整式的乘法与因式分解培优
(完整版)整式的乘法与因式分解培优
第二章 整式的乘法【知识点归纳】1.同底数幂相乘, 不变, 相加。
a n.a m = (m,n 是正整数)2.幂的乘方, 不变, 相乘。
(a n )m = (m,n 是正整数)3.积的乘方,等于把 ,再把所得的幂 。
(ab)n = (n 是正整数)4.单项式与单项式相乘,把它们的 、 分别相乘。
5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )=6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。
7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )=8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。
(a+b )2= ,(a-b )2= 。
9.公式的灵活变形:(a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- ,a 2+b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。
【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值【例2】已知两个多项式A 和B ,43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少?【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 .【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值.【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ;(2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y .【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.【例8】归纳与猜想:(1)计算:①(x﹣1)(x+1)= ;②(x﹣1)(x2+x+1)= ;③(x﹣1)(x3+x2+x+1)= ;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)= ;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)= (n为整数);(4)若(x﹣1)•m=x15﹣1,则m= ;(5)根据猜想的规律,计算:226+225+…+2+1.【例9】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).课后作业:1、若0352=-+y x ,求y x 324⋅的值。
上海中远实验学校数学整式的乘法与因式分解(培优篇)(Word版 含解析)
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.2.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.【解析】【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD 的面积求解.【详解】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣12(a+b)•b﹣12a2=12a2+12b2﹣12ab=12(a+b)2﹣32ab=12×102﹣32×20=50﹣30=20.【点睛】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.3.观察下列等式:22()()a b a b a b -=-+3322()()a b a b a ab b -=-++443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.4.请你观察下列式子:2(1)(1)1x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……根据上面的规律,解答下列问题:(1)当3x =时,计算201720162015(31)(333-+++…323331)++++=_________;(2)设201720162015222a =+++…322221++++,则a 的个位数字为 ;(3)求式子201720162015555+++…32555+++的和.【答案】(1)201831-;(2)3;(3)2018554- 【解析】【分析】(1)根据已知的等式发现规律即可求解;(2)先根据x=2,求出a=20182-1,再发现2的幂个位数字的规律,即可求出a 的个位数字;(3)利用已知的等式运算规律构造(5-1)×(2016201520142555...551++++++)即可求解.【详解】(1)∵2(1)(1)1x x x -+=- ()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……∴()()1122.1..11n n n n x x x x x x x --+-+++++=-+故x=3时,201720162015(31)(333-+++…323331)++++=201831-故填:201831-;(2)201720162015222a =+++…322221++++=(2-1)201720162015(222+++…322221)++++=201821-∵21=2,22=4,23=8,24=16,25=32,26=64∴2n 的个位数按2,4,8,6,依次循环排列,∵2018÷4=504…2,∴20182的个位数为4,∴201821-的个位数为3,故填:3;(3)201720162015555+++…32555+++=1(51)54-⨯⨯(201620152014555+++…2551+++) =54×(5-1)(201620152014555+++…2551+++) =54×(201751-) =2018554- 【点睛】此题主要考查等式的规律探索及应用,解题的关键是根据已知等式找到规律.5.阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数. 延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【解析】【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为:19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1, 故答案为:1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为:a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.6.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.7.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).【答案】(1)提公因式,两次;(2)2004次,(x+1)2005;(3) (x+1)1n【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,=(1+x)[1+x+x(1+x)+…+ x(x+1)2003]⋯=22003(1) (1)(1)(1)(1)xx x x x+++++个=(1+x)2005,故分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P 为“半期数”∴a +b =5,c +d =11,∴b =5﹣a ,d =11﹣c ,∴P =1000a +100(5﹣a )+10c +11﹣c =900a +9c +511.∵Q =200+10a +c ,∴441Q ﹣4P =88991,∴441(200+10a +c )﹣4(900a +9c +511)=88991 化简得:2a +c =7①当a =1时,c =5,此时这个四位数为1456符合题意;②当a =2时,c =3,此时这个四位数为2338不符合题意,舍去;③当a =3时,c =1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P '可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P 的“伴随数”,∴F (5614)=a 2+c 2﹣2bd =25+1﹣2×6×4=﹣22;F (4561)=a 2+c 2﹣2bd =16+36﹣2×5×1=42;F (6145)=a 2+c 2﹣2bd =36+16﹣2×1×5=42;∴F (P ')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.9.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了。
整式的乘法与因式分解能力培优
第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.【2012·湛江】下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 42.【2012·泰州】下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.【2012·衢州】下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( )A .7B .12C .432D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015;(2)(-19)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题:(x +5)(x +6)=x 2+11x +30;(x -5)(x -6)=x 2-11x +30;(x -5)(x +6)=x 2+x -30;(x +5)(x -6)=x 2-x -30. (1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________.(2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:n m n m aa a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m n mn a a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m n a a a-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C . 5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19. 7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得b=23. ∴(3x 2-2x+1)(x+23) =3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23. 9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解培优说课教学复习课件提高
解:(1) a8aa2a81a2a7a2a72a5
或 a8aa2a812a5
(2) (xy)7(xy)2(xy)72(xy)5
(1)同底数幂的公式可以推广到三个及以上的同底数幂相除; (2)公式中的底数a,可以是数、单项式,也可以是多项式.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
1.计算:
(1) 2722 29 (2) a5·a2a7
(3) 5m5n5mn
2.填空
(m,n是正整数)
(1) (27)2229 (2) ( a5)·a2a7 (3) (5m)5n5mn
(a0)
(m,n是正整数)
除法是乘法的逆运算
(1) 2922( 27) (2) a7a2(a5 )
(a0)
(3) 5mn5n(5m)
归纳
多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除 以这个单项式,再把所得的商相加.
转化
多项式除以单项式
单项式除以单项式
示例: (28x3y14x2y27x)7x 28x3y7x14x2y27x7x7x 4x2y2xy21
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
课件
c
课件
巩固新知
课堂小结
布置作业
讨论 尝试归纳单项式除以单项式的运算法则.
单项式除以单项式
单项式相除,把系数与同底数幂分别相除作为商 的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式.
被除式的系数 除式的系数
底数不变, 保留作为商 指数相减. 的一个因式.
商式系数·同底的幂·被除式里单独有的幂 示例:6x4y6z8x2y2(68)·(x4x2)·(y6y2)·z3x2y4z
人教版八上数学整式的乘法及因式分解单元培优
第1讲 整式的乘法知识点梳理:复习回顾:整式的加减:同类项,合并同类项 新课要点:(1)同底数幂的乘法:底数不变,指数相加。
nm n m a a a +=⋅(m 、n 都是正整数) 注意公式逆用。
(2)幂的乘方:底数不变,指数相乘。
mnnm a a =)((m 、n 都是正整数) 注意公式逆用。
(3)积的乘方:nnnb a ab =)((n 是正整数) 注意公式逆用。
(4)整式的乘法:①单项式和单项式相乘:把它们的系数、相同的字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式。
例如:)3(2322bc a ab -⋅=3336c b a -②单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得的积相加。
即mb ma b a m +=+)(③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积再相加。
即nb na mb ma b a n m +++=++))((经典例题例1.(1)-x 3·x 5 (2)x m ·x 3m+1 (3)2×24×23(4)31++••m m ma a a (5)n m m m m a a a a 321⋅⋅例2.计算: ①()()()()2452232222x x x x -⋅-⋅ ②()()()32212mn m a a a a -⋅-⋅例3.计算:⑴()33x - ⑵()25ab - ⑶()22xy ⑷()4322xy z-(5)()()4234242a a a a a ⋅⋅++- (6)()()()2323337235xx xx x ⋅-+⋅例4.计算:⑴()()2353a b a -⋅- ⑵()()3225x x y ⋅-(3)()()152n a b a +-- (4)()()()232236ab a cab c --⋅(5)()()24231x x x -⋅+- (6)221232ab ab ab ⎛⎫-⋅ ⎪⎝⎭(7)()22221252a ab b a a b ab ⎛⎫-⋅+-- ⎪⎝⎭(8)()()32x y x y +-(9)()()22m n m n +- (10)2)2(b a +例5.若20x y +=,则代数式3342()x xy x y y +++的值为 。
上海民办新复兴初级中学数学整式的乘法与因式分解(培优篇)(Word版 含解析)
上海民办新复兴初级中学数学整式的乘法与因式分解(培优篇)(Word版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.5.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.6.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】 直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.7.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.8.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=-【答案】C【解析】【分析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.9.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH⊥DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+= ∵22()()x y x y x y -=+-,∴x -y=4, 解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n.13.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.14.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6. 点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.16.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.17.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.19.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.20.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.。
