)+12.40、分解因式:x2-2x+1-y2.参考答案1、原式=-y(3x-y)2.2、原式=(1+4y2)(1+2y)(1-2y).3、原式=(3x-3y+2)2.4、原式=(a-4)2.5、原式=-(5a+b)(a+5b).6、原式=x(x-9)(x+5).7、原式=(a+b)2(a-b)2.8、原式=(a-b)2.9、原式=(-m+n)210、原式=(x2+y2)(x2-y2)11、原式=2(x+2)(x+1).12、原式=(a+3)(a-3).13、原式=xy(2x+y)2.14、原式=(2+3x-3y)2.15、原式=(x-y+z)(x-y-z).16、原式=-(a-3)2(a+3)2.17、解:原式=2a(x-2y)218、原式=5(x-y)2(2b-a).19、原式=(x-y+3)(x-y-3).20、原式=(x+y)2(x-y)221、原式=(a+1)2(a-1)222、原式=(xy-1+x+y)(xy-1-x-y).23、原式=(x+y+z)(x+y-z)(x-y+z)(x-y-z).24、原式=a(x-2a)2(3a-x).25、原式=(a+2b-5)2.26、原式=x n+2(x+13)(x-13).27、原式=13b(12a+5b).28、原式=(5m+n)(m+5n).29、原式=(x+4y)(x-4y).30、原式=(a+b-2)(a-b+2);31、原式=-4xy(x-2y)2.32、原式=2x(a-1)(x-2)(x+2).33、原式=(3x+2y)2(3x-2y)2.34、原式=3a(a-b).35、原式=(m+5)(m-2)(m+2)(m+1).36、原式=(x-y)(2x-1)(2x+1).37、原式=(x-3)2(x+3)2.38、原式=(a-b)(m+n)(m-n).39、原式=(x+2)(x-1)(x+3)(x-2).40、原式=(x-1+y)(x-1-y).。

浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷1(解析版)

浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷1(解析版)

