2019年四年级数学第十届华罗庚金杯初赛试题

合集下载

第十届全国华罗庚金杯少年数学邀请赛初赛答

第十届全国华罗庚金杯少年数学邀请赛初赛答

中考电功率计算题走向电功率计算是历年中考命题的热点内容之一,纵观近几年中考电功率计算题的走向,笔者发现除了一直保持着的紧密联系工农业生产和日常生活实际这一大特色外,从05年开始又有了新动向,就是将计算与其它题型结合起来,改单纯的计算为计算与说理、计算与设计、计算与评估等,向以计算为主体的综合型计算方向发展。

1. 计算与评估例1. 图(a)是某同学为探究调光灯工作原理而设计的一个调光电路,已知元件的规格分别为:灯泡(6V3W)、变阻器(0~18Ω)电源电压为6V。

(设灯丝的电阻不随温度而改变)(1)S闭合时,把滑动变阻器的滑片从B调到A,求A表和V表的读数变化范围以及灯泡的最小功率。

(2)另一位同学设计的调光电路如图1(b)所示,请对这两种调光电路作出你的评价。

解析:(1)灯丝的电阻R UPVW1226312===额()Ω。

当S闭合、P在B端时,变阻器全部电阻接入电路,这时电路中电流最小,IUR RVA=+=+=′6121802ΩΩ.,灯泡两端的电压也最小,U L=IR L=0.2A×12Ω=2.4V,灯泡的功率最小,P L最小=U L I=2.4V×0.2A=0.48W。

P在A端时,电路中只有一个灯泡,电压表示数为电流电压U=6V,电路中的电流为IURVAL===61205Ω.(或此时灯泡正常发光IPUWVA===额额3605.)。

滑片P从B调到A,A表示数变化范围为0.2A~0.5A,V表示数变化范围为2.4V-6V。

(2)对这两种调光电路的评价具有开放性,如:(b)图调光电路好,当P滑到a端时,灯泡被导线短路,不发光,P滑到b 端时,灯泡跟变阻器并联正常发光,故它的功率范围为0~3W;而a图中,灯泡的功率范围较小,为0.48W~3W。

也可答成(a)图调光电路好,a图中灯泡正常发光时,变阻器不连入电路,不消耗电能,而(b)图中的变阻器仍消耗电能!等等。

2. 计算与设计例2. 如图2所示,右边虚线框内有两个阻值相等的电阻R1、R2和一个开关S,当开关S闭合时,电流表的示数增加0.2A,电路的总功率增加1.6W。

初中竞赛数学第十届“华罗庚金杯”少年数学邀请赛初一第一试(含答案)

初中竞赛数学第十届“华罗庚金杯”少年数学邀请赛初一第一试(含答案)

第十九届“华罗庚金杯”少年数学邀请赛试题初一年级 第一试(时间:2018年4月9日上午10:00—11:30)一、选择题:(每小题6分,共60分)1、已知a 、b 都是有理数,且|a|=a ,|b|≠b ,则ab=( )(A )负数; (B )正数; (C )负数或零; (D )非负数2、如图,数轴上每个刻度为1个单位长,点A 对应的数为a ,B 对应的数为b ,且b-2a=7,那么数轴上原点的位置在( )(A )A 点; (B )B 点; (C )C 点; (D )D 点。

3、下列说法正确的是( )(A )-a 的相反数是a; (B )-a 的倒数是-1a; (C )-a 的绝对值是a; (D )-a 2一定是负数; 4、大于353-⎛⎫ ⎪⎝⎭而不大于(-3)2的整数总共有( ) (A )12个; (B )13个; (C )14个; (D )15个。

5、有8个编号分别是①至⑧的球,其中有6个球一样重,另外两个球都轻1克,为了找出这两面三刀个球,用天平称了3次:第一次:①+②比③+④重;第二次:⑤+⑥比⑦+⑧轻;第三次:①+③+⑤与②+④+⑧一样重,则两个轻球的编号分别为( )(A )①③; (B )②④; (C )⑥⑧; (D )④⑤。

6、如图,AB ∥CD 则下列等式成立的是( ) (A )B F D E G ∠+∠+∠=∠+∠ (B )E F G B D ∠+∠+∠=∠+∠(C )F G D E B ∠+∠+∠=∠+∠ (D )B E F D G ∠+∠+∠=∠+∠7、点P 为线段MN 上任意一点,点Q 为NP 的中点,若MQ=6,则MP+MN 为( )(A )8. (B )10。

(C )12 (D )不确定8、已知p+2q=0,(q ≠0),则123p p p q q q-+-+-=( )(A )4; (B )6; (C )3; (D )4或6。

9.若abcd 表示一个四位数,且ab dc =,如1331,2552,则abcd 称为四位对称数,将这样的四作画数由小到大排列起来,第12个四位对称数是( )(A )2442 (B )2112 (C )2332 (D )222210、若A 、B 、C 、D 、E 五名运动员进行乒乓球单循环赛(即每两人赛一场),比赛进行一段时间后,进行过的场次数与队员的对照统计表如下:A C B那么与E (A )A 和B (B )B 和C (C )A 和C (D )A 和D二、填空题:(每小题6分,共90分)11、请将2、2、11、11这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次): 。