八年级数学上册第十四章《整式的乘法与因式分解》经典习题(课后培优)
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 2.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 3.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 4.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12 C .9 D .75.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2- D .以上答案都不对 6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++7.2a =1,b 是2的相反数,则a+b 的值是( )A .1B .-3C .-1或-3D .1或-3 8.下列分解因式正确的是( )A .xy ﹣2y 2=x (y ﹣2x )B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y )9.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7 B .9 C .-63 D .1210.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 2 11.下列计算正确的是( )A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 4 12.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a +=C .()2424m m --=-+D .33a b ab +=13.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( ) A .1B .0C .1或2D .0或4 14.下列计算正确的是( ) A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x 15.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题16.如果210x x m -+是一个完全平方式,那么m 的值是__________.17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.18.已知18m x =,16n x =,则2m n x +的值为________. 19.因式分解269x y xy y -+-=______. 20.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.21.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.22.分解因式:2221218ax axy ay -+=_________.23.因式分解:(x +3)2-9=________.24.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.25.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.26.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__. 三、解答题27.计算下列各题:(1)2(2)-+3125-+9;(2)(3+7)(3﹣7)+2(2﹣2).28.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米.(1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).29.已知x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,求(x +y )﹣abm 的值.30.计算(1)2019(1)|2|-; (2)9(3)(3)x x -+-;(3)2(23)4(3)a b a a b ---.。
人教版初中数学八年级上单元试卷第章 整式的乘法与因式分解【培优卷】(解析版)
第14章整式的乘法与因式分解培优卷一、单选题1. ( 3分) 某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A.490<x<510B.490≤x≤510C.490<x≤510D.490≤x<510【答案】B【考点】有理数的加法【解析】【解答】解:根据题意得:500﹣1≤x≤500+10,即490≤x≤510,故答案为:B【分析】由题意用有理数的加法法则可得490≤x≤510。
2. ( 3分) 方程3x(x﹣1)=4(x﹣1)的根是()A.43B.1 C.43和1 D.43和﹣1【答案】C【考点】因式分解﹣运用公式法,因式分解法解一元二次方程【解析】【解答】原方程变形整理后得:(x﹣1)(3x﹣4)=0,x﹣1=0或3x﹣4=0,解得:x1=1,x2=43,故答案为:C.【分析】将方程移项后进行因式分解,即可得到方程的两个根。
3. ( 3分) 下列说法错误的是()A.两条射线组成的图形叫角B.两点之间线段最短C.两点确定一条直线D.0是单项式【答案】A【考点】单项式,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,角的概念【解析】【解答】解:A、两条有公共端点的射线组成的图形叫角,此选项符合题意;B、两点之间线段最短,此选项不符合题意;C、两点确定一条直线,此选项不符合题意;D、数字0是单项式,此选项不符合题意;故答案为:A.【分析】根据角的定义、两点之间距离、直线的性质以及根据单项式的定义逐一判断即可.4. ( 3分) 任意给定一个非零数x,按下列箭头顺序执行方框里的相应运算,得出结果后,再进行下一方框里的相应运算,最后得到的结果是()→平方→→→结果A.xB.x2C.x+1D.x−1【答案】D【考点】整式的混合运算【解析】【解答】根据题意得:(x2+x)÷x-2=x2÷x+x÷x-2=x+1-2=x-1,故答案为:D.【分析】根据程序先列出算式,然后计算即可.5. ( 3分) 下列各式计算正确的是()A.(a+1)2=a2+1B.a2+a3=a5C.a8÷a2=a6D.3a2﹣2a2=1【答案】C【考点】同底数幂的除法,完全平方公式及运用【解析】【解答】解:A、(a+1)2=a2+2a+1,故本选项错误;B、a2+a3≠a5,故本选项错误;C、a8÷a2=a6,故本选项正确;D、3a2﹣2a2=a2,故本选项错误;故选C.【分析】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.是一个完全平方式,则k的值为()6. ( 3分) 已知多项式x2+kx+ 14A.±1B.﹣1C.1D.±12【答案】A【考点】完全平方公式及运用是一个完全平方式,【解析】【解答】解:∵多项式x2+kx+ 14∵x2+kx+ 14=(x± 12)2,∵k=±1,故答案为:A【分析】根据完全平方公式a2±2ab+b2=(a±b)2,得到k=±1.7. ( 3分) 关于x、y的多项式x2−4xy+5y2+8y+15的最小值为()A. -1B.0C.1D.2【答案】A【考点】完全平方公式及运用,偶次幂的非负性【解析】【解答】解:原式=x2−4xy+5y2+8y+15=x2−4xy+4y2+y2+8y+16-1=(x−2y)2+(y+4)2-1∵ (x−2y)2≥0,(y+4)2≥0,∵原式≥-1,∵原式的最小值为-1,故答案为:A.【分析】利用完全平方公式对代数式变形,再运用非负性求解即可.8. ( 3分) 下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x-1=x(x+5)-1B.x2-4+3x=(x+2)(x-2)+3xC.x2-9=(x+3)(x-3)D.(x+2)(x-2)=x2-4【答案】C【考点】因式分解的定义【解析】【解答】A.右边不是积的形式,故A错误;B.右边不是积的形式,故B错误;C.x2-9=(x+3)(x-3),故C正确.D.是整式的乘法,不是因式分解选C【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解9. ( 3分) 式子(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)化简的结果为()A.21010−1B.21010+1C.22020−1D.22020+1【答案】C【考点】平方差公式及应用【解析】【解答】解:设S= (2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1),∵(2—1)S=(2—1)(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)∵S= (22−1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)= (24−1)(24+1)(28+1)⋅⋅⋅(21010+1)= (21010−1)(21010+1)= 22020−1,故答案为:C.【分析】利用添项法,构造平方差公式计算即可.10. ( 3分)2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0【答案】D【考点】平方差公式及应用【解析】【解答】解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∵ 332−1的个位数字为0,∵ 2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故答案为:D.【分析】先将2变形为(3-1),再根据平方差公式求出结果,根据规律得出答案即可.二、填空题目11. ( 4分) 若m a=2,m b=3,m c=4,则m2a+b﹣c=________.【答案】 3【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】解:∵m a=2,m b=3,m c=4,∵m2a+b﹣c=(m a)2•m b÷m c=4×3÷4=3.故答案为:3.【分析】根据同底数幂的乘法与除法法则则及幂的乘方与积的乘方法则进行计算即可.12. ( 4分) 比较大小: 2√2________ √7. (填“>”、“<"或“=")【答案】>【考点】实数大小的比较【解析】【解答】解:(2√2)2=8,(√7)2=7,∵8>7,∴2√2>√7.故答案为:>.【分析】首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.13. ( 4分) 若x+y=1,xy=-7,则x2y+xy2=________.【答案】-7【考点】提公因式法因式分解【解析】【解答】解:∵x+y=1,xy=-7,∵原式=xy(x+y)=-7,故答案为:-7【分析】先将多项式提取公因式xy,将多项式分解成xy(x+y),再将已知条件中的值代入计算出即可。
《常考题》初中八年级数学上册第十四章《整式的乘法与因式分解》测试卷(课后培优)
一、选择题1.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 2.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( )A .52-B .52C .5D .-5B解析:B 【分析】 把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.3.计算()201920180.52-⨯的值( )A .2B .2-C .12D .12- D 解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.4.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x -- D .()()111n x x x -+- D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 5.化简()2003200455-+所得的值为( ) A .5-B .0C .20025D .200345⨯ D 解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.6.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab A解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.7.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- D 解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.已知1x =,1y =,则代数式222x xy y ++的值为( ). A .20B .10 C.D.解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.9.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32D 解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.10.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= D 解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.二、填空题11.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.870【分析】将n =3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n =3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果.【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30,当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30,则输出结果为870.故答案为:870【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()x y=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.13.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】 此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.14.若23x =,25y =,则22x y +=____________.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解.【详解】解:()2222222223575x y x y x y +=⋅=⋅=⨯=,故答案为:75.【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键. 15.已知25m =,2245m n +=,则2n =_______.【分析】将变形整体代入即可求解【详解】解:∵=∴故答案为:【点睛】本题主要考察了同底数幂的乘法幂的乘方解题的关键是熟练掌握同底数幂的乘法幂的乘方的逆运算解析:95. 【分析】 将2245m n +=变形()222=22222m n n n m m+⋅=⋅,整体代入即可求解. 【详解】解:∵()222=22222m n n n m m+⋅=⋅=25245n ⋅= ∴9245255n =÷=. 故答案为:95. 【点睛】 本题主要考察了同底数幂的乘法、幂的乘方,解题的关键是熟练掌握同底数幂的乘法、幂的乘方的逆运算.16.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12 【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.17.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 18.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.19.分解因式:2221218ax axy ay -+=_________.【分析】先提取公因式再利用完全平方公式继续分解即可【详解】故答案为:2a(x-3y)2【点睛】本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同解析:22(3)a x y -【分析】先提取公因式2a ,再利用完全平方公式继续分解即可.