浙教版2022-2023学年七下数学第四章因式分解培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.a−b=+(a−b)D.x−y−1=x−(y−1)【答案】C【解析】A.−b−c=−(b+c),故此选项不合题意;B.−2x+6y=−2(x−3y),故此选项不合题意;C.a−b=+(a−b),故此选项符合题意;D.x−y−1=x−(y+1),故此选项不合题意;故答案为:C.2.下列各式从左到右变形是因式分解,并分解正确的是()A.(a−b)2+(a−b)=(a−b)(a−b+1)B.(x+2)(x+3)=x2+5x+6C.4a2−b2=(4a−b)(4a+b)D.m2−n2+2mn=(m−n)2【答案】A【解析】A、(a−b)2+(a−b)=(a−b)(a−b+1),从左到右的变形属于因式分解,故本选项符合题意;B、(x+2)(x+3)=x2+5x+6,从左到右的变形是整式的乘法,不属于因式分解,故本选项不符合题意;C、4a2−b2=(2a−b)(2a+b),原式从左到右的变形错误,故本选项不符合题意;D、两边不相等,从左到右的变形不属于因式分解,故本选项不符合题意;故答案为:A3.下列各式中,没有公因式的是()A.3x−2与6x2−4x B.ab−ac与ab−bcC.2(a−b)2与3(b−a)3D.mx−my与ny−nx【答案】B【解析】A、∵6x2-4x=2x(3x-2),∴3x-2与6x2-4x的公因式是3x-2,故A不符合题意;B、∵ab-ac=a(b-c),ab-bc=b(a-c),∴ab-ac与ab-bc没有公因式,故B符合题意;C、∵2(a-b)2=(b-a)2,∴2(a-b)2与3(b-a)3的公因式是(b-a)2,故C不符合题意;D、∵mx-my=m(x-y),ny-nx=-n(x-y),∴mx-my与ny-nx的公因式是x-y,故D不符合题意.故答案为:B.4.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m【答案】A【解析】(a−b)+m(b−a)=(a−b)(1−m),∴另一个因式为(1-m),故答案为:A.5.课堂上老师在黑板上布置了如框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?()道题D.第4道题【答案】C【解析】(1)a2-b2=(a+b)(a-b),可以用平方差公式因式分解,不符合题意;(2)49x2-y2z2=(7x-yz)(7x+yz),可以用平方差公式因式分解,不符合题意;(3)-x2-y2,前后项同号,不符合平方差公式特点,不可以用平方差公式分解,符合题意;(4)16m2n2-25p2=(4mn+5p)(4mn-5p),可以用平方差公式因式分解,不符合题意.故答案为:C.6.已知2x−y=1,xy=2,则4x3y−4x2y2+xy3的俼为()A.-2B.1C.-1D.2【答案】D【解析】原式=xy(4x2−4xy+y2)=xy(2x−y)2,∵2x−y=1,xy=2,∴原式=2×12=2.故答案为:D.7.若要使4x2+mx+164成为一个两数差的完全平方式,则m的值应为()A.±12B.-12C.±14D.-14【答案】A【解析】∵(2x-18)2=4x2-12x+164或[2x−(−18)]2=4x2+12x+164,∴m=-12或12.故答案为:A.8.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:中,爱,我,数,学,五,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱五中C.我爱五中D.五中数学【答案】C【解析】∵3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a-b)=3(x+1)(x-1)(a-b),∴结果呈现的密码信息可能是:我爱五中.故答案为:C.9.将多项式16m2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A.-2B.−15m2C.8m D.−8m【答案】B【解析】A、16m2+1−2=16m2−1=(4m+1)(4m−1),A不符合题意;B、16m2+1−15m2=m2+1,不能因式分解,B符合题意;C、16m2+1+8m=(4m+1)2,C不符合题意;D、16m2+1−8m=(4m−1)2,D不符合题意.故答案为:B.10.在√0,√1,√2,√3,√4,……,√364,√365中,有理数的个数是()A.18B.19C.20D.21【答案】C【解析】∵192=361<365<202=400,∴19<√365<20∴√0,√1,√2,√3,√4,……,√364,√365中正好有20个完全平方数,即20个有理数.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:3a 2−12= .【答案】3(a +2)(a −2)【解析】3a 2−12=3(a 2−4)=3(a +2)(a −2)故答案为:3(a +2)(a −2).12.因式分解:a 3−6a 2+9a = .【答案】a (a -3)2【解析】原式=a(a 2−6a +9)=a(a −3)2,故答案为:a (a -3)2.13.已知长方形的面积为3a 2−3b 2,如果它的一边长为a +b ,则它的周长为 (结果应化简).【答案】8a −4b【解析】∵3a 2−3b 2=3(a 2−b 2)=3(a +b)(a −b),长方形的一边长为a+b∴长方形的另一边长为3(a -b )=3a -3b∴该长方形的周长为:(3a -3b+a+b )×2=8a −4b ,故答案为:8a −4b .14.若 m −n =8 ,则 m 2−n 2−16n 的值是 .【答案】64【解析】∵m −n =8 ,∴m 2−n 2−16n = (m +n)(m −n)−16n = 8(m +n)−16n = 8m +8n −16n = 8m −8n = 8(m −n) = 8×8=64故答案为:64. 15.设 P =x 2−3xy , Q =3xy −9y 2 ,若 P =Q ,则 x y 的值为 .【答案】3【解析】∵P =Q , P =x 2−3xy , Q =3xy −9y 2 ,∴x 2−3xy =3xy −9y 2 ,即 x 2−6xy +9y 2=(x −3y)2 =0,∴x=3y ∴x y =3.故答案为:316.若a=2018x+2019,b=2018x+2020,c=2018x+ 2021,则多项式a 2+b 2+c 2-ab -ac -bc 的值为【答案】3 【解析】 a 2+b 2+c 2-ab -ac -bc =12(2a 2+2b 2+2c 2-2ab -2ac -2bc ) =12(a 2+b 2-2ab+b 2-2bc+c 2-2ac+a 2-2ac+c 2) =12[(a -b )2+(b -c )2+(a -c )2] =12[(2018x+2019-2018x -2020)2+(2018x+2020-2018x - 2021)2+(2018x+2019-2018x -2021)2] =12[1+1+4]=3, 故答案为:3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.分解因式:(1)x 2﹣4x(2)﹣2x 2+2(3)4x 5﹣4x 4+x 3(4)4(x+2y )2﹣25(x ﹣y )2.【答案】(1)解:原式=x (x ﹣4)(2)解:原式=﹣2(x+1)(x ﹣1)(3)解:原式=x 3(2x ﹣1)2(4)解:原式=[2(x+2y )+5(x ﹣y )][2(x+2y )﹣5(x ﹣y )]=3(7x ﹣y )(3y ﹣x )18.已知 x 2+x +1=0 ,求 x 3−x 2−x +7 的值.【答案】解:由 x 2+x +1=0 得 x 2+x =−1 ,∴x 3−x 2−x +7=x 3+x 2−2x 2−x +7=x(x 2+x)−2x 2−x +7=−x −2x 2−x +7=−2x 2−2x +7=−2(x 2+x)+7=2+7=919.阅读下列材料,并解答相关问题.