高等数学基本知识

合集下载

高等数学基本知识

高等数学基本知识

一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。

记作A ∪B。

高等数学基本知识点大全

高等数学基本知识点大全

们 论单值函数
函数相等
由函数的定 可知 个函数的构 要素 定 域 对 关系和值域 由于值域是由定 域和对
关系决定的 所 如果 个函数的定 域和对 关系完全
们就 个函数相等
域函数的表示方法
⑷核 解析法 用数学式子表示自 量和因 量之间的对 关系的方法 是解析法 例 直角坐标系中
222
半径 征 圆心在原点的圆的方程是 x 为y =征
的元素完全
因 集合 A 集合 B 相等 记作 A B
真子集 如何集合 A 是集合 B 的子集 但 在 个元素属于 B 但 属于 A 们 集合 A 是集合
B 的真子集 空集
们把
任何元素的集合 做空集 记作 ∅ 并规定 空集是任何集合的子集
由 述集合之间的基本关系 可 得到 面的结论
任何 个集合是它本身的子集
函数的
函数的表达式
函数的 形
函数的性质
⑷核 定 域 光样-∞主为∞核 曲
⑸核 是奇函数
干核 在定 域内是单调增
曲余

们再来看
曲函数 角函数的区 曲函数的性质
s穷x t穷x 是奇函数 干穷x 是偶函数
它们都 是周期函数 曲函数 有和差 式
⑷核 定 域 光样-∞主为∞核
⑸核 是偶函数
干核
像过点样0主1核
B
A B {x|x∈A 且 x∈B}
的集合 的集合
A B 的并集 记作 A A B 的交集 记作 A
补集
全集 通常记作 U
般地 如果 个集合 有 们所研
题中所涉及的所有元素 那 就
个集合 全集
补集 对于 个集合 A 由全集 U 中 属于集合 A 的所有元素
的补集 简 集合 A 的补集 记作 CUA

高等数学基础知识3篇

高等数学基础知识3篇

高等数学基础知识【高等数学基础知识(一)】1.极限极限是数学中的重要概念,广泛应用于微积分、数值分析等领域。

指一个数列或者函数在趋近某个值时的性质。

形式化地,对于一个数列{an},如果随着n无限接近于正无穷,an 的取值也无限接近于某个实数L,那么就称这个实数L是该数列的极限,记为limn→∞an=L。

2.导数导数是微积分中的一个概念,是描述函数局部的变化率的指标。

形式化地,对于函数f(x),在x点处的导数定义为:f′(x)=limh→0f(x+h)−f(x)h即当自变量x有微小的变化量h时,函数值f(x)也随之有微小的变化f(x+h)−f(x),那么其变化率就是(f(x+h)−f(x))/h。

这个变化率取极限h→0,就是函数在x点处的导数。

3.微分微分是微积分中的概念,用于描述函数的变化。

在x点处微分的结果就是函数在x点处的导数,一般用符号dx表示微小的自变量变化量,用符号dy表示函数值的微小变化量。

因此,微分可以表示为dy=f′(x)dx。

4.积分积分也是微积分中的概念,表示对函数值在一定区间内的累加。

对于函数f(x),在[a,b]区间上的积分表示为∫abf(x)dx,它的几何意义是曲线y=f(x)与x轴和直线x=a、x=b所围成的区域的面积。

积分是微积分与数值计算的基础,广泛应用于物理、经济、金融等领域。

5.级数级数是数学中的概念,是数列的和的概念的推广。

形式化地,对于一个数列{an},其前n项和称为级数,记作∑n=1∞an。

级数的收敛性与发散性是级数研究的核心问题。

【高等数学基础知识(二)】1.偏导数偏导数是多元函数中的概念,表示函数在某个自变量上的变化率。

对于函数f(x1,x2,…,xn),在x1处的偏导数定义为:∂f(x1,x2,…,xn)∂x1=limh→0f(x1+h,x2,…,xn)−f(x 1,x2,…,xn)h即在其它自变量不变的情况下,x1的微小变化量h对应的函数值变化量f(x1+h,x2,…,xn)−f(x1,x2,…,xn),它们的比值就是在x1处的偏导数。

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

一般用横坐标表示自变量,纵坐标表示因变量。

高数基础知识总结

高数基础知识总结

( ) sin x
=
x−
x3 3!
+
x5 5!

