高等数学基本知识点大全
高等数学基本知识点大全
![高等数学基本知识点大全](https://img.taocdn.com/s3/m/e693397c02768e9951e738a8.png)
们 论单值函数
函数相等
由函数的定 可知 个函数的构 要素 定 域 对 关系和值域 由于值域是由定 域和对
关系决定的 所 如果 个函数的定 域和对 关系完全
们就 个函数相等
域函数的表示方法
⑷核 解析法 用数学式子表示自 量和因 量之间的对 关系的方法 是解析法 例 直角坐标系中
222
半径 征 圆心在原点的圆的方程是 x 为y =征
的元素完全
因 集合 A 集合 B 相等 记作 A B
真子集 如何集合 A 是集合 B 的子集 但 在 个元素属于 B 但 属于 A 们 集合 A 是集合
B 的真子集 空集
们把
任何元素的集合 做空集 记作 ∅ 并规定 空集是任何集合的子集
由 述集合之间的基本关系 可 得到 面的结论
任何 个集合是它本身的子集
函数的
函数的表达式
函数的 形
函数的性质
⑷核 定 域 光样-∞主为∞核 曲
⑸核 是奇函数
干核 在定 域内是单调增
曲余
曲
们再来看
曲函数 角函数的区 曲函数的性质
s穷x t穷x 是奇函数 干穷x 是偶函数
它们都 是周期函数 曲函数 有和差 式
⑷核 定 域 光样-∞主为∞核
⑸核 是偶函数
干核
像过点样0主1核
B
A B {x|x∈A 且 x∈B}
的集合 的集合
A B 的并集 记作 A A B 的交集 记作 A
补集
全集 通常记作 U
般地 如果 个集合 有 们所研
题中所涉及的所有元素 那 就
个集合 全集
补集 对于 个集合 A 由全集 U 中 属于集合 A 的所有元素
的补集 简 集合 A 的补集 记作 CUA
(完整版)高数知识点总结
![(完整版)高数知识点总结](https://img.taocdn.com/s3/m/010ec3b74b35eefdc9d33374.png)
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学基本知识点大全
![高等数学基本知识点大全](https://img.taocdn.com/s3/m/10fb0537a45177232e60a22b.png)
高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
高数基础知识总结
![高数基础知识总结](https://img.taocdn.com/s3/m/7081bdc108a1284ac8504359.png)
( ) sin x
=
x−
x3 3!
+
x5 5!
+Λ
+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x = 1−
x2 2!
+
x4 4!
−Λ
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a,b]上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(log a
lim
f (x) g(x)
=
A
(或
∞
)
7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)
高等数学各项基础知识点总结
![高等数学各项基础知识点总结](https://img.taocdn.com/s3/m/d689c5afb9f67c1cfad6195f312b3169a451eafb.png)
高等数学知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l =0,称f (x)是比g(x)高阶的无穷小,记以f (x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠0,称f (x)与g(x)是同阶无穷小。
(3)l =1,称f (x)与g(x)是等价无穷小,记以f (x)~g(x)2.常见的等价无穷小当x →0时sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x,1−cos x ~2/2^x ,x e −1~x ,)1ln(x +~x ,1)1(-+αx ~xα二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g (x )≤f (x )≤h (x )若A x h A x g ==)(lim ,)(lim ,则Ax f =)(lim 2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次233521211...()2!3!!sin ...(1)()3!5!(21)!n xn n n n x x x e x o x n x x x x x o x n ++=++++++=-+++-++)(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n n n x o nx x x x x +-++-=++)(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital)法则.∞∞型未定式定理2设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式1011lim ()()n n k k f f x dx n n →∞==∑⎰(如果存在)三.函数的间断点的分类)()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→函数的间断点分为两类:(1)第一类间断点设0x 是函数y =f (x )的间断点。
高等数学基本知识点大全
![高等数学基本知识点大全](https://img.taocdn.com/s3/m/b3caf89132d4b14e852458fb770bf78a65293ad4.png)
高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
高等数学基础知识点大全
![高等数学基础知识点大全](https://img.taocdn.com/s3/m/ffaf5b6f10661ed9ad51f3de.png)
⑴、函数极限的运算规则若已知x→x0(或x→∞)时,.则:推论:在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。
例题:求解答:例题:求此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。
解答:注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。
函数极限的存在准则学习函数极限的存在准则之前,我们先来学习一下左、右的概念。
我们先来看一个例子:例:符号函数为对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。
定义:如果x仅从左侧(x<x0)趋近x0时,函数与常量A无限接近,则称A为函数当时的左极限.记:如果x仅从右侧(x>x0)趋近x0时,函数与常量A无限接近,则称A为函数当时的右极限.记:注:只有当x→x0时,函数的左、右极限存在且相等,方称在x→x0时有极限函数极限的存在准则准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有≤≤,且,那末存在,且等于A注:此准则也就是夹逼准则.准则二:单调有界的函数必有极限.注:有极限的函数不一定单调有界两个重要的极限一:注:其中e为无理数,它的值为:e=2.718281828459045...二:注:在此我们对这两个重要极限不加以证明.注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.例题:求,则则注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0.无穷大量和无穷小量无穷大量我们先来看一个例子:已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。