对于二次三项式x 2+2ax+a 2这样的完全平方式,我们可以用公式法将它分解因式成(x+a)2的形式,但是,对于二次三项式x 2+2ax -3a 2,就不能直接用完全平方公式进行分解因式了,我们可以在二次三项式x 2+2ax -3a 2中先加上一项a 2,将其配成完全平方式,再减去a 2这项,使整个式子的大小不变,于是有x 2+2ax -3a 2=x 2+2ax+a 2-a 2-3a 2=(x+a)2-4a 2=(x+a+2a)(x+a -2a)=(x+3a)(x -a).利用上述方法把m 2-6m+8分解因式.【答案】解:m 2-6m+8=m 2-6m+9-9+8=(m -3)2-1=(m -3+1)(m -3-1)=(m -2)(m -4)20.若a+b=﹣3,ab=1.求12a 3b+a 2b 2+12ab 3的值. 【答案】解:∵a+b=﹣3,ab=1∴12a 3b+a 2b 2+12ab 3=12ab (a 2+2ab+b 2)=12ab (a+b )2=12×1×(﹣3)2=92.21.(1)学习“完全平方公式”时,小明遇到课本上一道题目“计算(a +b +c)2”,他联系所学过的知识和方法,想到两种解决思路:①可以用“整体思想”把三项式转化为两部分:[(a +b)+c]2或[a +(b +c)]2,然后可以利用完全平方公式解决,请你选择一种变形方法写出计算过程;②可以用“数形结合”的方法,画出表示(a +b +c)2的图形,根据面积关系得到结果.请你在下面正方形中画出图形,并作适当标注;(2)利用(1)的结论分解因式:x 2+y 2+4−2xy +4x −4y = ;(3)小明根据“任意一个实数的平方不小于0”,利用配方法求出了一些二次多项式的最大值或最①x 2+y 2+2xy −6x −6y +20;②2x 2+y 2−2xy −4x +2y +10.【答案】(1)解:①方法一:(a +b +c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc;方法二:(a+b+c)2=[a+(b+c)]2=a2+2a(b+c)+(b+c)2=a2+2ab+2ac+b2+2bc+c2=a2+b2+c2+2ab+2ac+2bc;②如图,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(2)(x−y+2)2(3)解:①x2+y2+2xy−6x−6y+20=(x2+2xy+y2)−6(x+y)+20=(x+y)2−6(x+y)+20=(x+y)2−6(x+y)+9+11=(x+y−3)2+11∵(x+y−3)2≥0∴x2+y2+2xy−6x−6y+20≥11即当x+y=3时,x2+y2+2xy−6x−6y+20有最小值为11;②2x2+y2−2xy−4x+2y+10=x2−2xy+y2−2x+2y+x2−2x+1+9=(x−y)2−2(x−y)+(x−1)2+9=(x−y−1)2+(x−1)2+8∵(x−y−1)2≥0,(x−1)2≥0,∴当x−y−1=0,x−1=0,即x=1,y=0时,2x2+y2−2xy−4x+2y+10有最小值,为8.【解析】(2)x2+y2+4−2xy+4x−4y=x2+y2−2xy+4x−4y+4=(x−y)2−4(x−y)+4=(x−y+2)2故答案为:(x−y+2)2.22.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式;B.平方差公式;C.两数和的完全平方公式;D.两数差的完全平方公式.(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C(2)不彻底;(x−2)4(3)解:设x2+2x=y,原式= y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【解析】(1)由y2+8y+16=(y+4)2是利用了两数和的完全平方公式,故答案为:C;(2)∵(x2﹣4x+4)2= (x−2)4,∴该同学因式分解的结果不彻底,最后结果为(x−2)4,故答案为:不彻底,(x−2)4;23.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”.(1)36和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【答案】(1)∵36=102﹣82,2020=5062﹣5042,∴36和2020是“和谐数”;(2)这两个连续偶数构成的“和谐数”是4的倍数.理由如下:∵(2k+2)2−(2k)2=4(2k+1);∴两个连续偶数构成的“和谐数”是4的倍数.24.(1)分解因式:①(1+x)+x(1+x)=()+x()=()2②(1+x)+x(1+x)+x(1+x)2=③(1+x)+x(1+x)+x(1+x)2+x(1+x)3=(2)根据(1)的规律,直接写出多项式:(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2017分解因式的结果:.(3)变式:(1﹣x)(1+x)(1+x2)(1+x4)…(1+x2n)=.【答案】(1)1+x;1+x;1+x;(1+x)3;(1+x)4(2)(1+x)2018(3)1-x4n【解析】(1)①1+x+x(1+x)=(1+x)+x(1+x)=(1+x)2;②1+x+x(1+x)+x(1+x)2=(1+x)+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)3;③1+x+x (1+x)+x(1+x)2+x(1+x)3=(1+x)4;看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:( 2 )1+x+x(1+x)+x(1+x)2+…+x(1+x)2017=(1+x)2018;( 3 )(1-x)(1+x)(1+x2)(1+x4)…(1+x2n)=(1-x2)(1+x2)(1+x4)…(1+x2n)=(1-x4)(1+x4)…(1+x2n)=1-x4n.。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+?+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-?+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-?-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+?+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3 (15)x 4xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和. 例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题分解因式:14x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c 条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()2215xax6ax82(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4;(4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 21a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323 (11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(14ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b 为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4 例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。