+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x = 1−
x2 2!
+
x4 4!
−Λ
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a,b]上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(log a
lim
f (x) g(x)
=
A
(或


7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。

导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。

微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。

1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)⁡〖(f(a+h)-f(a))/h〗。

- 导数的几何意义:导数表示曲线在某一点的切线斜率。

- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。

2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。

- 微分的性质:微分是线性近似,具有微分的小量运算法则。

3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。

- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。

二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。

它们是导数的逆运算。

1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。

- 定积分的性质:定积分具有线性性、加法性、估值性等。

2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。

- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。

3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。

高等数学知识点总结pdf

高等数学知识点总结pdf

高等数学知识点总结pdf
高等数学知识点总结
一、函数与极限
1. 函数的定义、连续性与间断点
2. 导数与极值
3. 不定积分与定积分
4. 泰勒展开式与幂级数展开
5. 重要的极限定理:夹逼定理、洛必达法则等
二、微分方程
1. 一阶常微分方程与分离变量法
2. 一阶线性微分方程
3. 高阶线性常系数齐次微分方程
4. 高阶线性常系数非齐次微分方程
5. 欧拉方程与特征方程法
三、多元函数与偏导数
1. 多元函数的定义与性质
2. 偏导数与全微分
3. 隐函数与参数方程
4. 多元函数的极值与条件极值
四、重积分与曲线积分
1. 重积分的概念与性质
2. 极坐标系与二重积分
3. 三重积分与球坐标系
4. 曲线积分的概念与性质
5. 向量场的曲线积分和曲面积分
五、无穷级数与傅里叶级数
1. 数列极限与数列的收敛性
2. 数项级数的概念与性质
3. 正项级数的审敛法与一致收敛性
4. 幂级数与傅里叶级数的展开
六、空间解析几何
1. 点、直线与平面的方程
2. 曲线与曲面的方程
3. 空间中的向量运算
4. 空间曲线的切线与法平面
5. 空间曲面的切平面与法线
七、常微分方程
1. 一阶常微分方程的概念与解法
2. 高阶常微分方程的特征方程法
3. 常系数线性齐次微分方程的解法
4. 变系数线性齐次微分方程的解法
这些是高等数学中的一些重要知识点总结,掌握了这些知识,对于解题和理解高等数学的相关概念非常有帮助。

高数基础知识的简明总结与归纳

高数基础知识的简明总结与归纳

高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。

本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。

一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。

极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。

二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。

微分则是函数值变化的近似值。

导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。

微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。

三、积分学
积分学包括不定积分和定积分。

不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。

定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。

四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。

其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。

五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。

幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。

幂级数的收敛性和函数性质是研究幂级数的重要内容。

考研用到的高数基础知识

考研用到的高数基础知识

考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基础知识大全一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。

如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a A 。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N ⑵、所有正整数组成的集合叫做正整数集。

记作N +或N +。

⑶、全体整数组成的集合叫做整数集。

记作Z 。

⑷、全体有理数组成的集合叫做有理数集。

记作Q 。

⑸、全体实数组成的集合叫做实数集。

记作R 。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A 、B 有包含关系,称集合A 为集合B 的子集,记作AB (或B A )。

⑵相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A =B 。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A ,我们称集合A 是集合B 的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作 ,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

即AA②、对于集合A 、B 、C ,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

高数知识点

高数知识点

高数知识点高数知识点是指高等数学的基本概念、定理和方法,它们具有重要的实践价值,为后续学习提供了重要的基础。

一、函数的概念函数是一类由定义域和值域决定的关系,它是将定义域上的元素映射到值域上的元素,从而形成一种对应关系,即y=f(x)。

其中,x为定义域,y为值域,f(x)为函数式,也就是函数的表达式。

二、方程的概念方程是一种数学表达式,表示不定数及其之间的某种关系。

一般情况下,方程的形式为ax+b=0,其中a和b为常数,x为未知数,表达的意思是“a×未知数+b=0”。

三、微积分的概念微积分是一类数学的基本概念,它可以用来研究连续、可微的函数的变化情况。

它主要包括微分学和积分学两部分,分别研究函数作图时对应点的斜率及函数在一定区间内的积分。

四、空间几何的概念空间几何是一类数学概念,它包括平面几何和立体几何,它研究的是空间中的点、直线、平面和立体的特征和性质,以及它们之间的关系,如直线的斜率、曲线的曲率等。

