工程造价外文翻译(有出处)

合集下载

工程造价毕业论文外文文献

工程造价毕业论文外文文献

工程造价毕业设计外文文献及译文外文文献:Construction Standards and CostsUC Irvine new construction pursues performance goals and applies quality standards that affect the costs of capital projects. Periodic re-examination of these goals and standards is warranted.Co nstruction costs are not “high〞or “low〞in the abstract, but rather in relation to specific quality standards and the design solutions, means, and methods used to attain these standards. Thus, evaluating whether construction costs are appropriate involves: • first, determining whether quality standards are excessive, insufficient, or appropriate;• second, determining whether resultant project costs are reasonable pared to projects with essentially the same quality parameters.“Quality〞enpasses the durability of building systems and finishes; the robustness and life-cycle performance of building systems; the aesthetics of materials, their position, and their detailing; and the resource-sustainability and efficiency of the building as an overall system.Overall Goals and Quality StandardsUC Irvine, in order to support distinguished research and academic programs, builds facilities of high quality. As such, UC Irvine’s facilities aim to convey the “look and feel,〞as well as embody the inherent construction quality, of the best facilities of other UC campuses, leading public universities, and other research institutions with whom we pete for faculty, students, sponsored research, and general reputation.Since 1992, new buildings have been designed to achieve these five broad goals:1. New bu ildings must “create a place,〞rather than constitute stand-alone structures, forming social, aesthetic, contextually-sensitive relationships with neighboring buildings and the larger campus.2. New buildings reinforce a consistent design framework of classical contextual architecture, applied in ways that convey a feeling of permanence and quality and interpreted in ways that meet the contemporary and changing needs of a modern research university.3. New buildings employ materials, systems, and design features that will avoid the expense of major maintenance (defined as >1 percent of value)for twenty years.4. New buildings apply “sustainability〞principles -- notably, outperforming Title 24 (California’s energy code) by at least 20 percent.5. Capital construction projects are designed and delivered within theapproved project budget, scope, and schedule.UC Irvine’s goals for sustainable materials and energy performance were adopted partly for environmental reasons, and partly to reverse substantial operating budget deficits. The latter problems included a multi-million dollar utilities deficit that was growingrapidly in the early ‘90s, and millions of dollars of unfunded major maintenance that was emerging prematurely in buildings only 10-20 years old. Without the quality and performance standards adopted in 1992, utilities deficits and unfunded major maintenance costs would have exceeded $20 million during the past decade, and these costs would still be rising out-of-control.UC Irvine’s materials standards, building systems standards, sustainability and energy efficiency criteria, and site improvements all add cost increments that can only be afforded through aggressive cost management. Institutions that cannot manage capital costs tend to build projects that consume excessive energy, that cost a lot to maintain, that suffer premature major maintenance costs, and that require high costs to modify. Such problems tend to pound and spiral downward into increasingly costly consequences.Every administrator with facilities experience understands this dynamic. Without effective construction cost management, quality would suffer and UC Irvine would experience all of these problems.The balance of this document outlines in greater detail the building performance criteria and quality standards generally stated above, organized according to building systems ponent classes. Each section discusses key cost-drivers, cost-control strategies, and important cost trade-offs. Design practices cited are consistently applied (although some fall short of hard and fast “rules〞).Building Organization and MassingConstruction cost management starts with the fundamentals of building organization andmassing. UC Irvine’s new structures’ floor plates tend to have length-to-width ratios<1.5, to avoid triggering disproportionate costs of external cladding, circulation, and horizontal mechanical distribution. Our new buildings tend to be at least three floors high -- taller if floor plate areas do not dip below a cost-effective threshold, and generally taller in the case of non-laboratory buildings (but not so tall that a high-rise cost penalty is incurred). Other design ratios are observed, such as exterior cladding area/floor area <0.5, and roof+foundation area/floor area <0.4.Architectural articulation is generally achieved through textured or enriched materials,integral material detailing (such as concrete reveal patterning), and applied detailing (e.g.,2window frames and sills), particularly at the building base. Large-scale articulation is concentrated at the roofline (e.g., shaped roof forms) and at the pedestrian level (e.g.,arcades), where it will “create the biggest bang for the buck,〞rather than through modulating the building form, itself. This is more than a subtle design philosophy, as the cost impact is substantial.Lab buildings pleted in the past decade separate laboratory and non-laboratory functions into distinct, adjoined structures (although such a building may look like one structure). Consolidated non-laboratory functions include faculty, departmental, staff,post-doc, and graduate student offices; restrooms; circulation (elevators, lobbies, primary stairways); classrooms, seminar rooms, conference rooms, and social areas designed tofoster interaction and to provide a safe area for eating and drinking; dry labs and dry lab support functions; and general administrative support.Consolidating these functions into a separate structure provides considerable cost savings:lower-cost HVAC (heating/ventilation/air-conditioning) system, wider column spacing, lower floor stiffness (less stringent vibration criterion), lower floor-loading,fewer fire-control features and other code requirements, steel-framed or steel/concrete hybrid structural system with concrete flat-slab flooring system, smaller footings, and(typically) curtain wall fenestration. This approach usually enables offices to have operable windows.This two-building approach can be seen clearly at Gillespie Neurosciences Building, the Sprague Building, Hewitt Hall, and the UCI Medical Center Health Sciences Laboratory,where consolidating and separating non-laboratory functions saved 7-10 percent in overall construction costs and 15 percent/year in energy expense. (The non-laboratory building incurs a small fraction of the energy expense of the laboratory block.)A set of design strategies, applied in bination, has proven effective in controlling the cost of laboratories:• Utilizing a consistent lab module• Utilizing a reasonable vibration criterion and locating ultra-sensitive conditions at-grade or employing benchtop vibration isolation• Using 22 ft. X 22 ft. column-spacing• Concentrating fume hoods and utility risers into a central “wet zone,〞thus limiting horizontal mechanical distribution• Concentrating laboratory support areas into the central core of a laboratory structure, where utilities are available but daylight is not needed, thus enablinglab structures to be 110-132 feet wide• Utilizing dual-usage circulation/equipment cross-corridors through this central lab support zone, with sufficient width (typically 11 feet) to line the corridors with shared equipment while providing cross-circulation through the lab support zone• Utilizing open laboratory layout with one or more “ghost〞corridors for intra lab circulation• And, most importantly, concentrating non-laboratory functions into an adjoining, lower-cost structure (as discussed in detail above).To further control laboratory construction costs, non-standard fume hood sizes are minimized, “generic〞lab casework is specified, laboratory-grade movable tables substitute for fixed casework in some lab bays, building DI systems provide intermediate water quality (with localized water purity polishing in the lab, rather than building-wide),facility-wide piped services do not include gases that can be cost-effectively provided locally via canisters, and glass-wash facilities are consolidated -- typically, one glass wash facility for an entire laboratory building.Finally, our design philosophy leans toward generic, modular laboratories supported by a robust building infrastructure, rather than highly customized spaces with limited capacity to make later changes. This is an important trade off. Although some post-occupancy expenses may be necessary to “fine-tune〞a laboratory to a PI’s requirements, building infrastructure elements – typically over sized twenty percent, including HVAC supply ducts, exhaust system capacity, emergency generator capacity, and electric risers and service capacity – seldom limit the ability to modify labs to meet researcher needs.Structural and Foundation SystemsFor both cost-benefit reasons and past seismic performance, UC Irvine favors concrete shear wall or steel braced-frame structural systems. The correlating foundation systems depend on site-specific soil conditions. Past problems with undiscovered substrates and uncharacterized soil conditions are minimized through extensive, pre-design soil-testing. This minimizes risk to both the University and the design/build contractor.When feasible, design/build contractors are allowed flexibility to propose alternate structural or seismic-force systems. All structural system designs must pass a peer review, according to Regents’ policy. This process results in conservative structural design, and an associated cost premium. However, the seismic performance of University of California buildings constructed since this policy went into effect in 1975 appears to substantiate the value of the Regents’ Seismic Revi ew Policy.Structural vibration is carefully specified in research buildings where vibration-sensitive protocols and conditions must be maintained on above-grade floors. The most cost effective tools to control vibration are generally employed: first, to program vibration sensitive procedures at on-grade locations or to isolate them at the bench; second, to space columns at a distance that does not entail excessive structural costs. In laboratory 4buildings we typically utilize 22 ft. X 22 ft. column-spacing. Conversely, where vibration is not problematic a beam/column system can be cost-optimized and lighter floor loading can be tolerated. Design/build contractors are, accordingly, allowed more flexibility under such conditions.To control costs, UC Irvine avoids use of moment-resisting structures; unconventionalseismic systems; non-standard structural dimensions; inconsistent, unconventional, or non-stacking structural modules; and non-standard means and methods.Roofs and FlashingsUC Irvine specifies 20 year roofing systems and stainless steel or copper flashings whenever possible. At minimum, we specify hot-dip galvanized flashings.Why this emphasis on flashings? Our roof replacement projects typically double in cost when the old roofing is torn off and it is determined that the flashings have deteriorated. Moreover, many roof leaks of recent years have been due to faulty flashings, rather than roofing membranes or coatings, per se. Saving money on flashings is false economy. Another special roofing expe nse we may have to incur in order to attain the Regents’ Green Building Policy is that of reflective roofing. It is too early to understand the potential cost impact.中文翻译:建立标准和本钱加州大学欧文分校新建筑追求性能目标和适用的质量标准,影响资本本钱的工程。