七年级下册数学-《因式分解》单元培优试题有答案

七年级下册数学-《因式分解》单元培优试题有答案

《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒12﹒4000000﹒13﹒7﹒14﹒14﹒15﹒a2015(a-2)2﹒16﹒2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒Ⅱ﹒解答部分:一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1);C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-1解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m2-2mn+n2)-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒解答:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒。

因式分解训练题经典--题型很全

因式分解训练题经典--题型很全

初二数学培优训练-------因式分解一、 填空题:(每小题2分,共24分) 1、把下列各式的公因式写在横线上:①= ; ②=2、 填上适当的式子,使以下等式成立:(1)(2)3、 在括号前面填上“+”或“-”号,使等式成立:(1); (2)。

4、 直接写出因式分解的结果:(1);(2)。

5、 若6、 若,那么m=________。

7、 如果8、简便计算:9、 已知,则的值是 。

10、如果2a+3b=1,那么3-4a-6b= 。

11、若是一个完全平方式,则的关系是 。

12、已知正方形的面积是 (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。

二、 选择题:(每小题2分,共20分)1、下列各式从左到右的变形中,是因式分解的为( ) A 、B 、C 、D 、1.如果,那么p 等于 ( )A .abB .a +bC .-abD .-(a +b )y x x 22255-n n x x 4264--()n x 232+)(222⋅=-+xy xy y x xy )(22⋅=+++n n n n a a a a 22)()(y x x y -=-)2)(1()2)(1(--=--x x x x =-222y y x =+-3632a a 。

=,,则b a b b a ==+-+-01222()22416-=+-x mx x 。

,则=+=+-==+2222,7,0y x xy y x xy y x 。

-=2271.229.731=+a a 221a a +n mx x ++2n m 、2269y xy x ++bx ax b a x -=-)(222)1)(1(1y x x y x ++-=+-)1)(1(12-+=-x x x c b a x c bx ax ++=++)())((2b x a x q px x ++=+-2.如果,则b 为 ( )A .5B .-6C .-5D .62、一个多项式分解因式的结果是,那么这个多项式是( )A 、B 、C 、D 、3、下列各式是完全平方式的是()A 、B 、C 、D 、4、把多项式分解因式等于( ) A B C 、m(a-2)(m-1) D 、m(a-2)(m+1)5、因式分解的结果是()A 、B 、C 、D 、6、下列多项式中,含有因式的多项式是()A 、B 、C 、D 、7、分解因式得()A 、B 、C 、D 、8、已知多项式分解因式为,则的值为()A 、B 、C 、D、9、是△ABC 的三边,且,那么△ABC 的形状是()A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、等边三角形10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。