五、概率论的概念概率论是一类数学的概念,它研究的是随机事件的发生的概率,它的发展主要依赖于实验手段,使人们能够通过观察实验结果来估计某一事件发生的概率。

六、线性代数的概念线性代数是一类数学概念,它是研究线性方程组和线性变换的数学分支,它可以用来解决矩阵的运算、向量的运算等问题,线性代数中还提出了多种矩阵的定义,如正交矩阵、对称矩阵等。

七、复变函数的概念复变函数是一类数学概念,它是研究复数变量的函数的数学分支,它用来研究复数变量x,y,z的变化规律,比如其中的实部函数Re(z)和虚部函数Im(z),以及复数z的模函数|z|等。

八、极限的概念极限是一类数学概念,它是指数学中的某种特殊的情况,当某个变量的值趋近于某个特定的值时,就称为这个变量的极限。

极限的概念是高等数学中的重要概念,可以用来分析函数在某一点的特性,从而得出函数的性质和特征。

高等数学知识点汇总

高等数学知识点汇总

高等数学知识点汇总高等数学是大学理工科和经济类等专业的重要基础课程,它包含了丰富的知识体系,对于培养学生的逻辑思维、分析问题和解决问题的能力具有重要意义。

下面就为大家汇总一下高等数学中的一些主要知识点。

一、函数与极限函数是高等数学研究的基本对象之一。

函数的概念包括定义域、值域和对应法则。

常见的函数类型有初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数)以及由这些初等函数经过有限次四则运算和复合运算得到的函数。