历年华罗庚金杯试题

历年华罗庚金杯试题

历年华罗庚金杯试题第一届“华罗庚金杯”少年数学邀请赛初赛试题1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。

把5个这样的方框放在桌面上,成为这样的图案。

问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。

洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。

小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。

被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。

晴天每天可以采20个。

有雨的天每天只能采12个。

它一连几天采了112个松籽,平均每天采14个。

问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。

它的高是10米,长、宽都大于高。

问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。

两辆汽车的速度都是每小时60公里。

8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。

到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数11和99的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。

黑暗中想从这些筷子中取出颜色不同的两双筷子。

问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。

历年华罗庚金杯试题

历年华罗庚金杯试题

历年华罗庚金杯试题第一届“华罗庚金杯”少年数学邀请赛初赛试题1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。

把5个这样的方框放在桌面上,成为这样的图案。

问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。

洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。

小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。

被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。

晴天每天可以采20个。

有雨的天每天只能采12个。

它一连几天采了112个松籽,平均每天采14个。

问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。

它的高是10米,长、宽都大于高。

问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。

两辆汽车的速度都是每小时60公里。

8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。

到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数和的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。

黑暗中想从这些筷子中取出颜色不同的两双筷子。

问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库

初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999⨯的结果中含有( )个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

最新第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

最新第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。

答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=( )。

答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

2019华杯赛历届习题

2019华杯赛历届习题

第一届华杯赛决赛一试试题1. 计算:2.975×935×972×(),要使这个连乘积的最后四个数字都是“0”,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9○13○7=10014○2○5=□4.一条1米长的纸条,在距离一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后打开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积。

这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有池水,如果按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如下图,四个小三角形的顶点处有六个圆圈。

如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。

问这六个质数的积是多少?11.若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等。

(小学教育)2019年四年级数学第十届华罗庚金杯初赛试题

(小学教育)2019年四年级数学第十届华罗庚金杯初赛试题

2019年四年级数学第十届华罗庚金杯初赛试题1. xx年是中国伟大航海家郑和首次下西洋600周年, 西班牙伟大航海家哥伦布首次远洋航行是在1492 年. 问这两次远洋航行相差多少年?2. 从冬至之日起每九天分为一段, 依次称之为一九, 二九, …, 九九. xx年的冬至为12月21日, xx年的立春是2月4日. 问立春之日是几九的第几天?3. 左下方是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于 1 的正方形. 问这个直三棱柱的体积是多少?4. 爸爸、妈妈、客人和我四人围着圆桌喝茶. 若只考虑每人左邻的情况,问共有多少种不同的入座方法?5. 在奥运会的铁人三项比赛中,自行车比赛距离是长跑的 4 倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米. 求三项的总距离.6. 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形. 其中最小的三角形顶点的个数(重合的顶点只计一次)依次为: 3, 6, 10, 15, 21, …问这列数中的第 9 个是多少?7. 一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示. 若用甲容器取水来注满乙容器, 问: 至少要注水多少次?8. 100 名学生参加社会实践, 高年级学生两人一组, 低年级学生三人一组,共有 41组. 问: 高、低年级学生各多少人?9. 小鸣用48元钱按零售价买了若干练习本. 如果按批发价购买, 每本便宜 2元, 恰好多买4本. 问: 零售价每本多少元?10. 不足100 名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈. 问最多有多少名同学?11. 输液100毫升, 每分钟输2.5毫升. 请你观察第12分钟时吊瓶图像中的数据, 回答整个吊瓶的容积是多少毫升?12. 两条直线相交所成的锐角或直角称为两条直线的“夹角”. 现平面上有若干条直线,它们两两相交,并且“夹角”只能是 300, 600 或 900. 问: 至多有多少条直线?初赛试题答案1 87年.2 六九的第一天.3 1/24 共有6种不同的入座方法。

2019深圳华杯赛(华罗庚金杯研学行夏令营测评)小学数学高年级组(含答案)

2019深圳华杯赛(华罗庚金杯研学行夏令营测评)小学数学高年级组(含答案)