第2讲(教师)_因式分解培优训练(2)及答案

第2讲(教师)_因式分解培优训练(2)及答案

第5讲 因式分解(2)一.基础巩固:1.下列等式不成立的是( )A .m 2-16=(m -4)(m +4)B .m 2+4m =m (m +4)C .m 2-8m +16=(m -4)2D .m 2+3m +9=(m +3)2 2.分解因式2x 2-4x +2的最终结果是( )A .2x (x -2)B .2(x 2-2x +1)C .2(x -1)2D .(2x -2)2 3.已知x 、y 满足等式2x +x 2+x 2y 2+2=-2xy ,那么x +y 的值为( ) A .-1 B .0 C .2 D .1 4.把代数式 3x 3-6x 2y +3xy 2分解因式,结果正确的是( D )A .x (3x +y )(x -3y )B .3x (x 2-2xy +y 2)C .x (3x -y )2D .3x (x -y )2 5.若x 2+kx -24=(x +12)(x -2),则k 的值是( )A .10B .-10C .±10D .-14 6.若x 2+4x -1的值是0,则3x 2+12x -5的值是( )A.2B.-2C.8D.-8 7.若a 2+a =-1,则a 4+a 3-3a 2-4a +3的值是( )A .7B .12C .10D .8=+44:.8b a 分解因式( ))2)(2.(2222ab b a ab b a A -+++ 22)().(b a b a B -+ ))(.(22b a b a C -+ ))()(.(22b a b a b a D -++是则这三个数的大小关系满足三个有理数,0,,.9222=---++bc ac ab c b a c b a ( )c b a A >>. c b a B ==. c b a C <<. a c b D >>.10已知(a 2+b 2)(a 2+b 2-1)=12,则a 2+b 2的值为( )3.-A4.B 43.或-C 43.-或D11.因式分解:x 3-2x 2y +xy 2=___________ 12.分解因式:a 3+a 2-a -1=_______________13.若非零实数a ,b 满足4a 2+b 2=4ab ,则ba=____________41:.14223=-+-ab b a a 分解因式15.若 , ),4)(3(2==-+=++b a x x b ax x 则 16.因式分解:33222ax y axy ax y +-=__________________ 17.若a 2+b 2-4a +2b +5=0,则ab =_______18.若12 a 3b +M =12ab (N +2b ),则M =_______,N =_______222222319.31760,______23x xy y x xy y x xy y-+--==++已知则 _____3271,01412584.2022=-=+-++b a a b b a 则已知二、探索提升: 21.因式分解下列各式:(1)x 4-4x 2y 2; (2)a 2-b 2-a +b ;(3)2x 3+8x 2y +8xy 2;(4)x 4-8x 2+16; (5)a 2(b +1)-b 2(a +1); (6)4a (b -a )-b 2;(7)(a -b )(a 2-ab +b 2)-ab (a -b ); (8)a 2(a -b )2(m -n )+b 2(b -a )2(n -m ).()611392+-x x 1)3)(2)(1(.10++++x x x x22.已知5,3a b ab -==,求代数式32232a b a b ab -+的值.23.若a +b =10,ab =6,求:(1)a 2+b 2的值;(2)a 3b -2a 2b 2+ab 3的值.24.若a=kx+1,b=kx-3,c=4-2kx,求a2+b2+c2+2ab+2bc+2ca的值。

因式分解精选经典拔高培优习题(含详细答案解析)

因式分解精选经典拔高培优习题(含详细答案解析)