为此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当时,成立,则称函数当时为无穷大量。
高数基础知识点汇总
![高数基础知识点汇总](https://img.taocdn.com/s3/m/c8f6e48d5ef7ba0d4a733bc2.png)
高数知识点汇总第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
高等数学常用基础知识点
![高等数学常用基础知识点](https://img.taocdn.com/s3/m/579793020812a21614791711cc7931b764ce7b61.png)
高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。
当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。
极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。
连续是指函数在某个点上无间断的性质。
如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。
连续函数的性质包括介值定理、零点定理和罗尔定理等。
二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。
导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。
微分是函数在某一点的局部线性逼近。
微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。
三、不定积分与定积分不定积分是导数的逆运算。
不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。
定积分是函数在某一区间上的累积效应。
定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。
四、级数与幂级数级数是无穷个数的和。
级数的收敛与发散是级数理论中的重要问题。
级数的测试方法包括比值判别法、根值判别法和积分判别法等。
幂级数是形如∑(a_n*x^n)的级数。
幂级数的收敛半径是幂级数理论中的重要概念。
幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。
五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。
常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。
偏微分方程是描述多变量函数的方程。
偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。
六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。
空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。
向量代数是研究向量及其运算的数学分支。
向量代数的内容包括向量的加法、数量积和向量积等。
七、多元函数与多元函数微分学多元函数是多个自变量的函数。
高等数学知识点大全
![高等数学知识点大全](https://img.taocdn.com/s3/m/8e57cc2cb5daa58da0116c175f0e7cd184251826.png)
高等数学知识点大全高考高等数学知识点篇一极限1、知识范围(1)数列极限的概念数列、数列极限的定义(2)数列极限的性质性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义(4)函数极限的性质性、四则运算法则、夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶(6)两个重要极限2、要求(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
篇二高考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
高等数学知识点总结
![高等数学知识点总结](https://img.taocdn.com/s3/m/3acb7b4d773231126edb6f1aff00bed5b9f3731b.png)
高等数学知识点总结高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >=()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0<x<兀 p="" 兀<<12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为m,最小值为m则m(b-a)<= <=m(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2a.function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换b.limit and continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理c.derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数d.application of derivative导数的应用(1)微分中值定理(d-mvt)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值e.indefinite integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)u换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分f.definite integral 定积分(1)riemann sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)accumulation function求导数(4)反常函数求积分h.application of integral定积分的应用(1)积分中值定理(i-mvt)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用i.differential equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场j.infinite series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、p级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
高等数学上重要知识点归纳
![高等数学上重要知识点归纳](https://img.taocdn.com/s3/m/3dc5a3509a6648d7c1c708a1284ac850ad02041b.png)
高等数学上重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义以数列为例,,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质1 )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小; 2保号性若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f ; 3无穷小乘以有界函数仍为无穷小; 二、求极限的主要方法与工具 1、两个重要极限公式 11sin lim=∆∆→∆ 2e =◊+◊∞→◊)11(lim 2、两个准则 1 夹逼准则 2单调有界准则 3、等价无穷小替换法 常用替换:当0→∆时(1)∆∆~sin 2∆∆~tan 3∆∆~arcsin 4∆∆~arctan (5)∆∆+~)1ln( 6∆-∆~1e (7)221~cos 1∆∆- 8nn ∆-∆+~11 4、分子或分母有理化法 5、分解因式法 6用定积分定义 三、无穷小阶的比较 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义)(x f 在a 点连续2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线 五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义 2、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(0 3、导数的几何意义 4、导数的物理意义5、可导与连续的关系: 连续,反之不然。