2019华罗庚金杯研学行夏令营测评小学高年级组(时间:2019年7月16日15:00~16:30)填空题(每小题10分,共150分)1.右图是由6个相同的正方形所拼成的一个长方形,那么∠ABC 的度数为________度.【答案】452.设b a 679|72,则有=b a 679________.【答案】367923.一个四位数,它的个位数字与百位数字相同.如果将这个四位数的数字顺序颠倒过来(即个位数字与千位数字互换,十位数字与百位数字互换),得到一个新的数,用新的数减原数,所得的差是7812,则原来的四位数是________.【答案】19794.有一类四位数4321a a a a ,它们的4个数字的乘积4321a a a a 是n m ,且这4个数字的和)(4321a a a a +++为5-m m ,已知m 为质数,n 为正整数,这类四位数有________个.【答案】125.已知1x ,2x 是正整数,且4121=+x x ,则2221x x +的最大值是________.【答案】16016.M n 1210099321=⨯⨯⨯⨯⨯ ,其中M 为自然数,n 为使得等式成立的最大的自然数.下面有4个答案:A.M 能被2整数,但不能被3整除;B.M 能被3整除,但不能被2整除;C.M能被4整除但不能被3整除;D.M不能被3整除,也不能被2整除,其中________正确.【答案】A7.一个班有51个同学,每个同学都有一个信息希望通过短信告诉别人,若每次一个同学可以给另一同学发短信告诉他(她)自己已经知道的所有信息,同学们至少一共要发送______条短信才能使每个同学都知道所有信息.【答案】1008.从一个正9边形的9个顶点中选3个,使得他们是一个等腰三角形的三个顶点的方法数是________.【答案】309.从18个自然数1、2、3、7、8、9、13、14、15、19、20、21、25、26、27、31、32、33中,至少取出______个,才能确保其中必定存在两个数,差等于5.【答案】1310.李华从家里去机场,第一个小时走了6千米,按此速度他觉得要迟到45分钟,便以每小时10千米的速度赶路.结果提前15分钟到达机场,则李华家到机场的距离等于______千米.【答案】2111.一条船从上游甲地到下游乙地需要5天,从下游乙地到上游甲地需要7天,那么一块木板从甲地漂浮到乙地需要______天.【答案】3512.已知A、B均为三位数,A的各位数字和为4,B的各位数字和为23,且A、B的和的各位数字之和为9.那么A、B的和的最大值为______.【答案】130513.从连续自然数1,2,3,……,99,100中任取k个,其中必有2个数的差是9,k的最小值是______.【答案】5514.某日,可可到动物园里去观赏动物.他看了猴子、熊猫和狮子三种动物,这三种动物的总量在26到32只之间.根据下面的情况:①熊猫和狮子的总数要比猴子的两倍还多;②猴子和熊猫的总数要比狮子的三倍还多;③熊猫的数量没有狮子数量的两倍那么多,可知猴子有_______只,熊猫有________只,狮子有________只.【答案】9;13;715.右图中,平行四边形ABCD 的面积是126,AF=2BF ,CE=2BE ,CG=2DG ,O 是AE 和FG 的交点,则四边形CGOE 的面积是______.【答案】5250。

历届华杯赛初赛、复赛真题及答案

历届华杯赛初赛、复赛真题及答案

华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。

华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。

对一个对于学校课堂内容学有余力的学生来讲,适当学习小学奥数能够有以下方面的好处
1、促进在校成绩的全面提高,培养良好的思维习惯;
2、使学生获得心理上的优势,培养自信;
3、有利于学生智力的开发;
4、数学是理科的基础,学习奥数对于这个学生进入初中后的学习物理化学都非常有好处(很多重点中学就是因为这个原因招奥数好的学生)。

5、很多重点中学招生要看学生的奥数成绩是否优秀。

您可能还感兴趣的有:。

华罗庚金杯”数学邀请赛决赛模拟试卷(四年级组)附答案

华罗庚金杯”数学邀请赛决赛模拟试卷(四年级组)附答案

华罗庚金杯”数学邀请赛决赛模拟试卷(四年级组)附答案1.7×9×11×13×…×2009×2011的个位数是多少?2.哈利波特的魔法书有120页,但被撕掉一页后,剩下的页码之和为7197.被撕掉的那一页的页码是多少?3.如图,不含▲的正方形有几个?4.有三个盒子,标有一号、二号、三号。

一开始,一号盒子里有x个小球,二号盒子里有y个小球,三号盒子里有z个小球。

第一次从一号盒子中拿出20个小球放到二号盒子中,第二次又从二号盒子中拿出15个小球放到三号盒子中,最后再从三号盒子中拿出20个小球放到一号盒子中。

这时三个盒子里面的小球都是60个。

求一号、二号、三号盒子里面原来各有多少个小球。

5.有大杯和小杯两个,两个都未装满水。

如果将小杯中的部分水倒入大杯中,使得大杯恰好装满水,那么此时小杯中还剩下30克水。

如果将大杯中的部分水倒入小杯中,使得小杯恰好装满水,那么此时大杯中还剩下90克水。

已知大杯的容积是小杯的2倍,原来两个中共装了多少克水?6.A、B两地之间共有70千米的路程,分为上坡和下坡两种路段。

兰兰上坡的速度是5千米/小时,下坡的速度是7千米/小时。

如果去程用了10.5小时,则返回时需要多少小时?7.三年级一班共有42名学生,其中39人参加了美术班,34人参加了体操班,30人参加了游泳班,37人参加了奥数班。