因式分解精选经典培优习题1、多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z)2、把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2;(2)1999x 2一(19992一1)x 一1999;(3)(x+y -2xy)(x+y -2)+(xy -1)2;(4)(2x -3y)3十(3x -2y)3-125(x -y)3.3、分解因式(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2;(2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001;(4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++;(6)613622-++-+y x y xy x .4、分解因式:22635y y x xy x ++++5、分解因式91)72)(9)(52(2---+a a a6、2)1()21(2)3()1(-+-++-+++y x y x xy xy xy因式分解详细答案解析1、多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z)解析:原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.2、把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2;(2)1999x 2一(19992一1)x 一1999;(3)(x+y -2xy)(x+y -2)+(xy -1)2;(4)(2x -3y)3十(3x -2y)3-125(x -y)3.解析: (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.3、分解因式(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2;(2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001;(4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++;(6)613622-++-+y x y xy x . 解析:4、分解因式:22635y y x xy x ++++ 解析:5、分解因式 91)72)(9)(52(2---+a a a 解析:6、2)1()21(2)3()1(-+-++-+++y x y x xy xy xy 解析:。

初中数学因式分解培优训练

初中数学因式分解培优训练

第一讲:因式分解(一)多式的因式分解是代数式恒等形的根本形式之一,它被广泛地用于初等数学之中,是我解决多数学的有力工具.因式分解方法灵活,技巧性,学些方法与技巧,不是掌握因式分解内容所必需的,而且于培养学生的解技能,展学生的思能力,都有着十分独特的作用.初中数学教材中主要介了提取公因式法、运用公式法、分分解法和十字相乘法.本及下一在中学数学教材基上,因式分解的方法、技巧和用作一步的介.1.运用公式法在整式的乘、除中,我学假设干个乘法公式,将其反向使用,即因式分解中常用的公式,例如:( 1)a-b);-b=(a+b)(a(2)a2±2ab+b2=(a±b)2;(3) a 3322;+b=(a+b)(a-ab+b)(4) a 3322.-b=(a-b)(a+ab+b)下面再充几个常用的公式:(5) a 2222 +b+c+2ab+2bc+2ca=(a+b+c);(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7) a n nn-1n-2n-32n-2n-1)其中n -b=(a-b)(a+a b+a b+⋯+ab+b正整数;(8) a nnn-1n-2n-32n-2n-1),其中n -b=(a+b)(a-a b+a b-⋯+ab-b偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n奇数.运用公式法分解因式,要根据多式的特点,根据字母、系数、指数、符号等正确恰当地公式.例1分解因式:-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;333(2)x -8y-z-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;75 2257(4)a -ab+ab-b.解(1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)333原式=x+(-2y)+(-z)-3x(-2y)(-Z)=(x-2y-z)(x222.+4y+z+2xy+xz-2yz)(3)原式=(a 222 -2ab+b)+(-2bc+2ca)+c22=(a-b)+2c(a-b)+c2=(a-b+c).本小可以稍加形,直接使用公式(5),解法如下:222原式=a+(-b)+c+2(-b)c+2ca+2a(-b)2=(a-b+c)(4)原式=(a 752257 -a b)+(a b-b)5225(a 22=a(a-b)+b-b)=(a 22)(a55-b+b)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2432234(a-b)(a-a b+ab-ab+b)例2分解因式:a3+b3+c3-3abc.本上就是用因式分解的方法明前面出的公式(6).分析我道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,将此公式形a3+b3=(a+b)3-3ab(a+b).个式也是一个常用的公式,本就借助于它来推.33解原式=(a+b)-3ab(a+b)+c-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[22]-3ab(a+b+c)(a+b)-c(a+b)+c=(a+b+c)(a2+b2+c2-ab-bc-ca).明公式(6)是一个用极广的公式,用它可以推出很多有用的,例如:我将公式(6)形a3+b3+c3-3abc1然,当a+b+c=0,a3+b3+c3=3abc;当a+b+c333333≥3abc,而>0,a+b+c-3abc≥0,即a+b+c且,当且当a=b=c,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,有等号成立的充要条件是x=y=z.也是一个常用的.例3分解因式:x15+x14+x13+⋯+x2+x+1.分析个多式的特点是:有16,从最高次x15开始,x的次数次减至0,由此想到用公式a n-b n来分解.解因x16-1=(x-1)(x15+x14+x13+⋯x2+x+1),所以明在本的分解程中,用到先乘以(x-1),再除以(x-1)的技巧,一技巧在等式形中很常用.2.拆、添法因式分解是多式乘法的逆运算.在多式乘法运算,整理、化常将几个同合并一,或将两个符号相反的同相互抵消零.在某些多式分解因式,需要恢复那些被合并或相互抵消的,即把多式中的某一拆成两或多,或者在多式中添上两个符合相反的,前者称拆,后者称添.拆、添的目的是使多式能用分分解法行因式分解.例4分解因式:x3-9x+8.分析本解法很多,里只介运用拆、添法分解的几种解法,注意一下拆、添的目的与技巧.解法1将常数8拆成-1+9.3原式=x-9x-1+932=(x-1)(x+x+1)-9(x-1)2=(x-1)(x +x-8).解法2将一次-9x拆成-x-8x.原式=x3-x-8x+83-x)+(-8x+8)=(x=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3将三次x3拆成9x33.-8x原式=9x3-8x3-9x+8=(9x33+8)-9x)+(-8x=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4添加两-x2+x2.原式=x3-9x+8=x322-x+x-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).明由此可以看出,用拆、添的方法分解因式,要拆哪些,添什么并无一定之,主要的是要依靠目特点的察,灵活,因此拆、添法是因式分解方法中技巧性最的一种.例5分解因式:(1)x963+x+x-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解(1)将-3拆成-1-1-1.963原式=x+x+x-1-1-1=(x9-1)+(x63-1)+(x-1)=(x3-1)(x63333+x+1)+(x-1)(x+1)+(x-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn2222=mn-m-n+1+2mn+2mn2222=(mn+2mn+1)-(m-2mn+n)=(mn+1)22-(m-n)=(mn+m-n+1)(mn-m+n+1).