极限是高等数学中的一个重要概念,它用于描述函数在某个过程中的变化趋势。

例如,当自变量趋于某个值时,函数值的趋近情况。

极限的计算方法有很多,如代入法、有理化法、等价无穷小替换法、洛必达法则等。

二、导数与微分导数是函数的变化率,它反映了函数在某一点处的瞬时变化速度。

导数的定义是函数的增量与自变量增量之比的极限。

通过求导公式和求导法则可以求出函数的导数,常见的求导公式有基本初等函数的求导公式,求导法则包括四则运算求导法则、复合函数求导法则等。

微分是函数增量的线性主部,它与导数密切相关。

函数在某一点处的微分可以表示为 dy = f'(x)dx 。

三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔中值定理、拉格朗日中值定理和柯西中值定理。

这些定理在证明等式和不等式、研究函数的性质等方面有着广泛的应用。

导数的应用非常广泛,例如利用导数判断函数的单调性、极值和最值;利用导数研究函数的凹凸性和拐点;利用导数解决优化问题,如求最大利润、最小成本等。

四、不定积分不定积分是求导的逆运算,它是求一个函数的原函数的过程。

不定积分的基本公式包括基本初等函数的不定积分公式,不定积分的计算方法有换元积分法(包括第一类换元法和第二类换元法)和分部积分法。

五、定积分定积分表示的是一个数值,它是由函数在某个区间上的积分和所定义的。

定积分的几何意义可以是曲边梯形的面积。

定积分的计算方法有牛顿莱布尼茨公式,即如果函数 F(x) 是 f(x) 的一个原函数,则∫a,bf(x)dx = F(b) F(a) 。

高数基础知识

高数基础知识

高数基础知识
高等数学是大学数学的重要组成部分,包括初等数学的基础知识和更高级的数学概念和方法。

以下是一些高数基础知识的解释。

1. 极限
极限是一个数列或函数在接近某个值时的表现。

可以用极限定义连续性、导数和积分等概念。

当数列或函数的值无限接近某个值时,它就趋近于这个值的极限。

2. 微积分
微积分是研究数学中变化率和面积问题的分支。

它主要包括求导和求积分两个方面。

求导是指求出函数在某一点的导数,即函数在该点的切线斜率。

求积分是指求出函数在某一区间上的面积,可以用于计算曲线下面积、体积、质心等问题。

3. 线性代数
线性代数是研究向量空间和线性变换的分支。

它主要研究向量的运算规律、向量空间的性质、矩阵的变换以及线性方程组的求解等问题。

线性代数在计算机图形学、信号处理等领域有广泛的应用。

4. 偏微分方程
偏微分方程是描述物理现象中变量随时间和空间变化的方程。

它包括泊松方程、热方程、波动方程等。

偏微分方程的解法通常涉及到高级数学工具,如分离变量法、格林函数法、变分法等。

5. 概率统计
概率统计是一门研究随机事件和数据分析的分支。

它主要包括概率论、数理统计和应用统计三个部分。

概率论研究随机事件的概率和分布规律,数理统计研究如何用概率论解决数据分析问题,应用统计则将概率统计方法应用到实际问题中。

以上是一些高数基础知识的解释,它们都是大学数学中的重要部分,对于学习更高级的数学和应用数学都非常重要。

高等数学常用基础知识点

高等数学常用基础知识点

高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。

当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。

极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。

连续是指函数在某个点上无间断的性质。

如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。

连续函数的性质包括介值定理、零点定理和罗尔定理等。

二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。

导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。

微分是函数在某一点的局部线性逼近。

微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。

三、不定积分与定积分不定积分是导数的逆运算。

不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。

定积分是函数在某一区间上的累积效应。

定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。

四、级数与幂级数级数是无穷个数的和。

级数的收敛与发散是级数理论中的重要问题。

级数的测试方法包括比值判别法、根值判别法和积分判别法等。

幂级数是形如∑(a_n*x^n)的级数。

幂级数的收敛半径是幂级数理论中的重要概念。

幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。

五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。

常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。

偏微分方程是描述多变量函数的方程。

偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。

六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。

空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。

向量代数是研究向量及其运算的数学分支。

向量代数的内容包括向量的加法、数量积和向量积等。

七、多元函数与多元函数微分学多元函数是多个自变量的函数。

高等数学基础知识

高等数学基础知识

高等数学基础知识《高等数学》是大学中最为基础的一门课程。

那么你对高等数学了解多少呢?以下是由店铺整理关于高等数学基础知识的内容,希望大家喜欢!高等数学基础知识1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。