高等数学知识点(全)
![高等数学知识点(全)](https://img.taocdn.com/s3/m/a46a251ccc7931b765ce1525.png)
2、 不定积分:在区间 I 上,函数 f (x) 的带有任意常数的原函数
称为 f (x) 在区间 I 上的不定积分。
3、 基本积分表(P188,13 个公式);
4、 性质(线性性)。
(二) 换元积分法 1、 第 一 类 换 元 法 ( 凑 微 分 ) :
f [(x)](x)dx f (u)du u(x)
(五) 不等式证明
1、 利用微分中值定理;
2、 利用函数单调性;
3、 利用极值(最值)。
(六) 方程根的讨论
第 10 页 共 44 页
阿樊教育 1、 连续函数的介值定理;
永不改变年轻时的梦想
2、 Rolle 定理;
3、 函数的单调性;
4、 极值、最值;
5、 凹凸性。
(七) 渐近线
1、 铅直渐近线: lim f (x) ,则 x a 为一条铅直渐近线; xa
(二) 微分
1) 定义:y f (x0 x) f (x0 ) Ax o(x) ,其中 A 与 x 无关。
2) 可 微 与 可 导 的 关 系 : 可 微 可 导 , 且
dy f (x0 )x f (x0 )dx
第三章 微分中值定理与导数的应用 (一) 中值定理
1、 Rolle 定理:若函数 f (x) 满足: 1 ) f (x) C[a,b] ; 2 ) f (x) D(a,b) ; 3 )
f ( x1 x2 ) 2
f (x1) f (x2 ) , 2
则 称 f (x) 在 区 间 I 上 的 图 形 是 凹 的 ; 若
x1, x2 I ,
f ( x1 x2 ) 2
f (x1) f (x2 ) ,则称 f (x) 在区间 2
I
高数总结知识点
![高数总结知识点](https://img.taocdn.com/s3/m/550fdd8081eb6294dd88d0d233d4b14e85243e21.png)
高数总结知识点一、函数与极限函数的概念、性质及其图像。
函数的极限定义、性质及其运算。
无穷小与无穷大的概念及关系。
极限存在准则(夹逼准则、单调有界准则等)。
二、导数与微分导数的定义、性质及几何意义。
导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。
高阶导数的概念及计算。
微分的定义、性质及运算。
三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。
洛必达法则及其应用。
函数的单调性、极值、最值及凹凸性的判定。
曲线的渐近线、拐点及图形的描绘。
四、不定积分与定积分不定积分的概念、性质及基本积分公式。
不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。
定积分的概念、性质及计算。
定积分的应用(如面积、体积、弧长、功、平均值等的计算)。
五、向量代数与空间解析几何向量的概念、性质及运算。
空间直角坐标系及点的坐标表示。
向量的坐标表示及运算。
平面与直线的方程及其位置关系。
六、多元函数微分学多元函数的概念、性质及极限与连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值与最值问题。
七、多元函数积分学二重积分的概念、性质及计算。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
八、无穷级数常数项级数的概念、性质及收敛判别法。
函数项级数的概念及一致收敛性。
幂级数的概念、性质及运算。
傅里叶级数及其应用。
九、微分方程微分方程的概念及分类。
一阶微分方程的解法(分离变量法、凑微分法等)。
高阶微分方程的解法(降阶法、幂级数解法等)。
微分方程的应用(如物理、化学、生物等领域中的实际问题)。
以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。
高等数学知识点汇总
![高等数学知识点汇总](https://img.taocdn.com/s3/m/42bd8bd6760bf78a6529647d27284b73f2423696.png)
一.函数的概念1.用变上、下限积分表示的函数(1)()dt t f y x∫=0,其中()t f 连续,则()x f dxdy=(2)()()()dt t f y x x∫=21ϕϕ,其中()x 1ϕ,()x 2ϕ可导,()t f 连续,则()[]()()[]()x x f x x f dxdy1122ϕϕϕϕ′−′=2.两个无穷小的比较设()0lim =x f ,()0lim =x g ,且()()l x g x f =lim (1)0=l ,称()x f 是比()x g 高阶的无穷小,记以()()[]x g x f 0=,称()x g 是比()x f 低阶的无穷小。
(2)0≠l ,称()x f 与()x g 是同阶无穷小。
(3)1=l ,称()x f 与()x g 是等价无穷小,记以()()x g x f ~ 3.常见的等价无穷小当0→x 时x x ~sin ,x x ~tan ,x x ~arcsin ,xx ~arctan 221~cos 1x x −,x e x ~1−,()x x ~1ln +,()xx αα~11 −+二.求极限的方法1.利用极限的四则运算和幂指数运算法则2.两个准则准则1.单调有界数列极限一定存在(1)若n n x x ≤+1(n 为正整数)又m x n ≥(n 为正整数),则A x n n =∞→lim 存在,且m A ≥(2)若n n x x ≥+1(n 为正整数)又M x n ≤(n 为正整数),则A x n n =∞→lim 存在,且MA ≤准则2.(夹逼定理)设()()()x h x f x g ≤≤若()A x g =lim ,()A x h =lim ,则()A x f =lim 3.两个重要公式公式1.1sin lim0=→xxx 公式2.e n nn =⎟⎠⎞⎜⎝⎛+∞→11lim ;e u uu =⎟⎠⎞⎜⎝⎛+∞→11lim ;()ev vv =+→101lim 4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式当0→x 时,()n nxx n x x x e 0!!212+++++=Λ()()()1212530!121!5!3sin ++++−+++−=n n nx n x x x x x Λ()()()nnn x n xx x x 22420!21!4!21cos +−+−+−=Λ()()()n nn x n x x x x x 01321ln 132+−+−+−=++Λ()()1212153012153arctan +++++−+−+−=n n n x n xx x x x Λ()()()()[]()n n x x n n x x x 0!11!21112+−−−++−++=+αααααααΛΛ 6.洛必达法则 法则1.(型)设(1)()0lim =x f ,()0lim =x g (2)x 变化过程中,()x f ′,()x g ′皆存在(3)()()A x g x f =′′lim (或∞)则()()A x g x f =lim(或∞)(注:如果()()x g x f ′′lim不存在且不是无穷大量情形,则不能得出()()x g x f lim不存在且不是无穷大量情形)法则2.(∞∞型)设(1)()∞=x f lim ,()∞=x g lim (2)x 变化过程中,()x f ′,()x g ′皆存在(3)()()A x g x f =′′lim (或∞) 则()()A x g x f =lim(或∞)7.利用导数定义求极限基本公式:()()()0000limx f xx f x x f x ′=∆−∆+→∆ [如果存在]8.利用定积分定义求极限基本公式()∫∑=⎟⎠⎞⎜⎝⎛=∞→1011lim dx x f n k f n n k n [如果存在]三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数()x f y =的间断点。