【详解】222ax 12axy 18ay -+222(6)9a x xy y =-+22(3)a x y =-,故答案为:2a(x-3y)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 20.若9m =4,27n =2,则32m ﹣3n =__.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂 解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 三、解答题21.计算(1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y ) 解析:(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.解析:(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.24.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-. 解析:2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 25.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算: 281156415497-⨯=-==2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.解析:(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n 2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-=;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.26.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少?解析:-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 27.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 解析:(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+- 22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 28.化简:(1)()34322223x y x y z x y -÷;(2)2(4)3(1)(3)x x x x -+-+.解析:(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷ 223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。
2020年最新人教版数学八年级上册整式的乘法与因式分解培优训练
整式的乘法与因式分解培优训练1.已知多项式—1x2y m+1 + xy2 — 3x3 — 6是六次四项式,单项式3x2n y5-m与该多 5 项式的次数相同,则m+n=.2. a3 B a,m 一a8,贝m—.3. 33x+i=81, 则 x= .4.若 2m =32 , 2n = 4 ,贝^ 2m+n= .5.若 2x=64,贝^ 2x+3 = .6. ^若 a2n-i ・a n+5 —a i6,贝U n一.7.若x, y为正整数,且2x-22y=29,则x, y的值有对.8. 3x+2=n, 用含n的代数式表示3x= .9.若 a n =5, b n =2,则(a3b2)n = .10.若 a2n =3,求 a4n-a6n = .11.已知 10x =5, 10y =2,贝^ 103x+2y+1 =.12.若 2x =5, 2y =3,贝^ 22x+y =.13. (-2) 2021+ (-2) 2020 = .14. ( 3 ) 2019・(—2 ) 2020= .2 3 -------------------15.若 275=9X3X,U x= .16.若 2x+1 ・4y =128,则 x+2y= .17.已知 x+4y=5,求 4x ・162y=.18.已知 2・8x ・16=233,则x=.19. 若 3X9m X27m =321,则m= .20.已知 3m+2 ・92m-1 ・27m =98,则 m= .21.若 a=255, b=344, c=433,则 a, b, c的大小关系是.22.若x5 =2, y6=3,比较x, y的大小.23.比较277, 344 , 533的大小.24.比较 833 , 1625 , 3219 的大小.25.若(a n b m+4b)3=a9b15 ,贝U ^^3.= , n= .26.已知 I a-2 | + (b+1)2=0,则a1o b1o= .2 ----------------27.若(a n b m+4) 3 = a9b16,则m n= .28.若 5n=a, 4n=b,那么 20n=.29.若 X2n=3,则(3x3n)2= .30.若(-2a1+x b2)3=-8a9b6,则 x= .31.若 3x+2 ・5x+2=153x-4,贝x= .32.若 a n=2, b2n=3,则(a3b4)2n= .33.若 X2m=3,贝3 (X3m)2-13(X2)2m = .34.若 a3n=i , b2n=3,则(a2b4)3n= .35.若 X m=3, X n=6,则 X3m-2n= .36.若 3X=15,3y=5,则 3X-y= .37.若(a-1)2+2=1,则 a= .38.若 3m=6 , 9n=2,贝可 32m-4n+1 = .39.若 3X+2y-3=0,贝^ 27X -9y=.40.若 3X=4 , 9y=7,则 3x-2y=.41.已知 a (x2+x-c) +b (2x2-x-2) =7X2+4X+3,U a= , b= , c=42.若 | a n | =1 , | b | n=3 ,求(ab)4n= .43.已知 a2-b2=4,则(a-b) 2 (a+b)2= .44.若 a+b=7, ab=12,则 a2+ab+b2= .45.若 a+b=7, a2+b2=29,则 ab= , a-b= .46.若(a+b)2=10, (a-b)2=7,则a2+b2= , ab= .47. (a+b-c)(a-b+c)= .48. (a-b+c)2= .49. (x4+y4)(X2+y2)(x+y)(x-y)= .50.(x3-2y2)(-2y2-x3)= .51. 301x292= .3 3 ---------------------52^x2+(2m-1)x+16是一个完全平方式的展开式,则a=.53. ( -3x+ )(+4y) =9x2-16y254.分解因式:ax2+2ax-3a= .55.分解因式:16x2y2- (x2+4y2) 256.分解因式:x (b+c-a) -y (b+c-a) - (a-b-c)= .57.分解因式:2x m-4x m-1 + 6x m-2= .58.分解因式:4 (m+n)2-9 (m-n)2= .59.分解因式:m (a-b)2-12m (a-b) c+36c2= .60.分解因式:x2 (a+b) -a-b= .61.分解因式:y2-y+1= .4 -------------------------62.分解因式:(x+y)2-4 (x+y-1)= .63. 分解因式: m2-mn+mx-nx= .64.分解因式:2x2-4xy+2y2-8= .65.已知 a+b=2, ab=1, 则 a2b+ab2= .66. 5 3 52 X 6-6 X 46 52= .67. 8002-1600 X 798+7982=.68. 当x=时,x2+8x+7的值最小为.:69.计算:[(a-2b) 2]m ・[(2b-a) 3]n= . (m, n 是正整数)70.如果等式(2a-1) a+2=1成立,那么a的值可能是.71.利用换元法分解因式:(x2-4x+2) (x2-4x+6) +4=.72.计算:(2+1)(22+1)04+1)(28+1)…(22n+1)=.73.利用形如a (b+c) =ab+ac这个分配性质,求(3x+2)3-5)的积的第一步骤74.眄去一个边民为A的小正方形(白:>8),将余下部分拼成一个梯形,如图M - 2-5所示,根据两个图形阴影部分面积的关系可以得到一个关于明修的恒等式为().图14-2-4 图14-2-5A r(a —6)J = u2~2ub + i)~B.(日4b)* = cr3 + 2ab + £C,n3-i z-D,+ ab = a(a + b)75.计算:(1-2x) (5-3x+mx2-6x3),并把结果按字母x升赛排列.76.已知单项式9a m+i b n+i与-2a2m-i b2n-i的积与5a3b6是同类项,求m、n的值.77.当m、n为何值时,1x[x(x+m)+nx(x+1)+m^q展开式中不含x2项和x3项.278.已知(x3+mx+n)(x3-3x+4)的展开式中不含x3,X2项,求m、n的值.79.已知x2+x-5=0,则代数式(x-1)2X&-3)+依+2)(>-2)的值为多少?80.已知 2a-b=5,求[a2+b2+2b (a-b) - (a-b) 2]一处的值.81. 52-32n+1・2n -3n・6n+2 (n为正整数)能被13整除吗?并说明理由.82.已知 10a=20,10b=1,< 3a+3b 的值.583.解方程(2x+3) (x-4) - (x+2) (x-2) =x2+7.84.请你说明一下理由:当你为整数时,(n+14)2-n2能被28整除.85.已知a, b, c是4ABC的三边长,且满足&242+&)卜=0,试判断4ABC的形状.86.已知a,b, c是4ABC的三边长,且满足a2+b2+c2+ac+bc+ab=0,试判断△ ABC的形状.87.已知a,b,c是4ABC的三边长,且满足(a+b+c)2=3(a2+b2+c2),试判断△ABC的形状.88.(1)观察下列各式的规律:(a-b)(a+b)=a2-b2 ;(a-b)(a2+ab+b2)=a3-b3 ;(a-b)(a3+a2b+ab2+b3)=a4-b4 ;…可得到(2小)(a2020+a2019bH-- +ab2019+b2020)= .(2)猜想:(a-b) (a n-i+a n-2b+ -- +ab n-2+b n-i)= (其中 n 为正整数,且 n>2).(3)利用(2)猜想的结论计算:29-28+27- -- +23-22+ 2.。
《易错题》初中八年级数学上册第十四章《整式的乘法与因式分解》知识点总结(专题培优)
一、选择题1.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( )A .52-B .52C .5D .-5B解析:B 【分析】 把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.2.已知: 13m m +=, 则: 331m m +的值为( ) A .15B .18C .21D .9B 解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键3.已知A 为多项式,且2221241A x y x y =--+++,则A 有( )A .最大值23B .最小值23C .最大值23-D .最小值23- A解析:A【分析】利用分组分解法,变为完全平方式解答即可.【详解】 2221241A x y x y =--+++=2221218441184x x y y -+--+-+++=()()222694423x x y y --+--++=()()2223223x y ----+∵()2230x --≤,()220y --≤, ∴()()2223223x y ----+≤23, ∴多项式的最大值是23,故选A .【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.4.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个A解析:A【分析】 ①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.5.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】 解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.6.下列计算一定正确的是( )A .235a b ab +=B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+ B 解析:B【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意.故选B .【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.7.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ C解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.8.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.75D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.9.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.10.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1C 解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可.【详解】解:A:()()4444443381n n n a ba b a b --=--=- ,故答案正确; B:()41444n nn n a b a b +++=+ ,故答案正确; C:()()232262623427108n n n a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n n n n x x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确. 故选:C .【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.已知210x x +-=,则代数式3222020x x ++的值为________.【分析】根据条件转换成x2+x=1后一个代数式化简后将条件代入即可【详解】解:由题意得:x2+x=1∴x3+2x2+2020=x(x2+x)+x2+2020=x+x2+2020=1+2020=202解析:【分析】根据条件转换成x 2+x =1,后一个代数式化简后将条件代入即可.【详解】解:由题意得:x 2+x =1,∴x 3+2x 2+2020=[x (x 2+x )+x 2]+2020=x +x 2+2020=1+2020=2021,故答案为:2021.【点睛】本题考查代数式的整体代入求解,关键在于如何将代数式转换成条件中的整体. 13.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x =∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.14.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.kn+1010【分析】根据h (m+n )=h (m )•h (n )通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴===∵===kn•k1010=kn+1010故答案为:kn+101解析:4k k n+1010【分析】根据h (m+n )=h (m )•h (n ),通过对所求式子变形,然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()()()h m n h m h n +=⋅,(2)(0)h k k =≠,∴(8)h =(2222)h +++=(2)(2)(2)(2)h h h h ⋅⋅⋅=4k ,∵(2)(0)h k k =≠,(2)(2020)h n h ⋅=(22...2)(22...2)h h +++⋅+++=(2)(2)...(2)(2)(2)...(2)h h h h h h ⋅⋅⨯⋅⋅=k n •k 1010=k n+1010,故答案为:4k ,k n+1010.【点睛】本题考查同底数幂的乘法、新定义,解答本题的关键是明确题意,利用新运算求出所求式子的值.15.若3x y -=,2xy =,则22x y +=__________.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键 解析:13【分析】根据完全平方公式变形计算即可得解.【详解】∵3x y -=,2xy =,∴22x y +=2()2x y xy -+=9+4=13,故答案为:13.【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.16.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 17.若a - b = 1, ab = 2 ,则a + b =______. 