2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。

3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。

4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。

5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。

另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。

此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。

7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。

8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。

高等数学基本知识大全

高等数学基本知识大全

高等数学基本知识大全
高等数学是现代数学中的重要分支,是大学本科阶段的核心学科,提供了一种强有力
的工具和方法,用于理解和解决科学和工程问题。

以下是高等数学中的一些基本知识:
1. 函数和极限
函数是输入和输出之间的映射关系,其中每个输入对应一个唯一的输出。

极限是一个
数列趋近于一个固定值的过程,当数列逐渐接近该值时,称其趋近于该值,并用符号“→”表示。

2. 导数和微分
导数是函数的斜率,表示函数在某一点的变化率。

微分是一种数学工具,用于计算函
数在某一点的微小变化。

3. 积分和定积分
积分是在一个区间内求一个函数的总面积的过程。

定积分是一个函数在一个区间内的
积分。

4. 三角函数
三角函数是一类定义在角度上的函数。

常见三角函数包括正弦、余弦和正切函数。

5. 矢量和矢量空间
矢量是带有大小和方向的量,可以用几何元素来表示。

矢量空间是一组满足特定条件
的向量的集合。

6. 矩阵和行列式
矩阵是一个二维数组,由行和列组成。

行列式是一个与矩阵相关的值,用于解决线性
方程组。

7. 偏导数
偏导数是多元函数中的一种变量导数,其中只考虑其中一个变量的变化,其他变量保
持不变。

8. 多元积分
多元积分是在多维空间中求解一个函数在一个体积内的积分。

9. 常微分方程
常微分方程是描述某个变量对其本身的一阶或高阶导数的关系的方程。

高数总结知识点

高数总结知识点

高数总结知识点一、函数与极限函数的概念、性质及其图像。

函数的极限定义、性质及其运算。

无穷小与无穷大的概念及关系。

极限存在准则(夹逼准则、单调有界准则等)。

二、导数与微分导数的定义、性质及几何意义。

导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。

高阶导数的概念及计算。

微分的定义、性质及运算。

三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。

洛必达法则及其应用。

函数的单调性、极值、最值及凹凸性的判定。

曲线的渐近线、拐点及图形的描绘。

四、不定积分与定积分不定积分的概念、性质及基本积分公式。

不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。

定积分的概念、性质及计算。

定积分的应用(如面积、体积、弧长、功、平均值等的计算)。

五、向量代数与空间解析几何向量的概念、性质及运算。

空间直角坐标系及点的坐标表示。

向量的坐标表示及运算。

平面与直线的方程及其位置关系。

六、多元函数微分学多元函数的概念、性质及极限与连续。

偏导数的定义、计算及几何意义。

全微分的概念及计算。

多元函数的极值与最值问题。

七、多元函数积分学二重积分的概念、性质及计算。

三重积分的概念及计算。

曲线积分与曲面积分的概念及计算。

八、无穷级数常数项级数的概念、性质及收敛判别法。

函数项级数的概念及一致收敛性。

幂级数的概念、性质及运算。

傅里叶级数及其应用。

九、微分方程微分方程的概念及分类。

一阶微分方程的解法(分离变量法、凑微分法等)。

高阶微分方程的解法(降阶法、幂级数解法等)。

微分方程的应用(如物理、化学、生物等领域中的实际问题)。

以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。

每个部分都需要深入学习并通过大量的练习来掌握。

这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。

高等数学基础知识

高等数学基础知识
导是指对幂级数中的每一项分别求导,得到一个新的幂级数。积分是指对幂级数中的每一项分别进行积分,得 到一个新的幂级数。此外,收敛性是幂级数的一个重要性质。当$x$取某一固定值时,幂级数会收敛于一个确 定的数值,这个性质称为收敛性。收敛性的判断是幂级数研究中的一个重要问题。在实际应用中,收敛性保证 了幂级数的运算有意义,并且可以得到一个确定的结果。
THANKS
感谢观看
式;常数变易法则是将方程中的常数项视为未知数,通过求解得到常数的值。
二阶线性微分方程的解法
总结词
二阶线性微分方程是含有两个导数的微分方程,其解 法包括特征值法、常系数线性微分方程的解法等。
详细描述
二阶线性微分方程是微分方程中较为复杂的一种类型 ,其解法主要包括特征值法和常系数线性微分方程的 解法等。特征值法是通过将方程转化为关于特征值和 特征向量的形式,然后求解特征值和特征向量;常系 数线性微分方程的解法则是在已知系数的情况下,通 过求解线性方程组得到微分方程的解。
02
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的重要体现。
导数的几何意义
在二维空间中,导数可以解释为函数图像在该点的切 线的斜率。
导数的物理意义
在物理中,导数可以用来描述物理量随时间的变化率, 如速度、加速度等。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、三角函ቤተ መጻሕፍቲ ባይዱ 等基本初等函数,需要熟记其
极限的运算与法则
总结词
掌握极限的四则运算和各种运算法则,如连续性、可导性、积分等。
详细描述
极限的四则运算包括加减法、乘除法等,各种运算法则如连续性(即函数在某点的极限值等于该点的函数值)、 可导性(即函数在某点的导数存在且等于该点的极限值)和积分(即对函数的积分结果仍存在极限)等。这些运 算法则和运算方法在高等数学中具有广泛的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数与极限
1
一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。记作 ,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:
①、任何一个集合是它本身的子集。即A A
②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
即A∩B={x|x含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CUA。
即CUA={x|x∈U,且x A}。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算
⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)
即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立?
4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?
5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?
(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞
注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、
⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。
区间的名称
区间的满足的不等式
区间的记号
区间在数轴上的表示
闭区间
a≤x≤b
[a,b]
开区间
a<x<b
(a,b)
半开区间
a<x≤b或a≤x<b
(a,b]或[a,b)
以上我们所述的都是有限区间,除此之外,还有无限区间:
[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;
(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;
⑵、函数相等
由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N
⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。
⑶、全体整数组成的集合叫做整数集。记作Z。
⑷、全体有理数组成的集合叫做有理数集。记作Q。
⑸、全体实数组成的集合叫做实数集。记作R。
集合的表示方法
⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合
⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系
⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
2、
⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。
集合中元素的个数
⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有
card(A)+card(B)=card(A∪B)+card(A∩B)
我的问题:
相关文档
最新文档