高数八大基础知识点
![高数八大基础知识点](https://img.taocdn.com/s3/m/25f0e63c4a35eefdc8d376eeaeaad1f34693116b.png)
高数八大基础知识点高数八大基础知识点数学也是一个重基础的学科,而高数在数学中的占比最大,考生一定要多方些精力研究。
下面小编给大家介绍高数八大基础知识点,赶紧来看看吧!高数八大基础知识点1.函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学重点考查导数与微分的`定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5.多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6.多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7.无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8.常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
高等数学知识点归纳
![高等数学知识点归纳](https://img.taocdn.com/s3/m/6403bc2531b765ce0508146b.png)
第一讲: 极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),n n n S x a x x ∞==∈Ω∑ 2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0l i m l n 0nx x x +→=, 0,x x e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时,s i n()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x eu x -; ln(1())()u x u x +; (1())1()u x u x αα+-;a r c s in ()(u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++. 五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xa f x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim(x f x A f x→=连续)(0)0,'(0)f f A ⇒==) (2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n nn n uv u v C u v C uv --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x f g f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法 1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()kf x k gx d x k f x d x k g x d x+=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dxdx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简): x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx edx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kxp x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*20(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()x af x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200s i n c o s s i n c o s 0n x d x n x d x n x m x d x πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰222200sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11pdx x +∞⎰; (2)101p dx x ⎰五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds = (1)(),[,]y f x x a b =∈)as d x=⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理):(1)1[,]()baf a b f x dx b a =-⎰; (2)0()[0)limxx f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+(2)lim ,lim ,lim y x x y f ff f f x y∆∆∆==∆∆(3),limx y f x f ydf + (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程.三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1na ∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln kn n ∑ 3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n pn+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比na∑;(1)nna-∑;na∑;2na∑之间的敛散关系四. 幂级数: 1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω=35111(),23!5!x x e e x x x R --=+++Ω=3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++)(3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(c o s ,c o s ,c o s )a a aαβγ=) 3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++=(2)距离公式: 如点000(,)M x y 到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=,z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G : (1)计算:()(,)(,x y a z f x y G gradz f f =⇒==; ()(,,)(,,x yz b u f x y z G g r a d u u u u=⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换:LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分(2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心)(3)分片2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A dS ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰ 常见(1)水平线与垂直线; (2)221x y +=2. Green 公式:(1)()L D Q P Pdx Qdy dxdy x y ∂∂+=-∂∂⎰⎰⎰;(2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y ∂∂≠⇒∂∂围路径(3)L ⎰(x y Q P =但D 内有奇点)*L L =⎰⎰(变形) 3. 