(3)将(x222222-1)拆成2(x-1)-(x-1).2原式=(x+1)4+2(x2222+(x-1)4 -1)-(x-1)=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)22222 +(x-1)]-(x-1)22222+1)(x 2+3).=(2x+2)-(x-1)=(3x添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)2=ab(a+b)(a-b)+a(a-b)+(ab+b+1)2=a(a-b)[b(a+b)+1]+(ab+b+1)2=[a(a-b)+1](ab+b+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一局部看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,那么原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明此题也可将x2+x+1看作一个整体,比方今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-9022=(2x+5x+3)(2x+5x+2)-90.令y=2x2+5x+2,那么原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的根底.例8分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,那么原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由此题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1原式=6(x4+1)+7x(x2-1)-36x242222=6[(x-2x+1)+2x]+7x(x-1)-36x=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x22-1)-3x][3(x-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]3=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]22=(2x-3x-2)(3x +8x-3)=(2x+1)(x -2)(3x-1)(x+3).例10分解因式:(x2+xy+y2)-4xy(x2+y2).分析此题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式22.我们将上2x-7xy-22y-5x+35y-3式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下列图:解原式=[(x+y)222.令x+y=u,-xy]-4xy[(x+y)-2xy]xy=v,那么原式=(u222-v)-4v(u-2v)422=u-6uv+9v=(u2-3v)2=(x2+2xy+y22-3xy)=(x2-xy+y2)2.第二讲:因式分解(二)它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;2(x-3)(2x+1)=2x-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1分解因式:(1)x2-3xy-10y2+x+9y-2;22(2)x -y+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)4原式=(x-5y+2)(x+2y-1).(2)原式=(y+1)(x+y-2).(4)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.5原式=(2x-3y+z)(3x+y-2z).明(4)中有三个字母,解法仍与前面的似.2.求根法我把形如a n x n+a n-1x n-1+⋯+a1x+a0(n非整数)的代数式称关于x的一元多式,并用f(x),g(x),⋯等号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,⋯,当x=a,多式f(x)的用f(a)表示.如上面的多式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.假设f(a)=0,称a多式f(x)的一个根.定理1(因式定理)假设a是一元多式f(x)的根,即f(a)=0成立,多式f(x)有一个因式x-a.根据因式定理,找出一元多式f(x)的一次因式的关是求多式f(x)的根.于任意多式f(x),要求出它的根是没有一般方法的,然而当多式f(x)的系数都是整数,即整系数多式,常用下面的定理来判定它是否有有理根.定理2的根,必有p是a0的数,q是a n的数.特地,当a0=1,整系数多式f(x)的整数根均a n的数.我根据上述定理,用求多式的根来确定多式的一次因式,从而多式行因式分解.例2分解因式:x3-4x2+6x-4.分析是一个整系数一元多式,原式假设有整数根,必是-4的数,逐个-4的数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1用分分解法,使每都有因式(x-2).322原式=(x-2x)-(2x -4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2用多式除法,将原式除以(x-2),6所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:2所以,原式有因式9x-3x-2.解9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明假设整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为29x-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.7在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),假设原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比拟两边对应项的系数,那么有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明此题也可用双十字相乘法,请同学们自己解一下.例5分解因式:x4-2x3-27x2-44x+7.分析此题所给的是一元整系数多项式,根据前面讲过的求根法,假设原式有有理根,那么只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,22原式没有一次因式.如果原式能分解,只能分解为(x+ax+b)(x +cx+d)的形式.22原式=(x+ax+b)(x +cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有8所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.此题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.此题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解强化训练因式分解常用方法:1、 提公因法 ::ma+mb+mc=m(a+b+c)如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x –x 解: x -2x -x=x(x -2x-1)2、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;下面再补充两个常用的公式:(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例2、已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==3、分组分解法(一)分组后能直接提公因式例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++4、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