【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴93a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键.18.若210x x --=,则3225x x -+的值为________.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键.19.因式分解:(x +3)2-9=________.x (x+6)【分析】根据平方差公式分解因式【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6)故答案为:x (x+6)【点睛】此题考查多项式的因式分解掌握因式分解的方法:提公因式法和公 解析:x (x+6)【分析】根据平方差公式分解因式.【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6),故答案为:x (x+6).【点睛】此题考查多项式的因式分解,掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)、分组分解法,根据多项式的特点选用恰当的方法分解因式是解题的关键.20.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__.2【分析】由可得:去分母整理可得:从而得到:于是可得答案【详解】解:故答案为:2【知识点】本题考查的是整式的乘法运算完全平方公式的应用因式分解的应用非负数的性质代数式的值利用平方根的含义解方程掌握以解析:2【分析】 由()()()214b c a b c a -=--可得:()()()21,4b c bc a b c a bc -+=--+去分母整理可得:()220,b c a +-=从而得到:2,b c a +=于是可得答案.【详解】解: ()()()21,4b c a b c a -=--()()()21,4b c bc a b c a bc ∴-+=--+ ()()22444b c bc ac a bc ab bc ∴-+=--++,()()22440,b c a a b c ∴++-+=()220,b c a ∴+-=20,b c a ∴+-=2,b c a ∴+=∴ 2=2,b c a a a+= 故答案为:2.【知识点】本题考查的是整式的乘法运算,完全平方公式的应用,因式分解的应用,非负数的性质,代数式的值,利用平方根的含义解方程,掌握以上知识是解题的关键.三、解答题21.计算下列各题:(1(2)()(3)(2解析:(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.22.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.解析:(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.24.给出下列算式:2231842-==⨯;22531644-==⨯;22752446-==⨯;22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔()3计算2220212019-=_ _,此时n =_ .解析:(1)两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)()()22212142n n n +•=-﹣;证明见解析;(3)8080,1010.【分析】(1)通过观察找出规律,可发现两个连续奇数的平方差等于夹在两个奇数之间的偶数的4倍;(2)由(1)进一步可得出第n 个等式为()()22212142n n n +-⋅=-.(3)利用前面得到的规律即可求得答案.【详解】(1)规律:两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)设1n n ≥()表示自然数,用关于n 的等式表示这个规律为:()()22212142n n n +⋅﹣=-;证明:左边()()2244144142n n n n n =++--+=⋅=右边 ()()22212142n n n ∴+-⋅﹣=;(3)212021n +=,解得:1010n =, 22420212019101088200-=⨯=⨯∴.【点睛】此题考查数字的变化规律,根据数字的特点,得出运算的规律,利用规律解决问题. 25.因式分解:(1)2ax 2-4axy +2ay 2(2)x 2-2x -8解析:(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.26.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.解析:(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.27.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯解析:①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.28.把下列多项式因式分解:(1)2()4a b ab -+;(2)22()()a x y b y x -+-.解析:(1)2()a b +;(2)()()()a b a b x y +--【分析】(1)根据完全平方公式展开,合并,再根据完全平方公式即可分解;(2)先提取公因式(x y -),再根据平方差公式继续分解即可.【详解】解:(1)原式2224a ab b ab =-++222a ab b =++2()a b =+;(2)原式22()()a x y b x y =---()22()a b x y =--()()()a b a b x y =+--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
初中数学整式的乘法与因式分解培优训练题(附答案详解)
初中数学整式的乘法与因式分解培优训练题(附答案详解)1.计算-2015×2017的值。
答案:C。
2014解析:将2015×2017先计算出来,再用减去结果即可得到答案2014.2.若a、b、c为△ABC的三边长,且满足a2+ab-ac-bc=0,b2+bc-ba-ca=0,则△ABC的形状是什么?答案:B。
等腰三角形解析:将两个式子分别移项,得到a2=ac+bc-b2,b2=ab+ac-c2.将第一个式子代入第二个式子中,得到b2=ab+bc-a2.将这个式子变形,得到a2+b2=ab+bc,即△ABC为等腰三角形。
3.下列计算正确的是什么?A。
x+x=x2B。
x3·x3=2x3C。
(x3)2=x6D。
x3÷x=x3答案:A。
x+x=x2解析:这个式子可以化简为x=0或x=1,因此等式成立。
4.若m为整数,则m2+m一定能被哪个数整除?A。
2B。
3C。
4D。
5答案:A。
2解析:m2+m可以因式分解为m(m+1),其中m和m+1中必有一个是偶数,因此m2+m一定能被2整除。
5.若m为大于0的整数,则(m+1)2-(m-1)2一定是什么?A。
3的倍数B。
4的倍数C。
6的倍数D。
16的倍数答案:B。
4的倍数解析:将式子展开,得到4m。
因此,(m+1)2-(m-1)2一定是4的倍数。
6.若,则等于什么?A。
B。
C。
D。
答案:D。
解析:将式子展开,得到16m2.因此,等于16的倍数。
7.计算:7ab2的值是多少?(28a2b2-21ab2)÷(4a2-3b)答案:A。
4a2-3b解析:将分子分母都因式分解,得到7ab2=(7a)(b2),(28a2b2-21ab2)÷(4a2-3b)=7ab2÷(4a2-3b)=(7a)(b2)÷(4a2-3b)=7ab2÷(4a2-3b)×a÷a=7b2÷(4a2-3b)×7a=49a÷(4a2-3b)×b2.由于分母为(4a2-3b),因此可将分子中的a和分母中的4a2合并,得到49a÷(4a2-3b)×b2=49a×b2÷(4a2-3b)=4a2b2-3ab2÷(4a2-3b)=4a2-3b。
武汉光谷外国语学校八年级数学上册第十四章《整式的乘法与因式分解》经典题(培优)
一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2B 解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ C 解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 3.形如abcd 的式子叫做二阶行列式,它的算法是:ab ad bc cd =-,则221a a a a -++的运算结果是( )A .4aB .4a -C .4D .4- A解析:A根据定义把二阶行列式表示成整式,然后再化简计算即可.【详解】解:由题意可得:()()()212221aa a a a a a a -=+--+++ =()224a a a +--=224a a a +-+=a+4,故答案为A .【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键.4.下列分解因式正确的是( )A .xy ﹣2y 2=x (y ﹣2x )B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y )D 解析:D【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断.【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确;故选:D .【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.5.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.6.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .98D 解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算.7.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <10082015D 解析:D【分析】 根据平方差公式因式分解然后约分,便可归纳出来即可.【详解】解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6,此选项不符合题意;B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯,∵9352590<, ∴A 52<A 4A 6, 此选项不符合题意;C 、∵A 2=2131=24-, 且345674681012<<<<<, ∴n ≥2时,恒有A n ≤34, 此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯, 当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意;故选择:D .【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.8.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.9.若y 2+4y 0,则xy 的值为( ) A .﹣6B .﹣2C .2D .6A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0.10.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .6D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 二、填空题11.若2,3x y a a ==,则22x y a +=_______________________.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可.【详解】解:∵2,3x y a a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36,故答案为36.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键. 12.计算:248(21)(21)(21)(21)1+++++=___________.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键 解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.13.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.kn+1010【分析】根据h (m+n )=h (m )•h (n )通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴===∵===kn•k1010=kn+1010故答案为:kn+101解析:4k k n+1010【分析】根据h (m+n )=h (m )•h (n ),通过对所求式子变形,然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()()()h m n h m h n +=⋅,(2)(0)h k k =≠,∴(8)h =(2222)h +++=(2)(2)(2)(2)h h h h ⋅⋅⋅=4k ,∵(2)(0)h k k =≠,(2)(2020)h n h ⋅=(22...2)(22...2)h h +++⋅+++=(2)(2)...(2)(2)(2)...(2)h h h h h h ⋅⋅⨯⋅⋅=k n •k 1010=k n+1010,故答案为:4k ,k n+1010.【点睛】本题考查同底数幂的乘法、新定义,解答本题的关键是明确题意,利用新运算求出所求式子的值.14.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.6【分析】由得把它整体代入求值【详解】解:∵∴即∴故答案是:6【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想求值解析:6【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值.【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=,∴()216425336f m n -=+-+=+=.故答案是:6.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.15.已知102m =,103n =,则32210m n ++=_______.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==,∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.16.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 17.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键18.+1﹣1)的结果等于_____.6【分析】根据平方差公式计算【详解】(+1)(﹣1)=7-1=6故答案为:6【点睛】此题考查平方差计算公式:熟记公式是解题的关键解析:6【分析】根据平方差公式计算.﹣1)=7-1=6,故答案为:6.【点睛】此题考查平方差计算公式:22()()a b a b a b +-=-,熟记公式是解题的关键. 19.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__.2【分析】由可得:去分母整理可得:从而得到:于是可得答案【详解】解:故答案为:2【知识点】本题考查的是整式的乘法运算完全平方公式的应用因式分解的应用非负数的性质代数式的值利用平方根的含义解方程掌握以解析:2【分析】 由()()()214b c a b c a -=--可得:()()()21,4b c bc a b c a bc -+=--+去分母整理可得:()220,b c a +-=从而得到:2,b c a +=于是可得答案.【详解】解: ()()()21,4b c a b c a -=-- ()()()21,4b c bc a b c a bc ∴-+=--+ ()()22444b c bc ac a bc ab bc ∴-+=--++,()()22440,b c a a b c ∴++-+=()220,b c a ∴+-=20,b c a ∴+-=2,b c a ∴+=∴ 2=2,b c a a a+= 故答案为:2.【知识点】本题考查的是整式的乘法运算,完全平方公式的应用,因式分解的应用,非负数的性质,代数式的值,利用平方根的含义解方程,掌握以上知识是解题的关键.20.若9m =4,27n =2,则32m ﹣3n =__.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂 解析:2根据指数的运算,把32m﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n ÷=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 三、解答题21.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2请你写出()2a b +、()2a b -、ab 之间的等量关系是______;(2)拓展应用:若()()22202020217m m -+-=,求()()20202021m m --的值. 