推广(路径无关性):PQy y ∂∂=∂∂(1)Pdx Qdy du +=(微分方程)()B A L A B u →⇔=⎰(道路变形原理) (2)(,)(,)L P x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰ (Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分:1. 定义:Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧) 2. 计算:(1)定向投影(单项): (,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--[()()]x yPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰ (3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点) 4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ; (3)Stokes 公式(选择):()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰ (a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
高等数学知识点总结
![高等数学知识点总结](https://img.taocdn.com/s3/m/d61eb04a11a6f524ccbff121dd36a32d7275c716.png)
高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。
每个部分都需要深入学习并通过大量的练习来掌握。
这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。
如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。
即是:函数在此要求下严格增(减).⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。
如右图所示:5、复合函数复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。
6、初等函数⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。
7、双曲函数及反双曲函数⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)函数的名称函数的表达式函数的图形函数的性质双曲正弦a):其定义域为:(-∞,+∞);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-∞,+∞);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-∞,+∞);b):是奇函数;c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;我们再来看一下双曲函数与三角函数的区别:双曲函数的性质三角函数的性质shx与thx是奇函数,chx是偶函数sinx与tanx是奇函数,cosx是偶函数它们都不是周期函数都是周期函数双曲函数也有和差公式:⑵、反双曲函数:双曲函数的反函数称为反双曲函数.a):反双曲正弦函数其定义域为:(-∞,+∞);b):反双曲余弦函数其定义域为:[1,+∞);c):反双曲正切函数其定义域为:(-1,+1);8、数列的极限我们先来回忆一下初等数学中学习的数列的概念。
⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。
第n项a n叫做数列的一般项或通项.注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数⑵、极限:极限的概念是求实际问题的精确解答而产生的。
例:我们可通过作圆的内接正多边形,近似求出圆的面积。
⑶、数列的极限:一般地,对于数列来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式都成立,那末就称常数a是数列的极限,或者称数列收敛于a .记作:或注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。
且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。
⑷、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。
数列极限为a的一个几何解释:将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:因不等式与不等式等价,故当n>N时,所有的点都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。
注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。
⑸、数列的有界性:对于数列,若存在着正数M,使得一切都满足不等式││≤M,则称数列是有界的,若正数M不存在,则可说数列是无界的。
定理:若数列收敛,那末数列一定有界。
注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。
例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。
9、函数的极限前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。
下面我们来学习函数的极限.函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。
我们已知道函数的极值的情况,那么函数的极限如何呢?下面我们结合着数列的极限来学习一下函数极限的概念!⑴、函数的极限(分两种情况)a):自变量趋向无穷大时函数的极限定义:设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式的一切x,所对应的函数值都满足不等式那末常数A就叫做函数当x→∞时的极限,记作:下面我们用表格把函数的极限与数列的极限对比一下:数列的极限的定义函数的极限的定义存在数列与常数A,任给一正数ε>0,总可找到一正整数N,对于n>N 的所有都满足<ε则称数列,当x→∞时收敛于A 记:。
存在函数与常数A,任给一正数ε>0,总可找到一正数X ,对于适合的一切x,都满足,函数当x→∞时的极限为A ,记:。
b):自变量趋向有限值时函数的极限。
我们先来看一个例子.例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.或说:只要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ定义:设函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0<<δ时,<ε则称函数当x→x0时存在极限,且极限为A,记:。