例4、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例5、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习:分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例6、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习:分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y5添项、拆项、配方法。

例7、分解因式(1)4323+-x x解法1——拆项。

解法2——添项。

原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x=2)2)(1(-+x x =2)2)(1(-+x x(2)3369-++x x x解:原式=)1()1()1(369-+-+-x x x=)1()1)(1()1)(1(333363-++-+++-x x x x x x=)111)(1(3363+++++-x x x x=)32)(1)(1(362++++-x x x x x练习:分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++七、待定系数法。

例8、(1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式。

(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值。

(1)分析:前两项可以分解为))((y x y x -+,故此多项式分解的形式必为))((b y x a y x +-++解:设6522-++-y mx y x =))((b y x a y x +-++则6522-++-y mx y x =ab y a b x b a y x +-+++-)()(22 比较对应的系数可得:⎪⎩⎪⎨⎧-==-=+65ab a b m b a ,解得:⎪⎩⎪⎨⎧==-=132m b a 或⎪⎩⎪⎨⎧-=-==132m b a∴当1±=m 时,原多项式可以分解;当1=m 时,原式=)3)(2(+--+y x y x ;当1-=m 时,原式=)3)(2(--++y x y x(2)分析:823+++bx ax x 是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如c x +的一次二项式。

解:设823+++bx ax x =))(2)(1(c x x x +++则823+++bx ax x =c x c x c x 2)32()3(23+++++∴⎪⎩⎪⎨⎧=+=+=82323c c b c a 解得⎪⎩⎪⎨⎧===4147c b a ,∴b a +=21练习: (1)分解因式2910322-++--y x y xy x(2)分解因式6752322+++++y x y xy x(3) 已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式。

(4) k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式。

基础巩固1、分解因式: m 3-4m= .2、分解因式: x 2-4y 2= __ _____.3、分解因式:244x x ---=___________ ______。

4.将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 .5、若5,6x y xy -==,则22x y xy -=_________,2222x y +=__________。

6、若16)3(22+-+x m x 是完全平方式,则m=_______。

7、_____))(2(2(_____)2++=++x x x x8、已知,01200520042=+++++x x x x 则.________2006=x9、若442-+x x 的值为0,则51232-+x x 的值是________。

10、若6,422=+=+y x y x 则=xy ___。

11、若25)(162++-M b a 是完全平方式M=________。

12、多项式3222315520m n m n m n +-的公因式是________。

13、下列各式从左到右的变形中,是因式分解的是( )A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭14.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y+y 2 (D)x 2-4x+415.把(x -y )2-(y -x )分解因式为________。

16.下列各个分解因式中正确的是( )A .10ab 2c +6ac 2+2ac =2ac (5b 2+3c )B .(a -b )2-(b -a )2=(a -b )2(a -b +1)C .x (b +c -a )-y (a -b -c )-a +b -c =(b +c -a )(x +y -1)D .(a -2b )(3a +b )-5(2b -a )2=(a -2b )(11b -2a )17.若k-12xy+9x 2是一个完全平方式,那么k 应为________。

相关文档
最新文档