那么,至少有一个学生参加了这四个班级。

8.求一个各位数字之和为400的自然数n,使得n最小。

n 应该是几位数?它的首位数字应该是几?9.清明节,三年一班和三年二班的同学们一起去扫墓。

如果两个班级同时向同一方向前进,6分钟后,一班的队伍超过了二班的队伍。

一班每分钟行60米,二班每分钟行50米。

如果两个班级的队尾同时向同一方向前进,5分钟后,一班的队伍再次超过了二班的队伍。

如果假设每个学生的长度是1米,那么一班和二班分别有多少人。

10.一个宽度为18厘米,长度未知的长方形小纸片,被折叠成三层后,其宽度变为6厘米。

四年级“华罗庚杯”数学竞赛含解析

四年级“华罗庚杯”数学竞赛含解析

四年级“华罗庚杯”数学竞赛考试时间:120分钟;满分:100分学校:__________姓名:___________班级:__________考号:________题号一二总分得分一.填空题(共9小题,满分36分,每小题4分)1.(4分)近似值为4.30的三位数,最大是,最小是.2.(4分)找规律填数:1、2、4、7、11、16、22、198、297、396、.3.(4分)一座大楼上的彩灯按红、黄、蓝、绿、紫的顺序依次排列组装,一共有37个灯泡.想一想:第20只灯泡的颜色是,最后一只灯泡的颜色是.4.(4分)有甲、乙、丙三个数,已知甲、乙两数的和是168,丙数是甲、乙两数平均数的2倍,甲、乙、丙三个数的平均数是.5.(4分)一个长方形长10米,宽6米,如果长减少米或者宽增加米,这个长方形就变成了正方形,这两个正方形相差平方米.6.(4分)一个人唱一首歌用2分钟,9个人合唱这首歌用分钟。

7.(4分)一列火车长180米,每秒行30米,这列火车通过480米长的大桥,需要秒.8.(4分)3个篮球的价钱和5个排球的价钱一样,学校体育室买了9个篮球和4个排球,共付款855元,一个排球元.9.(4分)如图,长方形ABEF的面积是40平方厘米,长方形CDGH 的面积是54平方厘米,阴影部分的面积是32平方厘米.空白部分的面积是平方厘米.评卷人得分二.解答题(共7小题,满分64分)10.(20分)(1)164×50÷82×48(2)98+4×980+59×98(3)624×48÷312÷8(4)1350÷25.11.(7分)一堆沙第一次运走它的一半多3吨,第二次运走剩下的一半少2吨,还剩23吨,这堆沙原来多少吨?12.(7分)新华小学开展冬季运动会,其中参加跳绳的人数是踢毽子人数的4倍,且比踢毽子的多72人.参加跳绳和踢毽子的各有多少人?13.(7分)今年妈妈的年龄是女儿的3倍,2年前妈妈和女儿的年龄和是56岁.妈妈和女儿今年各多少岁?14.(8分)甲、乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米.乙先走2小时后,甲才开始走,甲追上乙需要几小时?15.(8分)某工地的一项工程,原计划由30人工作,每天工作8小时,45天完工,为了提前完工,实际由54人工作,每天工作10小时,可以提前几天完工?16.(7分)爸爸带小明去滑雪,乘缆车上山用了4分钟,缆车每分钟行200米.滑雪下山用了20分钟,每分钟行70米.滑雪比乘缆车多行多少米?【竞赛专题】四年级“华罗庚杯”数学竞赛(5)(含解析)参考答案与试题解析一.填空题(共9小题,满分36分,每小题4分)1.【分析】要考虑4.30是一个三位数的近似数,有两种情况:“四舍”得到的4.30最大是4.304,“五入”得到的4.30最小是4.295,由此解答问题即可.【解答】解:“四舍”得到的4.30最大是4.304,“五入”得到的4.30最小是4.295;故答案为:4.304,4.295.2.【分析】(1)2=1+1,4=2+2,7=4+3,11=7+4,16=11+5,22=16+6.依此类推,可得结论.(2)297﹣198=99,396﹣297=99;后一个数比前一个数大99由此求解.【解答】解:(1)22+7=29;要填的数是29.(2)396+99=495;要填的数是495.故答案为:29,495.3.【分析】彩灯的排列特点是:5只一个循环周期,分别按照:红、黄、蓝、绿、紫的顺序排列,由此计算出第20和第37个彩灯是第几个周期的第几个即可.【解答】解:20÷5=4所以第20个灯泡是紫色;37÷5=7 (2)所以第37灯泡是黄色;答:第20只灯泡的颜色是紫色,最后一只灯泡的颜色是黄色.故答案为:紫色;黄色.4.【分析】已知甲、乙两数的和是168,丙数是甲、乙两数平均数的2倍,即丙数就是168,据此求出这三个数的和是168+168=336,再除以3即可求出这三个数的平均数.【解答】解:(168+168)÷3=336÷3=112答:甲、乙、丙三个数的平均数是112.故答案为:112.5.【分析】根据题意可知:要想变成正方形,这个正方形的边长可以是10米,也可以是6米,所以10﹣6=4米,这个长方形的长减少4米,或宽增加4米,都可以得到一个正方形,根据正方形的面积公式把数据分别代入公式求出它们的面积.然后再相减即可求出差.【解答】解:10﹣6=4(米)这个长方形的长减少4米,或宽增加4米,都可以得到一个正方形,10×(6+4)﹣(10﹣4)×6=10×10﹣6×6=100﹣36=64(平方米)答:这两个正方形的面积相差64平方米.故答案为:4、4、64.6.【分析】这首歌的长度是一定的,那么唱这首歌用的时间是一定,9个人合唱这首歌用的时间和一个人唱这首歌用的时间相同;由此求解。

