无_土_栽_培10

合集下载

无土栽培技术

无土栽培技术

无土栽培技术概述无土栽培(soilless culture)是指不用天然土壤而用基质或仅育苗时用基质,在定植以后用营养液进行灌溉的栽培方法。

由于无土栽培可人工创造良好的根际环境以取代土壤环境,有效防止土壤连作病害及土壤盐分积累造成的生理障碍,充分满足作物对矿质营养、水分、气体等环境条件的需要,栽培用的基本材料又可以循环利用,因此具有省水、省肥、省工、高产优质等特点。

无土栽培中用人工配制的培养液,供给植物矿物营养的需要。

为使植株得以竖立,可用石英砂、蛭石、泥炭、锯屑、塑料等作为支持介质,并可保持根系的通气。

多年的实践证明,大豆、菜豆、豌豆、小麦、水稻、燕麦、甜菜、马铃薯、甘蓝、叶莴苣、番茄、黄瓜等作物,无土栽培的产量都比土壤栽培的高。

由于植物对养分的要求因种类和生长发育的阶段而异,所以配方也要相应地改变,例如绿叶类蔬菜需要较多的氮素(N),N可以促进叶片的生长;番茄、黄瓜要开花结果,比绿叶类蔬菜需要较多的磷(P),钾(K),钙(Ca),需要的N 则比绿叶类蔬菜少些。

生长发育时期不同,植物对营养元素的需要也不一样。

对苗期的番茄培养液里的N,P,K等元素可以少些;长大以后,就要增加其供应量。

夏季日照长,光强、温度都高,番茄需要的N比秋季、初冬时多。

在秋季、初冬生长的番茄要求较多的K,以改善其果实的质量。

培养同一种植物,在它的一生中也要不断地修改培养液的配方。

无土栽培所用的培养液可以循环使用。

配好的培养液经过植物对离子的选择性吸收,某些离子的浓度降低得比另一些离子快,各元素间比例和pH值都发生变化,逐渐不适合植物需要。

所以每隔一段时间,要用氢氧化钠或氯化氢调节培养液的pH,并补充浓度降低较多的元素。

由于pH和某些离子的浓度可用选择性电极连续测定,所以可以自动控制所加酸、碱或补充元素的量。

但这种循环使用不能无限制地继续下去。

用固体惰性介质加培养液培养时,也要定期排出营养液,或用点灌培养液的方法,供给植物根部足够的氧。

第一章无土栽培学绪论

第一章无土栽培学绪论

无土栽培学第一章概述第一节无土栽培及其分类一、无土栽培与无土栽培学1、无土栽培定义简单定义:指不用天然土壤来种植植物的方法。

科学定义:无土栽培是指不用天然土壤,而用营养液或固体基质加营养液栽培作物的方法。

又名营养液栽培、水耕、水培、溶液栽培、养液栽培等无土栽培的特点是以人工创造的优良根系环境取代通常的根系土壤环境,最大限度地满足根系对水、肥、气、热等环境条件的要求,发挥作物生产的最大潜力。

无土栽培的兴起和发展标志着农作物种植跨入了一个崭新的阶段,是一次质的飞跃。

2、无土栽培学无土栽培学是研究无土栽培技术原理、栽培方式和管理技术的一门综合性的应用科学。

它是现代农业新技术与生物科学、作物栽培学相结合的一门边缘学科,要学好无土栽培学必须掌握植物学、植物生理学、农业化学、作物栽培学、材料学、计算机应用技术、环境控制等相关知识,应紧密结合生产实践,通过实际观察和操作,才能了解和掌握无土栽培的原理和技术。

二、无土栽培的分类按有无基质来分类1、非固体基质栽培非固体基质无土栽培是指根系直接生长在营养液或含有营养成分的潮湿空气之中,根际环境中除了育苗时用固体基质外,一般不使用固体基质。