工程造价专业外文文献翻译(中英文对照教学内容

工程造价专业外文文献翻译(中英文对照教学内容

工程造价专业外文文献翻译(中英文对照外文文献:Project Cost Control: The Way it WorksBy R. Max WidemanIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works. Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycle at suitable intervals. If the end results get really out of line with the baseline plan, you may have to change the plan. More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway.But project cost control is a lot more difficult to do in practice, as is evidenced by the number of projects that fail to contain costs. It also involves a significant amount of work, as we shall see, and we might as well start at the beginning. So let us follow the thread of project cost control through the entire project life span.And, while we are at it, we will take the opportunity to point out the proper places for several significant documents. These include the Business Case, the Request for (a capital) Appropriation (for execution), Work Packages and the Work Breakdown Structure, the Project Charter (or Brief), the Project Budget or Cost Plan, Earned Value and the Cost Baseline. All of these contribute to the organization's ability to effectively control project costs.FootnoteI am indebted to my friend Quentin Fleming, the guru of Earned Value, for checking and correcting my work on this topic.The Business Case and Application for (execution) FundingIt is important to note that project cost control is most effective when the executive management responsible has a good understanding of how projects should unfold through the project life span. This means that they exercise their responsibilities at the key decision pointsbetween the major phases. They must also recognize the importance of project risk management for identifying and planning to head off at least the most obvious potential risk events.In the project's Concept Phase• Every project starts with someone identifying an opportunity or need. That is usually someone of importance or influence, if the project is to proceed, and that person often becomes theproject's sponsor.• To determine the suitability of the potential project, most organizations call for the preparation of a "Business Case" and its "Order of Magnitude" cost to justify the value of the project so that it can be compared with all the other competing projects. This effort is conducted in the Concept Phase of the project and is done as a part of the organization's management of the entire project portfolio.• The cost of the work of preparing the Business Case is usually covered by corporate management overhead, but it may be carried forward as an accounting cost to the eventual project. No doubt because this will provide a tax benefit to the organization. The problem is, how do you then account for all the projects that are not so carried forward?• If the Business case has sufficient merit, approval will be given to proceed to a Development and Definition phase.In the project's Development or Definition Phase• The objective of the Development Phase is to establish a good understanding of the work involved to produce the required product, estimate the cost and seek capital funding for the actual execution of the project.• In a formalized set ting, especially where big projects are involved, this application for funding is often referred to as a Request for (a capital) Appropriation (RFA) or Capital Appropriation Request (CAR).• This requires the collection of more detailed requirements and da ta to establish what work needs to be done to produce the required product or "deliverable". From this information, a plan is prepared in sufficient detail to give adequate confidence in a dollar figure to be included in the request.• In a less formalized setting, everyone just tries to muddle through.Work Packages and the WBSThe Project Management Plan, Project Brief or Project Charter• If the deliverable consists of a number of different elements, these are identified and assembled into Work Packages (WPs) and presented in the form of a Work Breakdown Structure (WBS). • Each WP involves a set of activities, the "work" that is planned and scheduled as a part of the Project Management Plan. Note, however, that the planning will still be at a relatively high level, and more detailed planning will be necessary during execution if the project is given the go ahead. • This Project Management Plan, by the way, should become the "bible" for the execution phase of the project and is sometimes referred to as the "Project Brief" or the "Project Charter".• The cost of doing the various activities is then estimated and these estimated costs are aggregated to determine the estimated cost of the WP. This approach is known as "detailed estimating" or "bottom up estimating". There are other approaches to estimating that we'll cometo in a minute. Either way, the result is an estimated cost of the total work of the project.Note: that project risk management planning is an important part of this exercise. This should examine the project's assumptions and environmental conditions to identify any weaknesses in the plan thus far, and identify those potential risk events that warrant attention for mitigation. This might take the form of specific contingency planning, and/or the setting aside of prudent funding reserves.Request for capitalConverting the estimate• However, an estimate of the work alone is not sufficient for a capital request. To arrive at a capital request some conversion is necessary, for example, by adding prudent allowances such as overheads, a contingency allowance to cover normal project risks and management reserves to cover unknowns and possible scope changes.• In addition, it may be necessary to convert the estimating data into a financial accou nting format that satisfies the corporate or sponsor's format for purposes of comparison with other projects and consequent funding approval.• In practice all the data for the type of "bottom up" approach just described may not be available. In this case alternative estimating approaches are adopted that provide various degrees of reliability in a "top down" fashion. For example:Order of Magnitude estimate – a "ball park" estimate, usually reserved for the concept phase onlyAnalogous estimate – an estimate based on previous similar projectsParametric estimate – an estimate based on statistical relationships in historical data• Whichever approach is adopted, hopefully the sum thus arrived at will be approved in full and proves to be satisfactory! This is the trigger to start the Execution Phase of the projectNote: Some managements will approve some lesser sum in the mistaken belief that this will help everyone to "sharpen their pencils" and "work smarter" for the benefit of the organization. This is a mistaken belief because management has failed to understand the nature of uncertainty and risk in project work. Consequently, the effect is more likely to result in "corner cutting" with an adverse effect on product quality, or reduced product scope or functionality. This often leads to a "game" in which estimates are inflated so that management can adjust them downwards. But to be fair, management is also well aware that if money is over allocated, it will get spent anyway. The smart thing for managements to do is to set aside contingent reserve funds, varying with the riskiness of the project, and keep that money under careful control.Ownership of approved capital• If senior management approves the RFA as presented, the sum in question becomes the responsibility of the designated project sponsor. However, if the approved capital request includes allowances such as a "Management Reserve", this may or may not be passed on to the project's sponsor, depending on the policies of the organization.• For the approved RFA, the project sponsor will, in turn, further delegate expenditure authority to the project's project manager and will likely not include any of the allowances. An exception might be the contingency allowances to cover the normal variations in work performance.• The net sum thus arrived at constitutes the project manager's Approved Project Budget.Note: If management does not approve the RFA, you should not consider this a project failure. Either the goals, objectives, justification and planning need rethinking to increase the value of the project's deliverables, or senior management simply has higher priorities elsewhere for the available resources and funding.The Project's Execution PhaseThe project manager's Project Budget responsibility• Once this Approved Project Budget is released to the project manager, a reverse process must take place to convert it into a working control document. That is, the money available must be divided amongst the various WBS WPs that, by the way, have probably by now been upgraded! This results in a project execution Control Budget or Project Baseline Budget, or simply, the Project Budget. In some areas of project management application it is referred to as a Project Cost Plan.• On a large project where differe nt corporate production divisions are involved, there may be a further intermediate step of creating "Control Accounts" for the separate divisions, so that each division subdivides their allocated money into their own WBS WPs.• Observe that, since the tot al Project Budget received formal approval from Executive Management, you, as project manager, must likewise seek and obtain from Executive Management, via the project's sponsor, formal approval for any changes to the total project budget. Often this is only justified and accepted on the basis of a requested Product Scope Change.• In such a case the project's sponsor will either draw down on the management reserve in his or her possession, or submit a supplementary RFA to upper management.• Now that we ha ve the Project Budget money allocated to Work Packages we can further distribute it amongst the various activities of each WP so that we know how much money we have as a "Baseline" cost for each activity.• This provides us with the base of reference for t he cost control function. Of course, depending on the circumstances the same thing may be done at the WP level but the ability to control is then at a higher and coarser level.Use of the Earned Value technique• If we have the necessary details another control tool that we can adopt for monitoring ongoing work is the "Earned Value" (EV) technique. This is a considerable art and science that you must learn about from texts dedicated to the subject.• But essentially, you take the costs of the schedule act ivities and plot them as a cumulative total on the appropriate time base. Again you can do this at the activity level, WP level or the whole project level. The lower the level the more control information you have available but the more work you get involved in.The Cost Baseline• This planned reference S-curve is sometimes referred to as the "Cost Baseline", typically in EV parlance. That is, it is the "Budgeted Cost of Work Scheduled" (BCWS), or more simply the "Planned Value" (PV).• Observe that you need to modify this Cost Baseline every time there is an approved scope change that has cost and/or schedule implications and consequently changes the project's Approved Project Budget.• Now, as the work progresses, you can plot the "Actual Cost of Work Per formed" (ACWP or simply "Actual Cost" - AC).• You can plot other things as well, see diagram referred to above, and if you don't like what you see then you need to take "Corrective Action".CommentaryThis whole process is a cyclic, situational operation and is probably the source of the term "cycle" in the popularly misnamed "project life cycle".As an aside, the Earned Value pundits offer various other techniques within the EV process designed to aid in forecasting the final result, that is, the "Estimate At Completion" (EAC). EAC is what you should really be interested in because it is the only constant in a moving project. Therefore, these extended EV techniques must be considered in the same realm of accuracy as top-down estimating. They are useful, but only if you recognize the limitations and know what you are doing!But, as we said at the beginning, it is a lot more difficult to do in practice – and involves a significant amount of work. But, let's face it, that's what project managers are hired for, right?中文译文:项目成本控制:它的工作方式R.马克斯怀德曼我们在最近的咨询任务中意识到,对于整个项目成本控制体系是如何设置和应用的这个问题,我们仍有一些缺乏了解。