1-16届华罗庚金杯赛试题

1-16届华罗庚金杯赛试题

第一届“华罗庚金杯”少年数学邀请赛(初赛试题)1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。

把5个这样的方框放在桌面上,成为这样的图案。

问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。

洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。

小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。

被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。

晴天每天可以采20个。

有雨的天每天只能采12个。

它一连几天采了112个松籽,平均每天采14个。

问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。

它的高是10米,长、宽都大于高。

问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。

两辆汽车的速度都是每小时60公里。

8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。

到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数1111111111和9999999999的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。

黑暗中想从这些筷子中取出颜色不同的两双筷子。

问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。

第十届全国“华罗庚金杯”少年数学邀请赛总决赛一试试题

第十届全国“华罗庚金杯”少年数学邀请赛总决赛一试试题

第十届华杯赛总决赛一试试题
一、填空(共3题,每题10分)
1.1000米赛跑,已知甲到达终点时,乙离终点50米;乙到达终点时,丙离终点100米。

那么甲到达终点时,丙离终点___米。

2.三个相邻奇数的积为一个五位数2***3,这三个奇数中最小的是___。

3.将两个不同的自然数中较大的数换成这两个数的差,称为一次操作,如对18和42可连续进行这样的操作。

则有:18,42→18,24→18,6→12,6→6,6,直到两数相同为止。

试给出和最小的两个五位数,按照以上操作,最后得到的相同的数是15,这两个五位数是___与___。

二、解答题(共3题,每题10分,写出简要解答过程)
4.右图中,ABCD是边长为1的正方形,A,E,F,G,H分别是四条边AB,BC,CD,DA的中点,计算图中红色八边形的面积。

5.若干名小朋友购买单价为3元和5元的两种商品,每人至少买一件,但每人购买的商品的总金额不得超过15元。

小民说:小朋友中一定至少有三人购买的两种商品的数量完全相同。

问:至少有多少名小朋友?
6.A是山脚,B是山顶,C是山坡上的一点,。

甲、乙同时从山脚出发,到达山
顶,再返回山脚,如此往返运动。

甲、乙速度之比为6∶5,并且甲乙下山的速度都是各自上山速度的1.5倍.出发一段时间后,甲第一次在山顶上看见乙在AC段向上爬;又经过一段时间后,甲第二次在山顶上看见乙在AC段向上爬。

问:当甲第二次在山顶上看到乙在AC 段上爬时(包括此时),甲到过山顶几次?。

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点
中学!
一、什么是华杯赛?
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。

华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。

华杯赛”是以教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学为宗旨的活动。

二、为什么报名参加各大数学杯赛的考试?
1、检验学习效果
通过奥数的学习,能培养良好的思维习惯,有利于智力的开发,且对以后数理化各科的学习也都非常有帮助。

杯赛考试是检测学习效果最好的方式。

2、锻炼思维能力
各大奥数杯赛不仅仅是一种考试,其举办宗旨更多的是致力于学生独立思考、科学探索、创造性地解决问题和创新思维能力的培养。

3、助升学一臂之力
通过杯赛证书增加升学砝码,突出简历亮点,进而拿到参加重点中学升学选拔的机会。

三、华杯赛作用
华杯赛作为目前全国最权威的初中数学比赛,备受北京市各重点中学的认可。

2007年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐。

甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。

今天的分享就到这儿了。

您有什么问题或建议可以在评论栏留言或给小编发私信,小编一定会在看到留言后第一时间给您回复。

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

cm2.
8.
将 10,15,20,30,40 和 60 填入右图的圆圈中,使 A, B, C 三个小三角形顶点上的 3 个数的积都相等. 这相等的积最大为
9.
用 3, 5, 6, 18, 23 这 五 个 数 组 成 一 个 四 则 运 算 式 , 得 到 的 非 零 自 然 数 最 小 是 .
10. 里山镇到省城的高速路全长 189 千米, 途经县城. 县城离里山镇 54 千米. 早上 8:30 一辆客车从里山镇开往县城,9:15 到达,停留 15 分钟后开往省城,午前 11:00 能 够到达. 另有一辆客车于当日早上 9:00 从省城径直开往里山镇,每小时行驶 60 千 米. 那么两车相遇时, 省城开往里山镇的客车行驶了 分钟.
爱国 创新 包容 厚德 北京精神
中, 每个汉字代表 0 ~ 9 的一个数字, 爱、国、创、新、包、容、厚、德分 别代表不同的数字. 当四位数 北京精神 最大时, 厚德 为多少?
2
总分
第十八届华罗庚金杯少年数学邀请赛
初赛试卷 A(小学中年级组)
(时间: 2013 年 3 月 23 日 10:00 ~ 11:00)
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
1. 45 与 40 的积的数字和是( (A)9 (B)11 ). (C)13 (D)15
2. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、 平移得到的是图( )中的三角形.
总分
第十七届华罗庚金杯少年数学邀请赛
决赛网络版试卷(小学中年级组)
一、填空题(每题 10 分, 共 80 分)