解析:(1)()()224a b a b ab +--=;(2)3-.【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b )2-(b-a )2=(a+b )2-(a-b )2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)令2020m a -=,2021m b -=,则1a b +=-,227a b +=,根据()2222ab b a b a -=++求解【详解】解:(1)()()224a b a b ab +--=(2)令2020m a -=,2021m b -=,则1a b +=-,227a b +=由()2222ab b a b a -=++∴()2127ab --= ∴3ab =-即()()202020213m m --=-.【点睛】本题考查了完全平方公式的几何背景,解决此类题目的关键在于同一个图形的面积用两种不同的方法表示.22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________.解析:【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.23.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:2-⨯=-==811564154972241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.解析:(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可;(2)设中间那个数为n,列得2(7)(7)--+,根据平方差公式及合并同类项法则计n n n算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,2-⨯=-==;13620169120497(2)证明:设中间那个数为n,则:2(7)(7)497--+==n n n∴2(7)(7)7--+=.n n n.【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.24.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.解析:(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.25.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.解析:(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a 2﹣4(a +b )2=[3a +2(a +b )][3a ﹣2(a +b )]=(5a +2b )(a ﹣2b ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.先化简,再求值:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a ,其中a =12.解析:a ﹣12,0 【分析】 先根据完全平方公式和多项式乘以多项式算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】解:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a=[4a 2﹣4a+1﹣4a 2+1+2a 2+4a ﹣a ﹣2]÷2a=[2a 2﹣a]÷2a=a ﹣12, 当a =12时,原式=0. 【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.27.因式分解(1)x 3﹣x ;(2)m 3n ﹣2m 2n +mn解析:(1)(1)(1)x x x +-;(2)2(1)mn m -.【分析】(1)先提公因式,然后由平方差公式因式分解,即可得到答案;(2)先提公因式,然后由完全平方公式因式分解,即可得到答案.【详解】解:(1)32(1)(1)(1)x x x x x x x -=-=+-;(2)32222(21)(1)m n m n mn mn m m mn m -+=-+=-; 【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法和公式法进行因式分解. 28.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭. 解析:4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦ ()()22223293ab b a ab b a a =--++-÷-()()23123ab a a =-÷-4a b =- ∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b = ∴原式1284255=⨯-= 【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.。
(必考题)初中八年级数学上册第十四章《整式的乘法与因式分解》经典测试题(提高培优)(1)
一、选择题1.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得: ()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.2.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0B .2-C .0或2-D .以上答案都不对A解析:A【分析】 由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.3.下列运算正确的是( ).A .()2326ab a b =B .()325a a =C .236a a a ⋅=D .347a a a += A 解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.4.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数C解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】 ()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D 解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .解析:A【分析】利用完全平方公式计算即可得到答案.【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.7.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24B .48C .96D .192C解析:C【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可.【详解】∵长方形的周长为16,∴8a b +=,∵面积为12,∴12ab =,∴()22 12896a b ab ab a b +=+=⨯=, 故选:C .【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.8.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4D解析:D【分析】 依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值.【详解】∵|m ﹣3n ﹣2019|=1,∴m ﹣3n ﹣2019=±1,即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2,∴(2020﹣m +3n )2的值为0或4,故选:D .【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.9或10或11或12【分析】由运算流程图先求出第一次输出的数分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可【详解】解:根据题意∵第二次输出设第一次输出的数是奇数m 时则解得:;设第一次输出的数解析:9或10或11或12.【分析】由运算流程图,先求出第一次输出的数,分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可.【详解】解:根据题意,∵第二次输出3y =,设第一次输出的数是奇数m 时,则 132m +=,解得:5m =; 设第一次输出的数是偶数n 时,则32n =,解得:6n =. 当第一次输出为5时,又可以分为两种情况:当x 为奇数时,则152x +=,解得:9x =; 当x 为偶数时,则52=x ,解得:10x =; 当第一次输出为6时,又可以分为两种情况: 当x 为奇数时,则162x +=,解得:11x =; 当x 为偶数时,则62x =,解得:12x =; 故答案为:9或10或11或12.【点睛】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.12.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a 小正方形的边长为b 故阴影部分的面积是:AE•BC+AE•BD =AE (BC+BD )=(AB ﹣ 解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a ,小正方形的边长为b , 故阴影部分的面积是:12AE •BC +12AE •BD =12AE (BC +BD ) =12(AB ﹣BE )(BC +BD ) =12(a ﹣b )(a +b ) =12(a 2﹣b 2) =12×60 =30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.13.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式【详解】解:从左到右三个小长方形的面积分别为:mambmc 大长方形的面积为:m (a+b+c )三个小长方形的面积和等解析:()m a b c ma mb c ++=++(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式.【详解】解:从左到右三个小长方形的面积分别为:ma 、mb 、mc ,大长方形的面积为:m (a+b+c ),三个小长方形的面积和等于大长方形的面积,m (a+b+c )= ma+mb+mc ,故答案为:()m a b c ma mb c ++=++.【点睛】本题考查了单项式乘以多项式的几何意义,分别表示出各个长方形的面积,找到等量关系是解题关键.14.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.6【分析】由得把它整体代入求值【详解】解:∵∴即∴故答案是:6【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想求值解析:6【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值.【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=,∴()216425336f m n -=+-+=+=.故答案是:6.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.15.若2211392781n n ++⨯÷=,则n =____.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键.16.若()230x -=,则x y -=______.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母 解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()2340x y -++=,且()230,40x y -≥+≥, ∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.17.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 18.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.19.分解因式3225a ab -=____.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248ab ab π++【分析】先求出圆形钢板的面积,再减去两个小半圆的面积即可. 【详解】解:圆形钢板的面积为:2()2a b π+, 直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a bπππ+-⨯-⨯, =()2248ab ab π++,故答案为:()2248ab ab π++.【点睛】本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.三、解答题21.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.解析:36 【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b+,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积. 【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE ,=22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++-,=()()22+24a b a b ab +--,=64﹣12﹣644, =64﹣12﹣16, =36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.22.已知x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,求(x +y )﹣abm 的值. 解析:2 【分析】根据相反数和倒数的概念以及数的大小比较法则确定x+y ,ab 以及m 的值,从而代入计算. 【详解】解:∵x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数, ∴x+y=0,ab=1,m=-1∴(x +y )﹣abm=0-1×(-1)=2. 【点睛】本题考查代数式求值,掌握相反数及倒数的概念以及数的大小比较,正确计算是解题关键.23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y +-=.解析:22x y -+,10 【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可. 【详解】解:原式()()222222164425210x y x xy yxxy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷ ()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=, ∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=. 【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:(2)设5月份某“外卖小哥”送餐x 单()500x >,求他这个月的工资总额(用含x ,m 的代数式表示).解析:(1)3400元;(2)当500<x≤m ,工资总额为8x ;当x >m ,工资总额为10x-2m 【分析】(1)根据题意和表格中的数据可以求得若某“外卖小哥”4月份送餐400单,他这个月的工资总额;(2)根据题意和表格中的数据可以写出各段工资总额与x 的关系式; 【详解】解:(1)工资总额=1000+400×6=3400元(2)当500<x≤m ,工资总额为:1000+500×6+8(x-500)=8x 当x >m ,工资总额为:1000+500×6+8(m-500)+10(x-m )=10x-2m 【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,分段分析解答.25.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.解析:(1)()()22m n m n ++;(2)42cm . 【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可. 【详解】(1)根据图形,依题意可得:2225222mmn n m n mn(2)依题意得222258m n +=,10mn =2229m n ∴+=2222mnm mnn2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m nmn∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键. 26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.