工程造价专业中英文资料外文翻译文献

工程造价专业中英文资料外文翻译文献

工程造价专业中英文资料外文翻译文献外文文献:Project Cost Control: The Way it WorksIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works. Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycle at suitable intervals. If the end results get really out of line with the baseline plan, you may have to change the plan. More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway.But project cost control is a lot more difficult to do in practice, as is evidenced by the number of projects that fail to contain costs. It also involves a significant amount of work, as we shall see, and we might as well start at the beginning. So let us follow the thread of project cost control through the entire project life span.And, while we are at it, we will take the opportunity to point out the proper places for several significant documents. These include the Business Case, the Request for (a capital) Appropriation (for execution), Work Packages and the Work Breakdown Structure, the Project Charter (or Brief), the Project Budget or Cost Plan, Earned Value and the Cost Baseline. All of these contribute to the organization's ability to effectively control project costs.FootnoteI am indebted to my friend Quentin Fleming, the guru of Earned Value, for checking and correcting my work on this topic.The Business Case and Application for (execution) FundingIt is important to note that project cost control is most effective when the executive management responsible has a good understanding of how projects should unfold through the project life span. This means that they exercise their responsibilities at the key decision points between the major phases. They must also recognize the importance of project risk management for identifying and planning to head off at least the most obvious potential risk events.In the project's Concept Phase• Every project starts with someone identifying an opportunity or need. That is usually someone of importance or influence, if the project is to proceed, and that person often becomes the project's sponsor.• To determine the suitability of the potential project, most organizations call for the preparation of a "Business Case" and its "Order of Magnitude" cost to justify the value of the project so that it can be compared with all the other competing projects. This effort is conducted in the Concept Phase of the project and is done as a part of the organization's management of the entire project portfolio.• The cost of the work of preparing the Business Case is usually covered by corporate management overhead, but it may be carried forward as an accounting cost to the eventual project. No doubt because this will provide a tax benefit to the organization. The problem is, how do you then account for all the projects that are not so carried forward?• If the Business case has sufficient merit, approval will be given to proceed to a Development and Definition phase.In the project's Development or Definition Phase• The objective of the Development Phase is to establish a good understanding of the work involved to produce the required product, estimate the cost and seek capital funding for the actual execution of the project.• In a formalized setting, especially where big projects ar e involved, this application for funding is often referred to as a Request for (a capital) Appropriation (RFA) or Capital Appropriation Request (CAR).• This requires the collection of more detailed requirements and data to establish what work needs to be done to produce the required product or "deliverable". From this information, a plan is prepared in sufficient detail to give adequate confidence in a dollar figure to be included in the request.• In a less formalized setting, everyone just tries to muddl e through.Work Packages and the WBSThe Project Management Plan, Project Brief or Project Charter• If the deliverable consists of a number of different elements, these are identified and assembled into Work Packages (WPs) and presented in the form of a Work Breakdown Structure (WBS). • Each WP involves a set of activities, the "work" that is planned and scheduled as a part of the Project Management Plan. Note, however, that the planning will still be at a relatively high level, and more detailed planning will be necessary during execution if the project is given the go ahead.• This Project Management Plan, by the way, should become the "bible" for the execution phase of the project and is sometimes referred to as the "Project Brief" or the "Project Charter".• The cost of doing the various activities is then estimated and these estimated costs are aggregated to determine the estimated cost of the WP. This approach is known as "detailed estimating" or "bottom up estimating". There are other approaches to estimating that we'll come to in a minute. Either way, the result is an estimated cost of the total work of the project.Note: that project risk management planning is an important part of this exercise. This should examine the project's assumptions and environmental conditions to identify any weaknesses in the plan thus far, and identify those potential risk events that warrant attention for mitigation. This might take the form of specific contingency planning, and/or the setting aside of prudent funding reserves.Request for capitalConverting the estimate• However, an estimate of the work alone is not sufficient for a capital request. To arrive at a capital request some conversion is necessary, for example, by adding prudent allowances such as overheads, a contingency allowance to cover normal project risks and management reserves to cover unknowns and possible scope changes.• In addition, it may be necessary to convert the estimating data into a financial accounting format that satisfies the corporate or sponsor's format for purposes of comparison with other projects and consequent funding approval.• In practice all the data for the type of "bottom up" approach just described may not be available. In this case alternative estimating approaches are adopted that provide various degrees of reliability in a "top down" fashion. For example:Order of Magnitude estimate – a "ball park" estimate, usually reserved for the concept phase onlyAnalogous estimate – an estimate based on previous similar projectsParametric estimate – an estimate based on statistical relationships in historical data• Whichever approach is adopted, hopefully the sum thus arrived at will be approved in full and proves to be satisfactory! This is the trigger to start the Execution Phase of the projectNote: Some managements will approve some lesser sum in the mistaken belief that this will help everyone to "sharpen their pencils" and "work smarter" for the benefit of the organization. This is a mistaken belief because management has failed to understand the nature of uncertainty and risk in project work. Consequently, the effect is more likely to result in "corner cutting" with an adverse effect on product quality, or reduced product scope or functionality. This often leads to a "game" in which estimates are inflated so that management can adjust them downwards. But to be fair, management is also well aware that if money is over allocated, it will get spent anyway. The smart thing for managements to do is to set aside contingent reserve funds, varying with the riskiness of the project, and keep that money under careful control.Ownership of approved capital• If senior management approves the RFA as presented, the sum in question becomes the responsibility of the designated project sponsor. However, if the approved capital request includes allowances such as a "Management Reserve", this may or may not be passed on to the project's sponsor, depending on the policies of the organization.• For the approved RFA, the project sponsor will, in turn, further delegate expenditure authority to the project's project manager and will likely not include any of the allowances. An exception might be the contingency allowances to cover the normal variations in work performance.• The net sum thus arrived at co nstitutes the project manager's Approved Project Budget.Note: If management does not approve the RFA, you should not consider this a project failure. Either the goals, objectives, justification and planning need rethinking to increase the value of the project's deliverables, or senior management simply has higher priorities elsewhere for the available resources and funding.The Project's Execution PhaseThe project manager's Project Budget responsibility• Once this Approved Project Budget is released to t he project manager, a reverse process must take place to convert it into a working control document. That is, the money available must be divided amongst the various WBS WPs that, by the way, have probably by now been upgraded! This results in a project execution Control Budget or Project Baseline Budget, or simply, the Project Budget. In some areas of project management application it is referred to as a Project Cost Plan.• On a large project where different corporate production divisions are involved, th ere may be a further intermediate step of creating "Control Accounts" for the separate divisions, so that each division subdivides their allocated money into their own WBS WPs.• Observe that, since the total Project Budget received formal approval from Ex ecutive Management, you, as project manager, must likewise seek and obtain from Executive Management, via the project's sponsor, formal approval for any changes to the total project budget. Often this is only justified and accepted on the basis of a requested Product Scope Change.• In such a case the project's sponsor will either draw down on the management reserve in his or her possession, or submit a supplementary RFA to upper management.• Now that we have the Project Budget money allocated to Work Pack ages we can further distribute it amongst the various activities of each WP so that we know how much money we have as a "Baseline" cost for each activity.• This provides us with the base of reference for the cost control function. Of course, depending on the circumstances the same thing may be done at the WP level but the ability to control is then at a higher and coarser level.Use of the Earned Value technique• If we have the necessary details another control tool that we can adopt for monitoring ongoin gwork is the "Earned Value" (EV) technique. This is a considerable art and science that you must learn about from texts dedicated to the subject.• But essentially, you take the costs of the schedule activities and plot them as a cumulative total on the appropriate time base. Again you can do this at the activity level, WP level or the whole project level. The lower the level the more control information you have available but the more work you get involved in.The Cost Baseline• This planned reference S-curve is sometimes referred to as the "Cost Baseline", typically in EV parlance. That is, it is the "Budgeted Cost of Work Scheduled" (BCWS), or more simply the "Planned Value" (PV).• Observe that you need to modify this Cost Baseline every time there is an approved scope change that has cost and/or schedule implications and consequently changes the project's Approved Project Budget.• Now, as the work progresses, you can plot the "Actual Cost of Work Performed" (ACWP or simply "Actual Cost" - AC).• You c an plot other things as well, see diagram referred to above, and if you don't like what you see then you need to take "Corrective Action".CommentaryThis whole process is a cyclic, situational operation and is probably the source of the term "cycle" in the popularly misnamed "project life cycle".As an aside, the Earned Value pundits offer various other techniques within the EV process designed to aid in forecasting the final result, that is, the "Estimate At Completion" (EAC). EAC is what you should really be interested in because it is the only constant in a moving project. Therefore, these extended EV techniques must be considered in the same realm of accuracy as top-down estimating. They are useful, but only if you recognize the limitations and know what you are doing!But, as we said at the beginning, it is a lot more difficult to do in practice – and involves a significant amount of work. But, let's face it, that's what project managers are hired for, right?中文译文:项目成本控制:它的工作方式我们在最近的咨询任务中意识到,对于整个项目成本控制体系是如何设置和应用的这个问题,我们仍有一些缺乏了解。