第1-14届华罗庚金杯小学组数学邀请赛(初赛复赛决赛)试题答案

第1-14届华罗庚金杯小学组数学邀请赛(初赛复赛决赛)试题答案

第一届华杯赛初赛试题答案1.【解】 1986是这五个数的平均数,所以和=1986×5=9930。

2.【解】方框的面积是。

每个重叠部分占的面积是一个边长为1厘米的正方形。

重叠部分共有8个()×5一l×8=(100—64)×5—8 =36×5—8 =172(平方厘米)。

故被盖住的面积是172平方厘米。

3.【解】 105=3×5×7,共有(1+1)×(1+1)×(1+1)=8个约数,即1,3,5,7,15,21,35,105。

4. 【解】在这道题里,最合理的安排应该最省时间。

先洗开水壶,接着烧开水,烧上水以后,小明需要等15分钟,在这段时间里,他可以洗茶壶,洗茶杯,拿茶叶,水开了就沏茶,这样只用16分钟。

5.【解】149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。

于是,四个数字的总和是14+9=23。

6.【解】松鼠采了:112÷14=8(天)假设这8天都是晴天,可以采到的松籽是:20×8=160(个)实际只采到112个,共少采松籽:160-112=48(个)每个下雨天就要少采:20-12=8(个)所以有48÷8=(6)个雨天。

7.【解】因为正方体的边长是1米,2100个正方体堆成实心长方体的体积就是2100立方米。

已经知道,高为10米,于是长×宽=210平方米把210分解为质因数:210=2×3×5×7由于长和宽必须大于高(10米),长和宽只能是:3×5和2×7。

也就是15米和14米。

14米+15米=29米。

答:长与宽的和是29米。

8.【解】39-32=7。

这7分钟每辆行驶的距离恰好等于第二辆车在8点32分行过的距离的1(=3-2)倍。

因此第一辆车在8点32分已行7×3=21(分),它是8点11分离开化肥厂的(32-21=11) 。

华罗庚杯奥林匹克数学竞赛试卷(4年级)

华罗庚杯奥林匹克数学竞赛试卷(4年级)

华罗庚杯奥林匹克数学竞赛试卷拔尖教育辅导中心特供年级:姓名:一、简算与计算(每小题4分,共16分)1. 395-283+154+246-1172. 8795-4998+2994-3002-20083. 125×198÷(18÷8)4. 454+999×999+545二、填空题(每题4分,共44分)1.表一表二是按同一规律排列的两个方格表,那么表二的空白方格中应填的数是()。

2.一支钢笔能换3支圆珠笔,4支圆珠笔能换7支铅笔,那么4支钢笔能换()支铅笔。

3.两数之和是616,其中一个数的最后一位数字是0,如果把0去掉,就与另一个数相同,这两个数的差是()。

4.右图中一共有几个三角形()。

5.一个六位数,个位数是7,十万位上的数是9,任意相邻的三个数位上数的和都是20,这个六位数是()。

6. 下面两组数是同学们玩24点扑克牌游戏中四张牌上的四个数字,请你选用+、-、×、÷、( )组成等式。

(1)1、4、7、7 (2)1、2、15 3 55 23 1 224 4 66 2 44 2 2 表一表二7、7=24;= 247. 一个老人等速在公路上散步,从第1根电线杆走到第15根,用了15分钟;这个老人如果走30分钟应走到第()根电线杆。

8. 星期天妈妈要做好多事情,擦玻璃要20分钟,收拾厨房要15分钟,洗脏脱衣服的领口和袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事最少要分钟。

9. 青蛙白天向上爬3米,晚上滑下2米,青哇从井底爬到井外(井高10米)至少需要()天()夜。

10. 观察下图数字间的关系,在圆圈内填上适当的数。

11. 小鹏在期中考试时,语文得79分,常识得90分,数学考得最好。

已知小鹏的三科平均分是一个偶数,那么小鹏数学得分。

(注:各科的满分均为100分)三、解答题(每题8分,共40分)1. 王雪读一本故事书,第一天读了8页,以后每天都比前一天多读3页,最后一天读了32页正好读完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年四年级数学第十届华罗庚金杯初赛试题1. 2005年是中国伟大航海家郑和首次下西洋600周年, 西班牙伟大航海家哥伦布首次远洋航行是在1492 年. 问这两次远洋航行相差多少年?2. 从冬至之日起每九天分为一段, 依次称之为一九, 二九, …, 九九. 2004年的冬至为12月21日, 2005年的立春是2月4日. 问立春之日是几九的第几天?3. 左下方是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于 1 的正方形. 问这个直三棱柱的体积是多少?4. 爸爸、妈妈、客人和我四人围着圆桌喝茶. 若只考虑每人左邻的情况,问共有多少种不同的入座方法?5. 在奥运会的铁人三项比赛中,自行车比赛距离是长跑的 4 倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米. 求三项的总距离.6. 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形. 其中最小的三角形顶点的个数(重合的顶点只计一次)依次为: 3, 6, 10, 15, 21, …问这列数中的第 9 个是多少?7. 一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示. 若用甲容器取水来注满乙容器, 问: 至少要注水多少次?8. 100 名学生参加社会实践, 高年级学生两人一组, 低年级学生三人一组,共有 41组. 问: 高、低年级学生各多少人?9. 小鸣用48元钱按零售价买了若干练习本. 如果按批发价购买, 每本便宜 2元, 恰好多买4本. 问: 零售价每本多少元?10. 不足100 名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈. 问最多有多少名同学?11. 输液100毫升, 每分钟输2.5毫升. 请你观察第12分钟时吊瓶图像中的数据, 回答整个吊瓶的容积是多少毫升?12. 两条直线相交所成的锐角或直角称为两条直线的“夹角”. 现平面上有若干条直线,它们两两相交,并且“夹角”只能是 300, 600 或 900. 问: 至多有多少条直线?初赛试题答案1 87年.2 六九的第一天.3 1/24 共有6种不同的入座方法。