解析:【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案; (2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案; (2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可. 【详解】 解:【初步探究】 (1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确; 故选:C . 【深入思考】 (1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥;71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则 将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭;故答案为:21n a -⎛⎫⎪⎝⎭;(3)=224m n m n a a a --+-•=;故答案为:4m n a +-. 【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.27.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积: 方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.解析:(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40 【分析】(1)利用两种方法表示出大正方形面积即可; (2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值; 【详解】解:(1)方法一:()2a b +; 方法二:222a b ab ++; 故答案为:(a +b )2;a 2+2ab +b 2; (2)()2222a b a b ab +=++; (3)∵162ab =,()264a b +=, ∴224ab =,∴()222240a b a b ab +=+-=. 【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.28.如果2()()41x m x n x x ++=+-. ①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值: (1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20 【分析】①据多项式乘多项式的运算法则求解即可; ②根据完全平方公式计算即可. 【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1, ∴m +n =4,mn =−1. 故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13; (2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20. 【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.。
人教版2022-2023学年八年级数学上册阶段性复习精选精练《整式的乘法与因式分解》培优卷含答案解析
第14章 整式的乘法与因式分解(培优篇)一、单选题(本大题共10小题,每小题3分,共30分)1.下列计算正确的是( )A .a 2•a 3=a 6B .a 6÷a 3=a 2C .4x 2﹣3x 2=1D .(﹣2a 2)3=﹣8a 62.计算20206060(0.125)(2)-⨯的结果是( )A .1B .1-C .8D .8-3.若3x y -=,则226x y y --=( )A .3B .6C .9D .124.下列运算中,结果正确的是( )A .235a b ab+=B .()2a a b a b -+=-C .()222a b a b +=+D .236a a a ⋅=5.已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( )A .c a b <<B .c b a <<C .a b c <<D .a c b <<6.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-20207.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或08.若(b ﹣c )2=4(1﹣b )(c ﹣1),则b +c 的值是( )A .﹣1B .0C .1D .29.已知(2x ﹣3)7=a 0x 7+a 1x 6+a 2x 5+……+a 6x +a 7,则a 0+a 1+a 2+……+a 7=( )A .1B .﹣1C .2D .010.我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)n a b n += 的展开式的系数规律(按n 的次数由大到小的顺序)1 1 1()a b a b+=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b 1 4 6 4 1 4322344()464a b a a b a b ab b +=++++… … 请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042二、填空题(本大题共8小题,每小题4分,共32分)11.若34x =,97y =,则3x ﹣2y 的值为__.12.因式分解:22421x y y -+-=________.13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.若实数a ,b 满足1a b -=,则代数式2225a b b --+的值为_______________.15.多项式2222627a ab b b -+-+的最小值为________.16.计算:(2+1)(22+1)(24+1)…(232+1)+1=_____.17.设123,,a a a K K 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)n n n a a a +=---,则2018a =___________.18.如图,用大小相同的小正方形拼图形,第1个图形是一个小正方形;第2个图形由9个小正方形拼成;第3个图形由25个小正方形拼成,依此规律,若第n 个图形比第(n -1)个图形多用了72个小正方形,则n 的值是___________.三、解答题(本大题共6小题,共58分)19.(8分)已知a+b=-8 , ab=10,求22a b +和 2()a b -的值.20.(8分)爱动脑筋的小明在学习《幂的运算》时发现:若(0m n a a a =>,且1a ≠,m 、n 都是正整数),则m n =,例如:若455m =,则4m =.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果3624322x x ⨯⨯=,求x 的值;(2)如果2133108x x +++=,求x 的值.21.(10分)阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =.根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC V 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC V 的周长.22.(10分)观察以下等式:第1个等式:42+32=52;第2个等式82+152=172;第3个等式:122+352=372;第4个等式:162+632=652;……;按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n 个等式: ______(用含n 的等式表示),并证明.23.(10分)图1是一个长为2m ,宽为2n 的长方形,将该长方形沿图中虚线用剪刀均分成四块小长方形,然后按照图2所示拼成一个正方形.(1)使用不同方法计算图2中小正方形的面积,可推出(m+n )2,(m-n )2,mn 之间的等量关系为: ;(2)利用(1)中的结论,解决下列问题:①已知a -b =4,ab =5,求a +b 的值;②已知a >0,a -3a =2,求a +3a的值.24.(12分)如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数”;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M 是“十全九美数”,“全美分解”为A ×B ,将A 的十位数字与个位数字的差,与B 的十位数字与个位数字的和求和记为()S M :将A 的十位数字与个位数字的和,与B 的十位数字与个位数字的差求差记为()T M .当()()S M T M 能被5整除时,求出所有满足条件的自然数M .参考答案1.D解:试题分析:根据同底数幂相乘,底数不变,指数相加,可知a 2·a 3=a 5,故不正确;根据同底数幂相除,底数不变,指数相减,可知a 6÷a 3=a 3,故不正确;根据合并同类项法则,可知4x 2-3x 2=x 2,故不正确;根据积的乘方,可知(-2a 2)3=-8a 6,故正确.故选D.2.A【分析】将6060(2)化为2020(8)使两个幂的指数相同,再利用积的乘方逆运算进行计算.解:20206060202022020002(0.125)(2)(0.125)(8)(01.1258)-⨯-⨯-⨯===,故选:A.【点拨】此题考查幂的乘方逆运算,积的乘方逆运算,熟记公式是解题的关键.3.C【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答.解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--=故答案为C.【点拨】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.4.B【分析】A .不是同类项,不能合并;B.去括号合并同类项直接得答案判断即可;C.利用完全平方公式运算即可;D.利用同底数幂乘法进行运算即可.解:A. 2a+3b 不是同类项,不能合并,故此选项错误;B. 2a-(a+b)=2a-a-b=a-b ,故此选项正确;C. (a+b)2=a 2+2ab+b 2,故此选项错误;D.235a a a ⋅=,故此选项错误故选:B【点拨】本题考查了整式运算,涉及合并同类项、同底数幂乘法、完全平方公式;熟练掌握这些知识点并能灵活运用是解题的关键.5.A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511,又∵125243256<<,∴c a b <<.故选:A .【点拨】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.6.C【分析】将220x x +-=变形为22x x =-+,22x x +=,代入3222016x x x +-+即可求解.解:∵220x x +-=,∴22x x =-+,22x x +=,∴3222016x x x +-+2222016x x x x =+-+g ()2222016x x x x =-++-+g 22016x x =++22016=+=2018.故选:C【点拨】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.7.D【分析】存在3种情况:一种是指数为0,底数不为0;第二种是底数为1,指数为任意值;第三种是底数为-1,指数为偶数,分别求解可得.解:情况一:指数为0,底数不为0即:a +2=0,2a -1≠0解得:a =-2情况二:底数为1,指数为任意值即:2a -1=1解得:a =1情况三:底数为-1,指数为偶数即:2a -1=-1,解得a =0代入a +2=2,为偶数,成立故答案为:D【点拨】本题考查0指数和底数为±1的指数的特点,本题底数为-1的情况容易遗漏,需要关注.8.D【分析】先将等式的右边展开并移项到左边,然后再根据完全平方公式可以分解因式,即可得到b +c 的值.解:∵(b ﹣c )2=4(1﹣b )(c ﹣1),∴b 2﹣2bc +c 2=4c ﹣4﹣4bc +4b ,∴(b 2+2bc +c 2)﹣4(b +c )+4=0,∴(b +c )2﹣4(b +c )+4=0,∴(b +c ﹣2)2=0,∴b +c =2,故选:D .【点拨】本题考查因式分解的应用,掌握运用完全平方公式进行因式分解是解答本题的关键.9.B【分析】根据等式的性质,只有当x =1时,才表示系数之和,故代入x =1计算即可.解:当x =1时,(2﹣3)7=a 0+a 1+a 2+……+a 6+a 7,则a 0+a 1+a 2+……+a 7=﹣1,故选B .【点拨】本题主要考查方程的解,关键在于x =1的确定,要使出现所以系数之和,则必须使得x =1.10.D【分析】先观察规律,再按照规律写出第一项、第二项,其中第二项2019x ,写出系数即可解:根据规律可以发现:20212x x ⎛⎫- ⎪⎝⎭第一项的系数为1,第二项的系数为2021,∴第一项为:x 2021,第二项为:20202020201922202120214042xx x x x ⎛⎫-=-=- ⎪⎝⎭g g g g 故选:D【点拨】本题考查杨辉三角多项式乘法找规律的问题,观察发现式子中的规律是关键11.47【分析】根据2233339x y x y x y ÷÷﹣==即可代入求解.解:2233339x y x y x y ÷÷﹣==47=.故答案是:47.【点拨】本题考查了同底数的幂的除法运算,正确理解2233339x y x y x y ÷÷﹣==是关键.12.(21)(21)x y x y +--+【分析】根据多项式特点,进行分组,两次运用公式法分解因式即可.解:22421x y y -+-()22=421x y y --+()22=41x y --=(21)(21)x y x y +--+故答案为:(21)(21)x y x y +--+【点拨】本题无法直接提公因式或运用乘法公式进行分解因式,结合式子特点,对多项式分组,两次运用公式法进行分解,要注意符号问题,正确分组是解题关键.13.20解:∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点拨】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.6.【分析】将所求代数式中的22a b -因式分解,再把1a b -=代入,化简即可.解:2225()()25a b b a b a b b --+=+--+,把1a b -=代入得()25255a b b a b b a b +-+=+-+=-+,再把1a b -=代入得5156a b -+=+=;故答案为:6.【点拨】本题考查了求代数式的值和因式分解以及整式计算,解题关键是熟练利用因式分解把所求代数式变形,然后整体代入求值.15.18.【分析】利用公式法进行因式分解,根据非负性确定最小值.解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --≥≥,,∴22()(3)18a b b -+-+的最小值为18;故答案为:18.【点拨】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.16.264【分析】在原式前面乘以(2﹣1)构造能用平方差公式的结构,连续使用平方差公式即可.解:原式=()()()()232212121211-++++g g g ,=()()()22322121211-+++g g g ,=()()()44322121211-+++g g g ,=264﹣1+1,=264;故本题答案为264.【点拨】此题主要考查平方差公式的应用,解题的关键是将原式变形为平方差的形式.17.4035解:【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.解:∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点拨】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.18.10【分析】依次观察前几个图形以及正方形的个数,进而归纳得到拼成第n 个图形需要2(21)n -个正方形,即可得出结论.解:第1个图形是一个小正方形;第2个图形由29(221)=⨯-个小正方形拼成;第3个图形由225(231)=⨯-个小正方形拼成,……拼成第1n -个图形需要2(23)n -个正方形,拼成第n 个图形需要2(21)n -个正方形,2(21)n -2(23)72n --=,解得:10n =;故答案为:10.【点拨】本题主要考查了图形类规律探索,根据图形得出小正方形的变化规律是解题的关键.19.44,24.【分析】运用完全平方公式给a+b=-8左右两边平方,然后结合ab=10,求出22a b +;再展开2()a b -,代入22a b +和ab 的值即可.解:(a+b )2=(-8)222a b ++2ab=6422a b +=64-2ab22a b +=64-2×10=442()a b -=22a b +-2ab=44-2×10=24【点拨】本题考查了完全平方公式的应用,掌握并灵活应用完全平方公式是解答本题的关键.20.(1)x =5(2)x =2【分析】(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.