工程造价专业外文文献翻译(中英文对照

工程造价专业外文文献翻译(中英文对照

外文文献:Project Cost Control: The Way it WorksBy R. Max WidemanIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works. Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycle at suitable intervals. If the end results get really out of line with the baseline plan, you may have to change the plan. More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway.But project cost control is a lot more difficult to do in practice, as is evidenced by the number of projects that fail to contain costs. It also involves a significant amount of work, as we shall see, and we might as well start at the beginning. So let us follow the thread of project cost control through the entire project life span.And, while we are at it, we will take the opportunity to point out the proper places for several significant documents. These include theBusiness Case, the Request for (a capital) Appropriation (for execution), Work Packages and the Work Breakdown Structure, the Project Charter (or Brief), the Project Budget or Cost Plan, Earned Value and the Cost Baseline. All of these contribute to the organization's ability to effectively control project costs.FootnoteI am indebted to my friend Quentin Fleming, the guru of Earned Value, for checking and correcting my work on this topic.The Business Case and Application for (execution) FundingIt is important to note that project cost control is most effective when the executive management responsible has a good understanding of how projects should unfold through the project life span. This means that they exercise their responsibilities at the key decision points between the major phases. They must also recognize the importance of project risk management for identifying and planning to head off at least the most obvious potential risk events.In the project's Concept Phase• EvEry projEct starts with somEonE idEntifying an opportunity or need. That is usually someone of importance or influence, if the project is to proceed, and that person often becomes the project's sponsor.• to dEtErminE thE suitability of thE potEntial projEct, most organizations call for the preparation of a "Business Case" and its"Order of Magnitude" cost to justify the value of the project so that it can be compared with all the other competing projects. This effort is conducted in the Concept Phase of the project and is done as a part of the organization's management of the entire project portfolio.• thE cost of thE work of preparing the Business Case is usually covered by corporate management overhead, but it may be carried forward as an accounting cost to the eventual project. No doubt because this will provide a tax benefit to the organization. The problem is, how do you then account for all the projects that are not so carried forward?• if thE businEss casE has sufficiEnt mErit, approval will bE givEn to proceed to a Development and Definition phase.In the project's Development or Definition Phase• thE objEctivE of t he Development Phase is to establish a good understanding of the work involved to produce the required product, estimate the cost and seek capital funding for the actual execution of the project.• in a formalizEd sEtting, EspEcially whErE big projEcts arE involved, this application for funding is often referred to as a Request for (a capital) Appropriation (RFA) or Capital Appropriation Request (CAR).• this rEquirEs thE collEction of morE dEtailEd rEquirEmEnts and data to establish what work needsto be done to produce the required product or "deliverable". From this information, a plan is prepared in sufficient detail to give adequate confidence in a dollar figure to be included in the request.• in a lEss formalizEd sEtting, EvEryonE just triEs to muddlE through.Work Packages and the WBSThe Project Management Plan, Project Brief or Project Charter• if thE dElivErablE consists of a numbEr of diffErEnt ElEmEnts, thEsE are identified and assembled into Work Packages (WPs) and presented in the form of a Work Breakdown Structure (WBS).• Each wp involvEs a sEt of activitiEs, thE "work" that is plannEd and scheduled as a part of the Project Management Plan. Note, however, that the planning will still be at a relatively high level,and more detailed planning will be necessary during execution if the project is given the go ahead.• this projEct managEmEnt plan, by thE way, should bEcomE thE "bible" for the execution phase of the project and is sometimes referred to as the "Project Brief" or the "Project Charter".• thE cost of doing thE various activitiEs is thEn EstimatEd and thEsE estimated costs are aggregated to determine the estimated cost of the WP. This approach is known as "detailed estimating" or "bottom up estimating". There are other approaches to estimating that we'll come to in a minute. Either way, the result is an estimated cost of the totalwork of the project.Note: that project risk management planning is an important part of this exercise. This should examine the project's assumptions and environmental conditions to identify any weaknesses in the plan thus far, and identify those potential risk events that warrant attention for mitigation. This might take the form of specific contingency planning, and/or the setting aside of prudent funding reserves.Request for capitalConverting the estimate• howEvEr, an EstimatE of thE work alonE is not sufficiEnt for a capital request. To arrive at a capital request some conversion is necessary, for example, by adding prudent allowances such as overheads, a contingency allowance to cover normal project risks and management reserves to cover unknowns and possible scope changes.• in addition, it may bE nEcEssary to convErt thE Estimating data into a financial accounting formatthat satisfies the corporate or sponsor's format for purposes of comparison with other projects and consequent funding approval.• in practicE all thE data for thE typE of "bottom up" approach just described may not be available.In this case alternative estimating approaches are adopted that provide various degrees of reliability in a "top down" fashion. Forexample:Order of Magnitude estimate – a "ball park" estimate, usually reserved for the concept phase onlyAnalogous estimate – an estimate based on previous similar projects Parametric estimate –an estimate based on statistical relationships in historical data• whichEvEr approach is adoptEd, hopEfully thE sum thus arrivEd at will be approved in full and proves to be satisfactory! This is the trigger to start the Execution Phase of the projectNote: Some managements will approve some lesser sum in the mistaken belief that this will help everyone to "sharpen their pencils" and "work smarter" for the benefit of the organization. This is a mistaken belief because management has failed to understand the nature of uncertainty and risk in project work. Consequently, the effect is more likely to result in "corner cutting" with an adverse effect on product quality, or reduced product scope or functionality. This often leads to a "game" in which estimates are inflated so that management can adjust them downwards. But to be fair, management is also well aware that if money is over allocated, it will get spent anyway. The smart thing for managements to do is to set aside contingent reserve funds, varying with the riskiness of the project, and keep that money under careful control.Ownership of approved capital• if sEnior managEmEnt approvEs thE rfa as prEsEntEd, thE sum in question becomes the responsibility of the designated project sponsor. However, if the approved capital request includes allowances such as a "Management Reserve", this may or may not be passed on to the project's sponsor, depending on the policies of the organization.• for thE approvEd rfa, thE projEct sponsor will, in turn, further delegate expenditure authority to the project's project manager and will likely not include any of the allowances. An exception might be the contingency allowances to cover the normal variations in work performance.• thE nEt sum thus arrivEd at constitutes the project manager's Approved Project Budget.Note: If management does not approve the RFA, you should not consider this a project failure. Either the goals, objectives, justification and planning need rethinking to increase the value of the project's deliverables, or senior management simply has higher priorities elsewhere for the available resources and funding.The Project's Execution PhaseThe project manager's Project Budget responsibility• oncE this approvEd projEct budgEt is rElEas ed to the project manager, a reverse process must take place to convert it into a working control document. That is, the money available must be divided amongstthe various WBS WPs that, by the way, have probably by now been upgraded! This results in a project execution Control Budget or Project Baseline Budget, or simply, the Project Budget. In some areas of project management application it is referred to as a Project Cost Plan.• on a largE projEct whErE diffErEnt corporatE production divisions are involved, there may be a further intermediate step of creating "Control Accounts" for the separate divisions, so that each division subdivides their allocated money into their own WBS WPs.• obsErvE that, sincE thE total projEct budgEt rEcEivEd formal approval from Executive Management, you, as project manager, must likewise seek and obtain from Executive Management, via the project's sponsor, formal approval for any changes to the total project budget. Often this is only justified and accepted on the basis of a requested Product Scope Change.• in such a casE thE projEct's sponsor will EithEr draw down on thE management reserve in his or her possession, or submit a supplementary RFA to upper management.• now that wE havE thE projEct budgEt monEy allocatEd to Work Packages we can further distribute it amongst the various activities of each WP so that we know how much money we have as a "Baseline" cost for each activity.• this providEs us with thE basE of rEfErEncE for thE cost controlfunction. Of course, depending on the circumstances the same thing may be done at the WP level but the ability to control is then at a higher and coarser level.Use of the Earned Value technique• if wE havE thE nEcEssary dEtails anothEr control tool that wE can adopt for monitoring ongoing work is the "Earned Value" (EV) technique. This is a considerable art and science that you must learn about from texts dedicated to the subject.• but EssEntially, you takE thE costs of thE schEdulE activitiEs and plot them as a cumulative total on the appropriate time base. Again you can do this at the activity level, WP level or the whole project level. The lower the level the more control information you have available but the more work you get involved in.The Cost Baseline• this plannEd reference S-curve is sometimes referred to as the "Cost Baseline", typically in EVparlance. That is, it is the "Budgeted Cost of Work Scheduled" (BCWS), or more simply the "Planned Value" (PV).• Observe that you need to modify this Cost Baseline every time there is an approved scope change that has cost and/or schedule implications and consequently changes the project's Approved Project Budget.• now, as thE work progrEssEs, you can plot thE "actual cost of workPerformed" (ACWP or simply "Actual Cost" - AC).• you can plot othEr things as wEll, sEE diagram rEfErrEd to abovE, and if you don't like what you see then you need to take "Corrective Action".CommentaryThis whole process is a cyclic, situational operation and is probably the source of the term "cycle" in the popularly misnamed "project life cycle".As an aside, the Earned Value pundits offer various other techniques within the EV process designed to aid in forecasting the final result, that is, the "Estimate At Completion" (EAC). EAC is what you should really be interested in because it is the only constant in a moving project. Therefore, these extended EV techniques must be considered in the same realm of accuracy as top-down estimating. They are useful, but only if you recognize the limitations and know what you are doing!But, as we said at the beginning, it is a lot more difficult to do in practice –and involves a significant amount of work. But, let's face it, that's what project managers are hired for, right?中文译文:项目成本控制:它的工作方式R.马克斯怀德曼我们在最近的咨询任务中意识到,对于整个项目成本控制体系是如何设置和应用的这个问题,我们仍有一些缺乏了解。