5 三项的总距离为51.5千米.6 第9个是55.7 至少要注水8次.8 高年级学生 46人、低年级学生 54人.9 零售价每本6元.10 93名.11 150毫升.12 至多有6条直线.附送:2019年四年级数学第四单元集体备课备课人:昆仑镇四年级集体备课组韦翠华仇翠玲张忠圣柏凤芹刘长云杜静丁玲电话:5772605第四单元:平行四边形和梯形(单元备课)一、教学目标⒈使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

⒉使学生掌握平行四边形和梯形的特征。

⒊通过多种活动,使学生逐步形成空间观念。

二、教学重点:会用直尺、三角尺画垂线和平行线;学习平行四边形的特征以及与正方形、长方形的关系;梯形是第一次正式出现,除教学梯形的特征外,还要注意说明它与平行四边形的关系。

三、教学难点:作图是本单元的难点,画垂线、画平行线、画长方形、画正方形对于四年级的学生来说,方法不难理解,但是不易掌握,应考虑在这部分教学中采取何种方式如何突破。

四、教材分析:本单元的教学内容分为两大块,第一部分是同一平面内两直线的关系,教材安排了三个例题:例1——认识同一平面内两条直线的特殊位置关系:平行和垂直。

例2——学习画垂线,认识“点到直线的距离”.例3——学习画平行线,理解“平行线之间的距离处处相等”。

第二部分学习两种图形:平行四边形和梯形,教材安排了两个例题:例1——把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

例2——认识平行四边形的不稳定性,认识平行四边形的底和高,学习画高,记住梯形各部分的名称。

五、教学措施:1、关注学生已有的生活经验和知识基础,把握教学的起点和难点。

2、理清知识之间的内在联系,突出教学重点。

3、注重学用结合,就地取材,充实教材内容。

4、加强作图训练和指导,重视作图能力的培养。

六、课时安排:本单元安排六课时进行教学七、教具准备:直尺、三角板、量角器等。

课题:垂直与平行(例1:认识平行和垂直)单位:昆仑中心小学备课人:刘长云教学目标:1、使学生初步理解垂直与平行是同一平面内两条直线的两种特殊的位置关系,初步认识垂线和平行线。

2、培养学生的空间观念及空间想象能力。

教学重点:正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象能力。

教学难点:正确理解各种相交现象。

教学过程:一.导入:虽然你们对我很了解,但我的一个老朋友不知你们认识否?出示直线。

师:认识的同学再来向同学们介绍介绍它。

二、动手操作,研究两条直线的位置关系1、摆一摆,画一画说明:两根小棒代表两根直线。

师:两根小棒在纸上可以怎么摆,然后把你喜欢的一种摆法画在纸上。

生:动手操作。

2、分一分,比一比(1)作品展示。

(2)小组讨论分类,要求记录分类结果。

(3)汇报在汇报中理解“相交”概念(4)师:对于这些分法你还有什么问题吗?三、认识平行线,探究特性1、师:(指着一组平行线)这组直线相交了吗?想象一下,两端画长点,相交了吗?再长点,相交了吗?无限长,会不会相交?师:这种情况在数学上,叫做两条直线互相平行。

(板书:互相平行)2、出示概念,学生齐读、质疑3、学生动手摆两根小棒互相平行。

摆后联想:生活中有哪些平行的例子?4、讨论小结:在同一平面内,画两条直线会出现几种情况?四、认识垂线,探究特性1、观察所有相交的图,说说自己的发现。

2、辨析:是不是相交的两条直线一定形成四个角?3、观察形成的四个角,你还有什么发现?引导一般情况有两个锐角,两个钝角。

4、找找哪些图形中有特殊角?引导其中一个角是直角,其余三个角都是直角。

5、根据是否有直角,将所有相交图形分类。

指名上台演示。

6、师:像这样的两条直线,我们叫做互相垂直,它们的交点叫做垂足。

生:打开课本读相关句子。

7、出示直线A问:“直线A是垂线。

”这么说合理吗?生:判断说理由。

8、出示直线A和直线B互相垂直的图问:现在你可以怎么说?9、生活中举垂直的例子。

(小组讨论)五、巩固延伸1、先闭眼想象两条直线互相平行和垂直的现象,(独立完成练习十一第一题完成后共同订正)2、折一折先观察长方形中的平行与垂直,再折出两条折痕互相平行,两条折痕互相垂直,交流折法。