解:(1)因为2×4x ×32x =236,所以2×22x ×25x =236,即21+7x =236,所以1+7x =36,解得:x =5;(2)因为3x +2+3x +1=108,所以3×3x +1+3x +1=4×27,4×3x +1=4×33,即3x +1=33,所以x +1=3,解得:x =2.【点拨】本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.21.(1)-4,-4;(2)ABC V 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC V 的周长为9.【点拨】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.22.(1)202+992=1012; (2)(4n )2+[(2n -1)(2n +1)]2=[(2n -1)(2n +1)+2]2;证明见分析.【分析】(1)观察等式中的3个数中的数字与等式的序号的关系,第一个数是序号的4倍的平方,第二个数是从1开始的连续两个奇数的乘积的平方,第三个数是连续两个奇数乘积+2的平方,以此规律可得结论;(2)依据(1)中找到的规律得到第n个式子,通过计算式子的左边和右边来证明猜想的正确.解:(1)观察等式中的3个数中的数字与等式的序号的关系,第一个数是序号的4倍的平方,第二个数是从1开始的连续两个奇数的乘积的平方,第三个数是连续两个奇数乘积+2的平方,∴第5个等式为(4×5)2+[9×11]2=202+992=1012;故答案为202+992=1012;(2)依据(1)中找到的规律得到第n个式子为:(4n)2+[(2n-1)(2n+1)]2=[(2n-1)(2n+1)+2]2;证明:左边=16n2+16n4-8n2+1=(4n2+1)2;右边=(4n2+1)2;∴左=右,即原等式成立.【点拨】本题考查了数字的变化规律,列代数式,积的乘方,多项式乘多项式.准确找出等式中的数字与等式序号的关系是解题的关键.23.(1)(m-n)2=(m+n)2-4mn;(2)①6或-6;②4.【分析】(1)由题意知,阴影部分小正方形的边长为m-n.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积求图中阴影部分的面积,利用两种求法确定出所求关系式即可;(2)①利用(1)的结论,可知(a-b)2=(a+b)2-4ab,把已知数值整体代入即可;②先利用完全平方公式进行变形,即将a-3a=2两边同时平方,然后求出(a+3a)2的值,从而得出结果.解:(1)阴影部分的面积可以看作是边长m-n的正方形的面积,也可以看作边长m+n 的正方形的面积减去4个小长方形的面积,∴(m-n)2=(m+n)2-4mn,故答案为:(m-n)2=(m+n)2-4mn;(2)①∵a-b=4,ab=5,且由(1)知(a-b)2=(a+b)2-4ab,∴(a+b)2=16+20=36,∴a+b=6或-6;②∵a -3a =2,∴(a -3a )2= a 2-6+29a=4,∴a 2+6+29a =16,∴(a +3a)2=16,又a >0,∴a +3a =4.【点拨】本题考查了完全平方公式的几何背景,整式的混合运算以及分式的求值等知识,熟练掌握运算法则是解本题的关键.24.(1)2100是“十全九美数” , 168不是“十全九美数”,理由见分析;(2)满足“十全九美数”条件的M 有:1564或1914或1164.【分析】(1)根据“十全九美数”的定义直接判定即可;(2)设A 的十位数字为m ,个位数字为n ,得出S (M )=19-2n ,T (M )=2m -1,当()()S M T M 能被5整除时,设值为k ,再分类进行讨论即可求解.(1)解:2100是“十全九美数” , 168不是“十全九美数”,理由如下:∵2100=25×84,2+8=10,5+4=9,∴2100是“十全九美数”;∵168=14×12,1+1≠10,∴168不是“十全九美数”;(2)解:设A 的十位数字为m ,个位数字为n ,则A =10m +n ,∵M 是“十全九美数”, M=A ×B ,∴B 的十位数字为10-m ,个位数字为9-n ,则B =10(10-m )+9-n =109-10m -n ,由题知:S (M )=m -n +10-m +9-n =19-2n ,T (M )=m +n -()109m n ⎡⎤---⎣⎦=2m -1,根据题意令()()192521S M n k T M m -==-(k 为整数),由题意知:1≤m ≤9,0≤n ≤9,且都为整数,∴1≤19-2n ≤19,1≤2m -1≤17,当k =1时,19221n m --=5,∴1925211n m -=⎧⎨-=⎩或19210212n m -=⎧⎨-=⎩或19215213n m -=⎧⎨-=⎩,解得17mn=⎧⎨=⎩或3292mn⎧=⎪⎪⎨⎪=⎪⎩(舍去)或22mn=⎧⎨=⎩;当k=2时,19221nm--=10,∴19210211nm-=⎧⎨-=⎩,解得192mn=⎧⎪⎨=⎪⎩(舍去),当k=3时,19221nm--=15,∴19215211nm-=⎧⎨-=⎩,解得12mn=⎧⎨=⎩,∴A=10m+n=17,B=109-10m-n=92;或A=10m+n=22,B=109-10m-n=87;或A=10m+n=12,B=109-10m-n=97;∵M=A×B=17×92=1564或M=A×B=22×87=1914或M=A×B=12×97=1164,综上,满足“十全九美数”条件的M有:1564或1914或1164.【点拨】本题是新定义题,主要考查了列代数式,以及因式分解的应用,一元一次方程的应用,关键是准确理解“十全九美数”含义.。
乌鲁木齐市第八中学八年级数学上册第十四章《整式的乘法与因式分解》(培优专题)
一、选择题1.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n) B .a 3-a=a(a+1)(a-1) C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)22.若2x y +=,1xy =-,则()()1212x y --的值是( ) A .7-B .3-C .1D .93.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 4.形如ab cd的式子叫做二阶行列式,它的算法是:ab ad bc cd=-,则221a a a a -++的运算结果是( ) A .4aB .4a -C .4D .4-5.将11n n x x +--因式分解,结果正确的是( ) A .()121n x x--B .()11nx x --C .()1nxx x --D .()()111n xx x -+-6.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+ C .()2484x x x +- D .()241x x -7.下列运算正确的是( ). A .()2326aba b =B .()325aa =C .236a a a ⋅=D .347a a a +=8.下列有四个结论,其中正确的是( ) ①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a = ③若10,16a b ab +==,则6a b -= ④若4,8x y a b ==,则232x y -可表示为a bA .①②③④B .②③④C .①③④D .②④9.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+10.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 11.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+12.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222xy a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽13.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34B .54-C .12-D .5414.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-15.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题16.若()()253x x x bx c +-=++,则b+c=______.17.因式分解269x y xy y -+-=______. 18.已知25m =,2245m n +=,则2n =_______.19.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.20.若231m n -=,则846m n -+=________. 21.已知正实数a ,满足17a a-=,则1a a +=________.22.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____23.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.24.若2249x mxy y -+是一个完全平方式,则m =______ 25.已知23x y -=,则432x y --=________. 26.已知a +b =5,且ab =3,则a 3+b 3=_____.三、解答题27.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米. (1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).28.分解因式: (1)25105x x ++ (2)()()2249ax y b y x -+-29.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 30.把下列多项式因式分解(要写出必要的过程): (1)﹣x 2y +6xy ﹣9y ; (2)9(x +2y )2﹣4(x ﹣y )2; (3)1﹣x 2﹣y 2+2xy .。
深圳市新华中学八年级数学上册第十四章《整式的乘法与因式分解》经典练习(培优专题)
一、选择题1.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .12B 解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为: ()22223x a x a x x b +--=-+,∴可得:232a b a -=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.2.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ C 解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 3.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯--∴()2 49a b -=∴7a b -=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键. 4.已知A 为多项式,且2221241A x y x y =--+++,则A 有( )A .最大值23B .最小值23C .最大值23-D .最小值23- A 解析:A【分析】利用分组分解法,变为完全平方式解答即可.【详解】 2221241A x y x y =--+++=2221218441184x x y y -+--+-+++=()()222694423x x y y --+--++=()()2223223x y ----+∵()2230x --≤,()220y --≤, ∴()()2223223x y ----+≤23, ∴多项式的最大值是23,故选A .【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.5.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关C解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键.6.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.75D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.7.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29D 解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.下列计算正确的是( )A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 5B 解析:B【分析】直接利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案.【详解】A 、3332a a a +=,故此选项错误;B 、34·a a a =,故此选项正确;C 、32a a a ÷=,故此选项错误;D 、236(2)8a a =,故此选项错误;故选:B .【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方运算、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.10.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20A 解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.二、填空题11.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd+-+的值为_______.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1,∴x 2021=±1, ∴2021a b x cd cd+-+ =1-1+0=0; 或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 12.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.13.已知2320x y -+=,则()2235x y -+的值为______.1【分析】根据求出代入计算即可【详解】∵∴∴=故答案为:1【点睛】此题考查已知式子的值求代数式的值掌握有理数混合运算法则是解题的关键解析:1【分析】根据2320x y -+=求出232x y -=-,代入计算即可.【详解】∵2320x y -+=,∴232x y -=-,∴()2235x y -+=2(2)51⨯-+=,故答案为:1.【点睛】此题考查已知式子的值求代数式的值,掌握有理数混合运算法则是解题的关键.14.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =,∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.15.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.若()2340x y -+=,则x y -=______.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母 解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()230x -=,且()230x -≥≥, ∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.17.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.18.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.19.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.20.分解因式:2a 2﹣8=______.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.解析:(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.22.因式分解:(1)222x - (2)32244x x y xy -+解析:(1)2(1)(1)x x +-;(2)2(2)-x x y .【分析】(1)首先提公因式2,再利用平方差公式进行分解即可;(2)首先提公因式x ,再利用完全平方公式进行分解即可.【详解】(1)原式()221x =- 2(1)(1)x x =+-.(2)原式()2244x x xy y =-+2(2)x x y =-.【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 23.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.24.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________;(2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值. 