工程造价论文中英文资料对照外文翻译

工程造价论文中英文资料对照外文翻译

工程造价论文中英文资料对照外文翻译Risk Analysis of the International Construction ProjectABSTRACTThis analysis used a case study methodology to analyse the issues surrounding the partial collapse of the roof of a building housing the headquarters of the Standards Association of Zimbabwe (SAZ). In particular, it examined the prior roles played by the team of construction professionals. The analysis revealed that the SAZ’s traditional construction project was generally characterized by high risk. There was a clear indication of the failure of a contractor and architects in preventing and/or mitigating potential construction problems as alleged by the plaintiff. It was reasonable to conclude that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It appeared justified for the plaintiff to have brought a negligence claim against both the contractor and the architects. The risk analysis facilitated, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. It further served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. Clients do not want surprise, and are more likely to engage in litigation when things go wrong.KEY WORDS:Arbitration, claims, construction, contracts, litigation, project and risk The structural design of the reinforced concrete elements was done by consulting engineers Knight Piesold (KP). Quantity surveying services were provided by Hawkins, Leshnick & Bath (HLB). The contract was awarded to Central African Building Corporation (CABCO) who was also responsible for the provision of a specialist roof structure using patented “gang nail” roof trusses. The building construction proceeded to completion and was handed over to the owners on Sept. 12, 1991. The SAZ took effective occupation of the headquarters building without a certificate of occupation. Also, the defects liability period was only three months .The roof structure was in place 10 years before partial failure in December 1999. The building insurance coverage did not cover enough, the City of Harare, a government municipality, issued the certificate of occupation 10 years after occupation, and after partial collapse of the roof .At first the SAZ decided to go to arbitration, but this failed to yield an immediate solution. The SAZ then decided to proceed to litigate in court and to bring a negligence claim against CABCO. The preparation for arbitration was reused for litigation. The SAZ’s quantified losses stood at approximately $ 6 million in Zimbabwe dollars (US $1.2m) .After all parties had examined the facts and evidence before them, it became clear that there was a great probability that the courts might rule that both the architects and the contractor were liable. It was at this stage that the defendants’ lawyers requested that the matter be settled out of court. The plaintiff agreed to this suggestion, with the terms of the settlement kept confidential .The aim of this critical analysis was to analyse the issues surrounding the partial collapse of the roof of the building housing the HQ of Standard Association of Zimbabwe. It examined the prior roles played by the project management function and construction professionals in preventing/mitigating potential construction problems. It further assessed the extent to which the employer/client and parties to a construction contract are able to recover damages under that contract. The main objective of this critical analysis was to identify an effective risk management strategy for future construction projects. The importance of this study is its multidimensional examination approach.Experience suggests that participants in a project are well able to identify risks based on their own experience. The adoption of a risk management approach, based solely in past experience and dependant on judgement, may work reasonably well in a stable low risk environment. It is unlikely to be effective where there is a change. This is because change requires the extrapolation of past experience, which could be misleading. All construction projects are prototypes to some extent and imply change. Change in the construction industry itself suggests that past experience is unlikely tobe sufficient on its own. A structured approach is required. Such a structure can not and must not replace the experience and expertise of the participant. Rather, it brings additional benefits that assist to clarify objectives, identify the nature of the uncertainties, introduces effective communication systems, improves decision-making, introduces effective risk control measures, protects the project objectives and provides knowledge of the risk history .Construction professionals need to know how to balance the contingencies of risk with their specific contractual, financial, operational and organizational requirements. Many construction professionals look at risks in dividually with a myopic lens and do not realize the potential impact that other associated risks may have on their business operations. Using a holistic risk management approach will enable a firm to identify all of the organization’s business risks. This wi ll increase the probability of risk mitigation, with the ultimate goal of total risk elimination .Recommended key construction and risk management strategies for future construction projects have been considered and their explanation follows. J.W. Hinchey stated that there is and can be no ‘best practice’ standard for risk allocation on a high-profile project or for that matter, any project. He said, instead, successful risk management is a mind-set and a process. According to Hinchey, the ideal mind-set is for the parties and their representatives to, first, be intentional about identifying project risks and then to proceed to develop a systematic and comprehensive process for avoiding, mitigating, managing and finally allocating, by contract, those risks in optimum ways for the particular project. This process is said to necessarily begin as a science and ends as an art .According to D. Atkinson, whether contractor, consultant or promoter, the right team needs to be assembled with the relevant multi-disciplinary experience of that particular type of project and its location. This is said to be necessary not only to allow alternative responses to be explored. But also to ensure that the right questions are asked and the major risks identified. Heads of sources of risk are said to be a convenient way of providing a structure for identifying risks to completion of a participant’s part of the project. Effective risk management is said to require amulti-disciplinary approach. Inevitably risk management requires examination of engineering, legal and insurance related solutions .It is stated that the use of analytical techniques based on a statistical approach could be of enormous use in decision making . Many of these techniques are said to be relevant to estimation of the consequences of risk events, and not how allocation of risk is to be achieved. In addition, at the present stage of the development of risk management, Atkinson states that it must be recognized that major decisions will be made that can not be based solely on mathematical analysis. The complexity of construction projects means that the project definition in terms of both physical form and organizational structure will be based on consideration of only a relatively small number of risks . This is said to then allow a general structured approach that can be applied to any construction project to increase the awareness of participants .The new, simplified Construction Design and Management Regulations (CDM Regulations) which came in to force in the UK in April 2007, revised and brought together the existing CDM 1994 and the Construction Health Safety and Welfare (CHSW) Regulations 1996, into a single regulatory package.The new CDM regulations offer an opportunity for a step change in health and safety performance and are used to reemphasize the health, safety and broader business benefits of a well-managed and co-ordinated approach to the management of health and safety in construction. I believe that the development of these skills is imperative to provide the client with the most effective services available, delivering the best value project possible.Construction Management at Risk (CM at Risk), similar to established private sector methods of construction contracting, is gaining popularity in the public sector. It is a process that allows a client to select a construction manager (CM) based on qualifications; make the CM a member of a collaborative project team; centralize responsibility for construction under a single contract; obtain a bonded guaranteed maximum price; produce a more manageable, predictable project; save time and money; and reduce risk for the client, the architect and the CM.CM at Risk, a more professional approach to construction, is taking its place along with design-build, bridging and the more traditional process of design-bid-build as an established method of project delivery.The AE can review the CM’s approach to the work, making helpful recommendations. The CM is allowed to take bids or proposals from subcontractors during completion of contract documents, prior to the guaranteed maximum price (GMP), which reduces the CM’s risk and provides useful input to design. The procedure is more methodical, manageable, predictable and less risky for all.The procurement of construction is also more business-like. Each trade contractor has a fair shot at being the low bidder without fear of bid shopping. Each must deliver the best to get the projec. Competition in the community is more equitable: all subcontractors have a fair shot at the work .A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.It was reasonable to assume that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It did appearjustified for the plaintiff to have brought a negligence claim against both the contractor and the architects.In many projects clients do not understand the importance of their role in facilitating cooperation and coordination; the design is prepared without discussion between designers, manufacturers, suppliers and contractors. This means that the designer can not take advantage of suppliers’ or contractors’ knowledge of build ability or maintenance requirements and the impact these have on sustainability, the total cost of ownership or health and safety .This risk analysis was able to facilitate, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. This work also served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. They do not want surprises, and are more likely to engage in litigation when things go wrong.国际建设工程风险分析摘要此次分析用实例研究方法分析津巴布韦标准协会总部(SAZ)的屋顶部分坍塌的问题。