3、摆一摆(两根蓝小棒,一根红小棒,每根小棒代表一条直线)要求一:两根蓝色小棒与红色小棒平行,想象这两根红小棒互相平行吗?动手摆一摆。

要求二:红小棒与蓝小棒互相垂直,想象两根蓝小棒的位置关系并摆一摆。

六、总结这节课你有什么收获?课题:垂直与平行(例2:怎样画垂线)单位:昆仑实验小学备课人:仇翠玲教学目标1、让学生结合生活情境,通过自主探究活动,掌握垂线的画法2、使学生能用垂线的性质解决一些实际问题。

3、培养学生学以致用的习惯,体会数学的应用与美感,激发学生学习数学的兴趣、增强自信心。

教学重点:1.通过学生的自主探究活动,正确画出垂线。

2.使学生初步体会直线外一点到直线的距离,垂线段最短难点:正确运用三角尺画出垂线教具准备:铅笔、三角板、直尺。

教学过程:一、引入新课我们前面已经学习了什么叫垂线,谁能说说什么叫垂线。

(两条直线相交形成直角,叫说这两条直线互相垂直)今天这节课我们就来学习如何画垂线。

板书课题:垂线的画法。

二、探究新知(一)老师边演示边讲解过直线上一点画垂线的方法。

(1)、用直尺画一条直线,在直线上任取一点。

(2)、用三角尺的一条直角边与直线对齐,然后平移三角尺。

(平移时一定要与直线对齐)。

(3)、当三角尺的另一条直角边与点重合时,沿这条直角边画出过这个点的直线的垂线。

(二)小组讨论交流,探索特征1、通过上图,同学们互相交流,巩固画垂线的方法2、引导学生在练习本上画出过直线上一点的垂线。

3、学生完成后老师选一个学生到黑板上板演、请其他学生观察他的画法是否正确、学生在互相交流中巩固过直线上一点画这条直线的垂线的方法。

4、生齐读P66平行和垂直概念,并画下来。

5、引导学生练习过直线外一点画这条直线的垂线。

6、同学们刚才我们学习了过直线上一点画这条直线的垂线的方法,同学们画的非常好,但我们如何过直线外一点画这条直线的垂线呢?老师板书:过直线外一点画已知直线的垂线。

A .三、巩固新知1、其实我们天天都在和垂线打交道。

你们看:书本面相邻的两边是互相垂直的。

2、P66主题图,找一找,图上垂直的现象?3、做一做1 同学们,你们还能找一找、想一想你的身边还有哪些物体的边是互相垂直的,哪些物体的边是互相平行的?找到后快快把你的发现告诉同组的同学。

(学生举例)4、P68练习十一第3题:折一折(生动手操作,请个别学生上台展示)。

A、把一张长方形的纸折两次,使三条折痕互相平行。

B、把一张正方形纸折两次,使两条折痕互相垂直。

四、课堂小结:同学们,你觉得这节课里你表现怎样?你有什么收获和体会?五、布置作业:练习十一第四题。

课题:垂直与平行(例3:怎样画平行线)课题:平行四边形和梯形(例1)课题:平行四边形和梯形(例2)单位:昆仑中心小学备课人:丁玲教学内容:认识平行四边形的不稳定性,认识平行四边形的底和高,学习画高,梯形的各部分的名称。

课文第71的例2、72页内容。

教学目标:1、通过动手操作,使学生经历认识梯形的底和高的意义和画高的全过程,进一步培养学生的空间观念。

2、使学生感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。

教学重难点:理解平行四边形的特征以及梯形底和高的意义并会画梯形的高。

教具学具:可活动长方形木框,三角尺,纸剪等腰梯形(一)复习导入提问:1.我们学过哪些四边形呢?学生思考,师指名回答:有长方形、正方形、平行四边形2.举例说说哪些物体表面是平行四边形。

学生举例说明。

师:我们已初步认识了平行四边形,那么平行四边形有什么特性?这就是我们今天要研究的课题。

(板书课题:平行四边形)(二)新授内容1.平行四边形的不稳定性同学们都知道三角形具有稳定性的特性,那么平行四边形有什么特征呢?拿出你事先准备好的长方形木框,用两手捏住长方形的两个对角,向相反方向拉。

观察两组对边有什么变化?角有什么变化?拉成了什么图形?学生操作:把准备好的长方形框拉成平行四边形,测量一下两组对边是否还平行,并观察角的变化。

学生进行小组讨论并得出结论:两组对边边长没有变,四个直角变成了两个锐角和两个钝角,长方形变成了平行四边形。

归纳:根据刚才的实验、测量和观察,请同学们试着总结一下平行四边形的特性。

学生试归纳,师根据学生的归纳总结出:平行四边形具有不稳定性。

(板书)与三角形特性进行对比:三角形具有稳定性,不容易变形。

相关文档
最新文档