解析:(1)(-1,1);(2)3;(3)-1【分析】(1)根据公式列式计算即可判断;(2)根据公式列方程解答即可;(3)根据公式列方程求出221m m -=,再代入代数式计算即可.【详解】(1)∵221(2)13-⨯+≠--,211(1)13-⨯+≠--,∴数对()()2,1,1,1--中是“海山有理数对”的是(-1,1);故答案为:(-1,1);(2)由题意得:2333n n =+-,故答案为:3;(3)由题意得:2223m m =+-,∴221m m -=,∴原式=22(342)m m m --+=22342m m m -+-=23(2)2m m --+=312-⨯+=-1.【点睛】此题考查新定义,有理数的混合运算,整式的混合运算,求代数式的值正确理解题意中的计算公式正确列式是解题的关键.25.a b c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长解析:(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ; (2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a a b b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.26.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯解析:①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.27.已知将32()(34)x mx n x x ++-+化简的结果不含3x 和2x 项.(1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求22242m mn n -+的值.解析:(1)m=-4,n=-12;(2)128【分析】(1)利用多项式乘以多项式法则计算得到结果,根据展开式中不含x 2和x 3项即可得到m 与n 的值;(2)根据题意,将(1)中所求m 、n 的值代入计算即可.【详解】解:(1)32()(34)x mx n x x ++-+54323(4)(3)(43)4x x m x n m x m n x n =-+++-+-+;∵化简的结果不含3x 和2x 项,∴40m +=,30n m -=,∴4m =-,12n =-;(2)22222422()2(412)264128m mn n m n -+=-=⨯-+=⨯=;【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.28.因式分解(1)x 3﹣x ;(2)m 3n ﹣2m 2n +mn解析:(1)(1)(1)x x x +-;(2)2(1)mn m -.【分析】(1)先提公因式,然后由平方差公式因式分解,即可得到答案;(2)先提公因式,然后由完全平方公式因式分解,即可得到答案.【详解】解:(1)32(1)(1)(1)x x x x x x x -=-=+-;(2)32222(21)(1)m n m n mn mn m m mn m -+=-+=-;【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法和公式法进行因式分解.。
《易错题》初中八年级数学上册第十四章《整式的乘法与因式分解》经典题(培优练)
一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)22.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .93.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0B .2-C .0或2-D .以上答案都不对 4.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .6 5.已知A 为多项式,且2221241A x y x y =--+++,则A 有( )A .最大值23B .最小值23C .最大值23-D .最小值23- 6.化简()2003200455-+所得的值为( ) A .5- B .0 C .20025 D .200345⨯7.在下列的计算中正确的是( ) A .23a ab a b ⋅=;B .()()2224a a a +-=+;C .235x y xy +=;D .()22369x x x -=++ 8.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 9.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个10.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+11.已知1x x +=1x x -的值为( )A B .2± C .D 12.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 13.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷= 14.下列计算正确的是( ) A .a 3+a 3=a 6 B .a 3·a=a 4 C .a 3÷a 2=a 3 D .(2a 2)3 =6a 515.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a +=二、填空题16.已知2a -b +2=0,则1-4a +2b 的值为______.17.因式分解269x y xy y -+-=______.18.若26x x m ++为完全平方式,则m =____.19.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 20.若294x kx ++是一个完全平方式,则k 的值为_____. 21.已知102m =,103n =,则32210m n ++=_______.22.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____23.分解因式323a a -=____.24.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.25.分解因式:2221218ax axy ay -+=_________.26.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________.三、解答题27.给出下列算式:2231842-==⨯;22531644-==⨯;22752446-==⨯;22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔()3计算2220212019-=_ _,此时n =_ .28.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 29.分解因式:(1)25105x x ++(2)()()2249a x y b y x -+-30.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________;(2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 整式的乘法【知识点归纳】1.同底数幂相乘, 不变, 相加。
a n.a m = (m,n 是正整数)2.幂的乘方, 不变, 相乘。
(a n )m = (m,n 是正整数)3.积的乘方,等于把 ,再把所得的幂 。
(ab)n = (n 是正整数)4.单项式与单项式相乘,把它们的 、 分别相乘。
5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )=6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。
7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )=8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。
(a+b )2= ,(a-b )2= 。
9.公式的灵活变形:(a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- ,a 2+b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。
【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值【例2】已知两个多项式A 和B ,43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少?【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 .【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值.【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ;(2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y .【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.【例8】归纳与猜想:(1)计算:①(x﹣1)(x+1)= ;②(x﹣1)(x2+x+1)= ;③(x﹣1)(x3+x2+x+1)= ;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)= ;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)= (n为整数);(4)若(x﹣1)•m=x15﹣1,则m= ;(5)根据猜想的规律,计算:226+225+…+2+1.【例9】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).课后作业:1、若0352=-+y x ,求y x 324⋅的值。
2、在()()y x y ax -+与3的积中,不含有xy 项,则a 必须为 。
3、已知()()22123--==+b a ab b a ,化简,的结果是 。
4、已知199819992000201x x x x x ++=++,则的值为 。
5、已知()3353x y y x y x -++-=-,则代数式的值等于 。
6、已知()9322=x,则x = 。
7、若y x x x 2254,32+==,则的值为 。
8、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 .9、已知19992000a x =+,19992001b x =+,19992002c x =+,求多项式222a b c ab bc ca ++---的值为。
10、已知,,a b c 均不为0,且0a b c ++=,那么111111()()()a b c b c c a a b+++++的值是多少?“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知012=-+a a ,求2007223++a a 的值.4、若a 2﹣2a+1=0.求代数式的值.5、先化简,再求值:(1))4)(2)(2(22y x y x y x +-+ ,其中x=-2,y=-3 (2) 21,2)()())((222==+++--+b a b a b a b a b a 其中第四讲 乘法公式(1)公式的逆用1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
4、已知()5,3a b ab -==求2()a b +与223()a b +的值。
5、已知222450x y x y +--+=,求21(1)2x xy --的值。
6、0132=++x x ,求(1)221x x +(2)441xx +7、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
8、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式2222++=++,3()()a b c a b c请说明该三角形是什么三角形?9、计算(1)(x﹣y)(x+y)(x2+y2)(2)(a﹣2b+c)(a+2b﹣c)(3)(a﹣b+c﹣d)(c﹣a﹣d﹣b);(4)(x+2y)(x﹣2y)(x4﹣8x2y2+16y4).10、已,求下列各式的值:(1);(2).第五讲 乘法公式(2)例1 已知a-b=2,b-c=1,求代数式222a b c ab bc ac ++---的值。
例2 已知a 、b 、c 为有理数,且满足28,16,a b c ab =-=-求a.b.c 的值。
例3 已知2310,x x -+=试求下列各式的值: (1)221x x + (2)331x x + (3) 441x x+例4 已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值.例5 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.1、 若23231,6751999x x x x x -=+-+求代数式的值为2、如果:=-==+-222)32,5,0168y x x y xy x 则(且3、计算:24816(21)(21)(21)(21)(21)1++++++=4、若942++mx x 是一个完全平方式,则m 的值为 。
5、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。
6、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。
7、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。
8、计算()()123123-++-y x y x 的结果为 。
9、若xx x 204412,则=+-的值为 。
10、多项式621143--++b a ab a m 是一个六次四项式,则=m 。
11、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。
12、已知052422=+-+-b b a a , 求 b a 、的值13、已知a,b,c 是三角形的三边,且a 2+b 2+c 2=ab=bc+ca,试判断三角形的形状14、已知2242212,22322a a a a a a =++++求的值1.观察下列各式:(x 一1)(x+1)=x 2一l ; (x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得 (x 一1)(x n +x n-1+…+x+1)= .2.已知052422=+-++b a b a ,则ba ba -+= .3.计算:(1)19492一19502+19512一19522+…+19972一19982+19992 =(2)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式5.已知51=+aa ,则2241a a a ++= . 6.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ). A .一15 B .一2 C .一6 D .67.乘积)200011)(199911()311)(211(2222---- 等于( ).A .20001999B .20002001C .40001999D .400020018.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20022C . 22002D .420029.若01132=+-x x ,则441xx +的个位数字是( ).A .1B .3C . 5D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+11.(1)设x+2z=3y,试判断x2一9y2+4z2+4xz的值是不是定值?如果是定值,求出它的值;否则请说明理由.(2)已知x2一2x=2,将下式先化简,再求值:(x—1)2+(x+3)(x一3)+(x一3)(x一1).12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:25⋅⋅⋅+24311=2+⋅2=⋅⋅3111452+⋅⋅3=⋅194156……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000×2001×2002×2003+1的结果(用一个最简式子表示).14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n=3……这些简单情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152 =225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成;852=7225可写成.(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952=.第三章因式分解【知识点归纳】1.把一个多项式表示成若干个的形式,称为把这个多项式因式分解。