工程造价外国文献及译文

工程造价外国文献及译文

工程造价外国文献及译文以下为工程造价相关的外国文献及译文:1. "Engineering Cost Estimation and Control" by Philip E. Kesler and John M. Meredith。

《工程造价估算与控制》(Philip E. Kesler和John M. Meredith 著)。

2. "Cost Engineering for Construction Projects" by Ronald Klemencic。

《建筑工程造价工程》(Ronald Klemencic著)。

3. "Cost Estimating and Analysis for Engineering and Management" by Phillip F. Ostwald。

《工程和管理的成本估算和分析》(Phillip F. Ostwald著)。

4. "Construction Cost Engineering" by Stephen R. Devlen。

《建筑工程造价工程》(Stephen R. Devlen著)。

5. "Project Cost Control in Action" by Kim Heldman and William R. Duncan。

《项目成本控制实践》(Kim Heldman和William R. Duncan著)。

6. "Cost Estimating and Contract Pricing" by Michael D. Dell'Isola。

《成本估算和合同定价》(Michael D. Dell'Isola著)。

7. "Engineering Economics and Economic Design for Process Engineers" by Thane Brown。

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照中文翻译:工程造价专业毕业外文文献工程造价专业是一种重要的工程技术专业,主要负责工程投资的评估、选择和控制工程项目成本,以及项目质量、进度和安全。

因此,工程造价专业需要具备丰富的知识和技能,包括工程建设、经济学、管理学、数学、统计学等方面。

为了提高工程造价专业学生的综合能力,学习外文文献是不可或缺的步骤。

本文将介绍几篇与工程造价专业相关的外文文献,并提供中英文对照。

1)《The Role of Quantity Surveyors in Sustainable Construction》该文研究了数量调查师在可持续建筑中的作用,并深入探讨了数量调查师在项目的可持续性评估、营建阶段和运营阶段的角色和责任。

该文指出,数量调查师可以通过成本控制、资源利用、和材料选择等方面促进可持续建筑的发展,为未来可持续发展提供支持。

中文翻译:数量调查师在可持续建筑中的作用2)《Cost engineering》该文研究了造价工程的理论和实践,并提供了一系列工具和方法用于项目成本的控制和评估。

该文还深入探讨了工程造价和项目管理之间的关系,并提供了一些实用的案例研究来说明造价工程的实际应用。

中文翻译:造价工程3)《Construction cost management: learning from case studies》该文通过案例分析的方式来探讨建筑项目成本管理的实践。

该文提供了多个案例研究,旨在向读者展示如何运用不同的方法来控制和评估项目成本,并阐述了思考成本问题时需要考虑的多个因素。

中文翻译:建筑项目成本管理:案例学习4)《Project Cost Estimation and Control: A Practical Guide to Construction Management》该书是一本实用指南,详细介绍了在工程起始阶段进行项目成本估算的方法和技巧,以及如何在项目执行阶段进行成本控制。

(完整版)工程造价外文及翻译

(完整版)工程造价外文及翻译

The Cost of Building Structure1. IntroductionThe art of architectural design was characterized as one of dealing comprehensively with a complex set of physical and nonphysical design determinants。

Structural considerations were cast as important physical determinants that should be dealt with in a hierarchical fashion if they are to have a significant impact on spatial organization and environmental control design thinking.The economical aspect of building represents a nonphysical structural consideration that, in final analysis, must also be considered important。

Cost considerations are in certain ways a constraint to creative design。

But this need not be so。

If something is known of the relationship between structural and constructive design options and their cost of implementation, it is reasonable to believe that creativity can be enhanced. This has been confirmed by the authors’observation that most enhanced. This has been confirmed by the authors’ observation that most creative design innovations succeed under competitive bidding and not because of unusual owner affluence as the few publicized cases of extravagance might lead one to believe。

工程造价论文中英文资料对照外文翻译

工程造价论文中英文资料对照外文翻译

工程造价论文中英文资料对照外文翻译Risk Analysis of the International Construction ProjectABSTRACTThis analysis used a case study methodology to analyse the issues surrounding the partial collapse of the roof of a building housing the headquarters of the Standards Association of Zimbabwe (SAZ). In particular, it examined the prior roles played by the team of construction professionals. The analysis revealed that the SAZ’s traditional construction project was generally characterized by high risk. There was a clear indication of the failure of a contractor and architects in preventing and/or mitigating potential construction problems as alleged by the plaintiff. It was reasonable to conclude that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It appeared justified for the plaintiff to have brought a negligence claim against both the contractor and the architects. The risk analysis facilitated, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. It further served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. Clients do not want surprise, and are more likely to engage in litigation when things go wrong.KEY WORDS:Arbitration, claims, construction, contracts, litigation, project and risk The structural design of the reinforced concrete elements was done by consulting engineers Knight Piesold (KP). Quantity surveying services were provided by Hawkins, Leshnick & Bath (HLB). The contract was awarded to Central African Building Corporation (CABCO) who was also responsible for the provision of a specialist roof structure using patented “gang nail” roof trusses. The building construction proceeded to completion and was handed over to the owners on Sept. 12, 1991. The SAZ took effective occupation of the headquarters building without a certificate of occupation. Also, the defects liability period was only three months .The roof structure was in place 10 years before partial failure in December 1999. The building insurance coverage did not cover enough, the City of Harare, a government municipality, issued the certificate of occupation 10 years after occupation, and after partial collapse of the roof .At first the SAZ decided to go to arbitration, but this failed to yield an immediate solution. The SAZ then decided to proceed to litigate in court and to bring a negligence claim against CABCO. The preparation for arbitration was reused for litigation. The SAZ’s quantified losses stood at approximately $ 6 million in Zimbabwe dollars (US $1.2m) .After all parties had examined the facts and evidence before them, it became clear that there was a great probability that the courts might rule that both the architects and the contractor were liable. It was at this stage that the defendants’ lawyers requested that the matter be settled out of court. The plaintiff agreed to this suggestion, with the terms of the settlement kept confidential .The aim of this critical analysis was to analyse the issues surrounding the partial collapse of the roof of the building housing the HQ of Standard Association of Zimbabwe. It examined the prior roles played by the project management function and construction professionals in preventing/mitigating potential construction problems. It further assessed the extent to which the employer/client and parties to a construction contract are able to recover damages under that contract. The main objective of this critical analysis was to identify an effective risk management strategy for future construction projects. The importance of this study is its multidimensional examination approach.Experience suggests that participants in a project are well able to identify risks based on their own experience. The adoption of a risk management approach, based solely in past experience and dependant on judgement, may work reasonably well in a stable low risk environment. It is unlikely to be effective where there is a change. This is because change requires the extrapolation of past experience, which could be misleading. All construction projects are prototypes to some extent and imply change. Change in the construction industry itself suggests that past experience is unlikely tobe sufficient on its own. A structured approach is required. Such a structure can not and must not replace the experience and expertise of the participant. Rather, it brings additional benefits that assist to clarify objectives, identify the nature of the uncertainties, introduces effective communication systems, improves decision-making, introduces effective risk control measures, protects the project objectives and provides knowledge of the risk history .Construction professionals need to know how to balance the contingencies of risk with their specific contractual, financial, operational and organizational requirements. Many construction professionals look at risks in dividually with a myopic lens and do not realize the potential impact that other associated risks may have on their business operations. Using a holistic risk management approach will enable a firm to identify all of the organization’s business risks. This wi ll increase the probability of risk mitigation, with the ultimate goal of total risk elimination .Recommended key construction and risk management strategies for future construction projects have been considered and their explanation follows. J.W. Hinchey stated that there is and can be no ‘best practice’ standard for risk allocation on a high-profile project or for that matter, any project. He said, instead, successful risk management is a mind-set and a process. According to Hinchey, the ideal mind-set is for the parties and their representatives to, first, be intentional about identifying project risks and then to proceed to develop a systematic and comprehensive process for avoiding, mitigating, managing and finally allocating, by contract, those risks in optimum ways for the particular project. This process is said to necessarily begin as a science and ends as an art .According to D. Atkinson, whether contractor, consultant or promoter, the right team needs to be assembled with the relevant multi-disciplinary experience of that particular type of project and its location. This is said to be necessary not only to allow alternative responses to be explored. But also to ensure that the right questions are asked and the major risks identified. Heads of sources of risk are said to be a convenient way of providing a structure for identifying risks to completion of a participant’s part of the project. Effective risk management is said to require amulti-disciplinary approach. Inevitably risk management requires examination of engineering, legal and insurance related solutions .It is stated that the use of analytical techniques based on a statistical approach could be of enormous use in decision making . Many of these techniques are said to be relevant to estimation of the consequences of risk events, and not how allocation of risk is to be achieved. In addition, at the present stage of the development of risk management, Atkinson states that it must be recognized that major decisions will be made that can not be based solely on mathematical analysis. The complexity of construction projects means that the project definition in terms of both physical form and organizational structure will be based on consideration of only a relatively small number of risks . This is said to then allow a general structured approach that can be applied to any construction project to increase the awareness of participants .The new, simplified Construction Design and Management Regulations (CDM Regulations) which came in to force in the UK in April 2007, revised and brought together the existing CDM 1994 and the Construction Health Safety and Welfare (CHSW) Regulations 1996, into a single regulatory package.The new CDM regulations offer an opportunity for a step change in health and safety performance and are used to reemphasize the health, safety and broader business benefits of a well-managed and co-ordinated approach to the management of health and safety in construction. I believe that the development of these skills is imperative to provide the client with the most effective services available, delivering the best value project possible.Construction Management at Risk (CM at Risk), similar to established private sector methods of construction contracting, is gaining popularity in the public sector. It is a process that allows a client to select a construction manager (CM) based on qualifications; make the CM a member of a collaborative project team; centralize responsibility for construction under a single contract; obtain a bonded guaranteed maximum price; produce a more manageable, predictable project; save time and money; and reduce risk for the client, the architect and the CM.CM at Risk, a more professional approach to construction, is taking its place along with design-build, bridging and the more traditional process of design-bid-build as an established method of project delivery.The AE can review the CM’s approach to the work, making helpful recommendations. The CM is allowed to take bids or proposals from subcontractors during completion of contract documents, prior to the guaranteed maximum price (GMP), which reduces the CM’s risk and provides useful input to design. The procedure is more methodical, manageable, predictable and less risky for all.The procurement of construction is also more business-like. Each trade contractor has a fair shot at being the low bidder without fear of bid shopping. Each must deliver the best to get the projec. Competition in the community is more equitable: all subcontractors have a fair shot at the work .A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.It was reasonable to assume that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It did appearjustified for the plaintiff to have brought a negligence claim against both the contractor and the architects.In many projects clients do not understand the importance of their role in facilitating cooperation and coordination; the design is prepared without discussion between designers, manufacturers, suppliers and contractors. This means that the designer can not take advantage of suppliers’ or contractors’ knowledge of build ability or maintenance requirements and the impact these have on sustainability, the total cost of ownership or health and safety .This risk analysis was able to facilitate, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. This work also served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. They do not want surprises, and are more likely to engage in litigation when things go wrong.国际建设工程风险分析摘要此次分析用实例研究方法分析津巴布韦标准协会总部(SAZ)的屋顶部分坍塌的问题。

(完整)工程造价专业外文文献翻译(中英文对照

(完整)工程造价专业外文文献翻译(中英文对照

外文文献:Project Cost Control: The Way it WorksBy R. Max WidemanIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works。

Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycle at suitable intervals。

If the end results get really out of line with the baseline plan, you may have to change the plan。

More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway。

工程造价专业外文文献翻译(中英文对照(20200610064406)

工程造价专业外文文献翻译(中英文对照(20200610064406)

外文文献:Project Cost Control: The Way it WorksBy R. Max WidemanIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works. Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, youmonitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then youmake adjustments as necessary to the work in progress, and repeat the cycle atsuitable intervals. If the end results get really out of line with the baseline plan, youmay have to change the plan. More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway.But project cost control is a lot more difficult to do in practice, as is evidencedby the number of projects that fail to contain costs. It also involves a significantamount of work, as we shall see, and we might as well start at the beginning. So letus follow the thread of project cost control through the entire project life span.And, while we are at it, we will take the opportunity to point out the properplaces for several significant documents. These include the Business Case, the Request for (a capital) Appropriation (for execution), Work Packages and the WorkBreakdown Structure, the Project Charter (or Brief), the Project Budget or Cost Plan,Earned Value and the Cost Baseline. All of these contribute to the organization'sability to effectively control project costs.FootnoteI am indebted to my friend Quentin Fleming, the guru of Earned Value, for checking and correcting my work on this topic.The Business Case and Application for (execution) FundingIt is important to note that project cost control is most effective when the executive management responsible has a good understanding of how projects should unfold through the project life span. This means that they exercise their responsibilities at the key decision points between the major phases. They mustalso recognize the importance of project risk management for identifying and planning to head off at least the most obvious potential risk events.In the project's Concept Phase?Every project starts with someone identifying an opportunity or need. That is usually someone of importance or influence, if the project is to proceed, and thatperson often becomes the project's sponsor.? To determine the suitability of the potential pr oject, most organizations call for the preparation of a "Business Case" and its "Order of Magnitude" cost to justify thevalue of the project so that itcan be compared with all the other competing projects. This effort is conducted inthe Concept Phase of the project and is done as a part of the organization'smanagement of the entire project portfolio.? The cost of the work of preparing the Business Case is usually covered by corporate management overhead, but it may be carried forward as an accounting cost to the eventual project. No doubt because this will provide a tax benefit to the organization. The problem is, how do you then account for all the projects that arenot so carried forward??If the Business case has sufficient merit, approval will be given to proceed to a Development and Definition phase.In the project's Development or Definition Phase? The objective of the Development Phase is to establish a good understanding of thework involved to produce the required product, estimate the cost and seek capitalfunding for the actual execution of the project.? In a formalized setting, especially where big projects are involved, this application forfunding is often referred to as a Request for (a capital) Appropriation (RFA) or Capital Appropriati on Request (CAR).? This requires the collection of more detailed requirements and data to establish whatwork needsto be done to produce the required product or "deliverable". From this information, a plan is prepared in sufficient detail to give adequate confidence in adollar figure to be included in the request.? In a less formalized setting, everyone just tries to muddle through.Work Packages and the WBSThe Project Management Plan, Project Brief or Project Charter? If the deliverable consists of a number of different elements, these are identified。

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照

本科毕业论文外文文献及译文文献、资料题目China’s Pathway to Low—carbon Development文献、资料来源: Journal of Knowledge-basedInnovation in China文献、资料发表(出版)日期:V ol。

2 No。

3, 2010院(部):管理工程学院专业:工程造价外文文献China’s Pathway to Low—carbon DevelopmentAbstractPurpose–The purpose of this paper is to explore China's current policy and policy options regarding the shift to a low-carbon (LC)development.Design/methodology/approach – The paper uses both a literature review and empirical systems analysis of the trends of socio-economic conditions, carbon emissions and development of innovation capacities in China.Findings – The analysis shows that a holistic solution and co—benefit approach are needed for China's transition to a green and LC economy,and that, especially for developing countries,it is not enough to have only goals regarding mitigation and adaptation。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预测高速公路建设项目最终的预算和时间摘要目的——本文的目的是开发模型来预测公路建设项目施工阶段最后的预算和持续的时间。

设计——测算收集告诉公路建设项目,在发展预测模型之前找出影响项目最终的预算和时间,研究内容是基于人工神经网络(ANN)的原理。

与预测结果提出的方法进行比较,其精度从当前方法基于挣值。

结果——根据影响因素最后提出了预算和时间,基于人工神经网络的应用原理方法获得的预测结果比当前基于挣值法得到的结果更准确和稳定。

研究局限性/意义——因素影响最终的预算和时间可能不同,如果应用于其他国家,由于该项目数据收集的都是泰国的预测模型,因此,必须重新考虑更好的结果。

实际意义——这项研究为用于高速公路建设项目经理来预测项目最终的预算和时间提供了一个有用的工具,可为结果提供早期预算和进度延误的警告。

创意/价值——用ANN模型来预测最后的预算和时间的高速公路建设项目,开发利用项目数据反映出持续的和季节性周期数据, 在施工阶段可以提供更好的预测结果。

关键词:神经网、建筑业、预测、道路、泰国文章类型:案例研究前言一个建设工程项普遍的目的是为了在时间和在预算内满足既定的质量要求和其他规格。

为了实现这个目标,大量的工作在施工过程的管理必须提供且不能没有计划地做成本控制系统。

一个控制系统定期收集实际成本和进度数据,然后对比与计划的时间表来衡量工作进展是否提前或落后时间表和强调潜在的问题(泰克兹,1993)。

成本和时间是两个关键参数,在建设项目管理和相关参数的研究中扮演着重要的角色,不断提供适当的方法和工具,使施工经理有效处理一个项目,以实现其在前期建设和在施工阶段的目标。

在施工阶段,一个常见的问题要求各方参与一个项目,尤其是一个所有者,最终项目的预算到底是多少?或什么时候该项目能被完成?在跟踪和控制一个建设项目时,预测项目的性能是非常必要的。

目前已经提出了几种方法,如基于挣值技术、模糊逻辑、社会判断理论和神经网络。

将挣值法视为一个确定的方法,其一般假设,无论是性能效率可达至报告日期保持不变,或整个项目其余部分将计划超出申报日期(克里斯坦森,1992;弗莱明和坎普曼,2000 ;阿萨班尼,1999;维卡尔等人,2000)。

然而,挣值法的基本概念在研究确定潜在的进度延误、成本和进度的差异成本超支的地区。

吉布利(1985)利用平均每个成本帐户执行工作的实际成本,也称作单位收入的成本,其标准差来预测项目完工成本。

各成本帐户每月的进度是一个平均平稳过程标准偏差,显示预测模型的可靠性,然而,接受的单位成本收益在每个报告期在变化。

埃尔丁和休斯(1992)和阿萨班尼(1999)利用分解组成成本的结构来提高预测精度。

迪克曼和Al-Tabtabai(1992)基于社会判断理论提出了一个方法,该方法在预测未来的基础上的一组线索,源于人的判断而不是从纯粹的数学算法。

有经验的项目经理要求基于社会判断理论方法的使用得到满意的结果。

Moselhi等人(2006)应用“模糊逻辑”来预测潜在的成本超支和对建设工程项目的进度延迟。

该方法的结果在评估特定时间状态的项目和评价该项目的利润效率有作用。

这有助于工程人员所完成的项目时间限制和监控项目预算。

Kaastra和博伊德(1996)开发的“人工神经网络”,此网络作为一种有效的预测工具,可以利用过去“模式识别”工作和显示各种影响因素的关系,然后预测未来的发展趋势。

罗威等人(2006)开发的成本回归模型能在项目的早期阶段估计建筑成本。

总共有41个潜在的独立变量被确定,但只有四个变量:总建筑面积,持续时间,机械设备,和打桩,是线性成本的关键驱动因素,因为它们出现在所有的模型中。

模型提出了进一步的洞察了施工成本和预测变量的各种关系。

从模型得到的估计结果可以提供早期阶段的造价咨询(威廉姆斯(2003))——最终竞标利用回归模型预测的建设项目成本。

人工神经网络已被广泛用在不同的施工功能中,如估价、计划和产能预测。

神经网络建设是Moselhi等人(1991)指出,由Hegazy(1998)开发了一个模型,该模型考虑了项目的外在特征,估计加拿大的公路建设成本:·项目类型·项目范围·建筑年限·季节·建筑地点·项目时长·项目距离·线路数量·穿过公路分叉口的数量·建筑工地土壤环境18个项目的测试平均误差值是1.04。

Bhanupong(2004)开发了一个模型来预测公路建设项目累计成本,考虑因素包括关于项目特征的两大类因素,所得到的累积成本数据可以用于精确的财务计划和管理快速报价。

威尔莫特和梅(2005)应用人工神经网络预测道路未来的建设成本,使用的是玛塔波开发的一个模型估计未来的建设成本,从商业指数计算成本变量与建筑人工、机械和建筑材料成本。

该模型的结果可以应用于工程造价估算,而且准确率在百分之九十五以上。

过去大多数的研究主要集中在替换上述观点预测项目状况给成本超支和进度预警延迟,同时,在公路建设方面,研究重点在估计建议由政府资助降低项目成本预算。

虽然,它是由政府的共同利益确定,取得该项目的合同被签订时,以确保给定的预算是足够的,有一种可能性,即给定的预算将不足以因为工作的数量不完全确定,直到项目完成。

例如,基本材料和土方工程量取决于不同位置的土壤条件。

因此,单价合同被广泛应用于公路建设。

如果超过预算出现,需要额外的资金来完成这个项目。

作为该项目的政府代表,企业必须不断监测项目预算现状,预测需要完成的项目最终的预算和时间,并定期向更高的管理提交项目状态报告。

因此,最终完成公路建设项目在施工阶段所需的预算和时间的预测方法作为本文的研究目的。

当前在泰国使用的方法在泰国,公路部门需要负责有大约60000公里的交通运输网络。

在过去的几年,该部门已经拟定了一项公路网络计划,这项预算超过4500亿泰铢,大约占2007年国家预算的百分之三。

总预算分为三类,即建设、维护和管理,约百分之八十五的预算分配给建设和维护。

如公路建设项目在一般情况下,主要目标是在给定的工期和预算内成功地完成建设。

为了实现这一目标,需要一个良好的时间网络计划和控制系统。

由于公路建设项目有很多因素不确定,直到项目结束之前,实际的工程数量和成本不会知道。

按月提交给主管办公室的项目绩效报告包括最终的预算和预测的时间,如图1。

在实践中,预测项目的最终预算和持续时间将在启动后4个月内发生变化,这个计划在当前财务年度的下半年完成项目,预测必须为需要的预算和期限在本财政年度结束前提前六个月完成这项工程。

这个程序的要求由国家预算办公室提供所需的资金,然后可以用额外的预算让预料之外的项目按原计划完成。

在施工过程中,一个给定的项目数据能帮助管理人员了解该项目的实际状态。

更进一步的数据是对管理成本构成很重要的公路建设时间。

目前使用挣值法作为一种工具来评估项目状况与计划值的对比,而进度和成本差异,通常是根据一个确定性的方法,如CPM(常,2001)。

此外,挣值法一般假设其余项目的性能效率可达至报告日期维持不变,或性能将超出计划申报日期(李等人,2006)。

此外,如交通条件、物理和天气条件不能被挣值法允许作为输入数据,以取得挣值技术的因素。

因此,不能单独使用预测最终成本的持续时间作为公路建设项目的。

然而,挣值技术对确定计划进度和实际表现之间的差异是非常有用的。

本研究的目的是开发模型来预测最终的预算和在施工阶段的公路建设项目的持续时间。

人工神经网络作为开发工具的模型以预测最后在施工阶段的公路建设项目的预算和时间。

在处理泰国或一般地方性的公路项目中,开发的模型可以提高预测过程以及提供更好的结果监测和控制的公路建设项目的过程。

此外,更好的国家预算分配将由于预测的改进提高结果。

在目前的实践中,如果从预测得到最终的预算比原来的预算更大,追加的预算将从本财政年度结束前约六个月直接从国家预算下拨。

在时间的角度来看,如果基于预测的项目持续时间往往被推迟,这就要有严格的监督程序,然后应用到项目中。

人工神经网络模型人工神经网络(ANN)是人工智能的一部分(AI),是类似脑细胞与人类神经系统的建筑结构和功能,可以从中学习经验和提供复杂问题的答案。

不同的人工神经网络的存在,能够找到最有效的解决方案。

不同的网络体系结构中,反向传播(BP)网络已经得到广泛的应用,一个典型的BP神经网络,如图2所示,有一个输入层,输出层和隐藏层。

输入变量和输出变量之间的映射关系,将探讨在训练过程中。

设计BP网络体系结构包括:确定输入和输出变量的数目(在输入和输出,即神经元层)和每个隐藏层选择隐藏层神经元的数目。

训练效率和预测精度可由数的影响隐藏层和BP网络在每个隐藏层神经元的数目。

从过去的文献的研究,发现没有一定的标准建立适当的隐藏层。

通过不同数量的隐藏层和数字网络在每个隐层神经元进行测试,可以提供最准确的预测将被选中。

输入分析实验收集了2002和2007之间泰国51个公路建设项目的项目进度报告数据。

分析所收集的数据以找出可能影响项目最终的预算和时间因素。

分别建立了两个人工神经网络模型,第一个预测工程决算,第二个预测项目工期。

在发展的预测模型中选择输入变量的方法是最重要的一步。

节点的数目输入数据依赖于滞后数据,应用时间序列推断。

一般情况下,本模型还没有接受节点输入选择预测时间序列标准。

因此,必须以输入一组数据试验,通过调整输入节点在实验中的数据组织模型找到最好的形式参数。

找到合适的实验输入变量可以以多种方式进行。

本研究的假设成立的概念由李(1998)提出建立的划分为两部分的输入,一个反映连续数据和一个反映的季节周期。

在几种神经网络模型的实验后,发现八个因素严重影响最终的预算:交通量,地形,气象条件,评估日期,合同工期(天),施工预算(泰铢),计划完成率,实际完成百分比,而五个因素:工作开始评估日期,日期,合同期限(天),按计划完成百分比,和实际完成率,极大地影响项目工期。

因此,最好的模型,由神经元的输入,输出神经元和隐藏神经元,如图3所示预测工程决算和图4来预测项目工期。

人工神经网络模型的训练和测试训练和测试的人工神经网络模型,总共收集到泰国从2002年到2007年之间总共51个公路建设项目的1022个有效数据。

其中,49个项目中的998个数据被用于在施工预算范围内试验,预算在3.99至10.3亿泰铢,而工期范围从210到1306天。

预算和时间预测显示,具一个隐藏层和300个隐层神经元网络比两个隐藏层和300个隐层神经元有优势。

得到的网络,然后应用到两个项目的数据测试表一的第一个项目,由列出的24个数据中的15个数据模式组成的第302号项目路线预算为4.75亿泰铢,预测工期为584天;第二个由9个数据组成的22号路线工程,其最终的预算为2.53亿泰铢和工期为382天。

相关文档
最新文档