它又可分为水培和雾培两种类型。

2、固体基质培固体基质无土栽培简称基质培,它是指作物根系生长在各种天然或人工合成的固体基质环境中,通过固体基质固定根系,并向作物供应营养和空气的方法。

基质培可很好地协调根际环境的水、气矛盾,且投资较少,便于就地取材进行生产。

1、非固体基质栽培(1)水培是指作物根系直接生长在营养液液层中的无土栽培方法。

它又可根据营养液液层的深度不同分为多种形式,以1~2cm左右的浅层流动营养液来种植作物的营养液膜技术(NFT);液层深度6~8cm的深液流水培技术(DFT);在5~6cm深的营养液液层中放置一块上铺无纺布的泡沫板,根系生长在湿润的无纺布上的浮板毛管水培技术(FCH);还有以早期格里克开发应用的“水培植物设施”为代表的半基质栽培,它实际为水培的一种形式。

无土栽培技术

无土栽培技术

DFT栽培豇豆(定植板)
精选
DFT栽培辣椒(定植网框)
精选
精选
精选
1.定植板 2.浮板 3.无纺布 4.育苗钵 5.植株 6.营养液 7.成型聚苯乙烯种植槽
栽培槽内放置1.25cm厚、14cm宽的聚苯乙烯泡沫板作为浮板,漂 浮在营养液的表面。浮板上覆盖一层25cm宽的无纺布(规格为50克 /m2)作为湿毡。植物一部分根系在湿毡上生长,吸收空气中的氧气; 一部分根系浸在营养液中吸收水分和养分。
在循环营养液系统中每天都要测定和调整 pH 值 。 调 酸 最 好 用 硝 酸 和 磷 酸 配 合 使 用 。
精选
5. 营养液的消毒
循环使用的营养液必须经常进行消毒,才能避 免病菌的传播。
目前主要的方法有:过滤、紫外光灯消毒、超 声波处理、臭氧处理和加热纯化处理。
精选
水晶泥栽培
精选
精选
精选
精选
适宜水培DIY的花卉 天南星科:绿萝、万年青、龟背竹 百合科:芦荟、吊兰、富贵竹、文竹 鸭跖草科:鸭跖草、吊竹梅 景天科:莲花掌、落地生根、芙蓉掌、宝石花 其他:蟹爪兰、变叶木、常春藤、肾蕨
精选
六、营养液的配制和使用
1.营养液的配制原则:
(1)能满足花卉生长需要的大量和微量元素 (2)所用肥料易溶于水,易被植物吸收利用 (3)水源清洁,不含杂质及污染物 (4)营养液的PH值适合植物生长 (5)避免难溶性沉淀物质的产生
4. 无土栽培是高科技农业、都市农业、娱乐观光农业、高效 农业、环保型农业和节水农业的最佳形式。
精选
富贵竹水培
精选
精选
精选
富贵竹水培
精选
精选
风信子水培
精选
精选
精选

无土栽培

无土栽培

1.无土栽培的定义:不用天然土壤,利用营养液来提供植物生长所需的养分、水分、氧气来种植植物的方法。

两大类:无固体基质类型;有固体基质类型无固体基质类型:水培---营养液膜技术;深液流技术;浮板毛管技术喷雾培---喷雾培;半喷雾培有固体基质类型:槽式基质培---砂培;砾培;蛭石培;珠岩培;陶粒培;岩棉培袋式基质培--锯木屑培;珍珠岩培;泥炭培;木屑培。

3.无土栽培的优点:1、产量高2、品质好、商品价值高3、省水、省肥、省工4、病虫害少,无连作障碍,生产过程可实现无公害化5、充分利用土地资源6、实现农业生产的现代化缺点:1、投资较大2、技术上要求较高3、管理不当易造成某些病害的大范围传播无土栽培客观评价:无土栽培只能够是作为土壤栽培的一种补充,而不是要代替土壤栽培。

无土栽培的应用范围:1、在经济较为发达的地方应用2、在沙漠、荒滩、礁石岛等不适宜农业耕作的地方应用3、在土地受到污染、侵蚀或其它原因而产生严重退化,而又要在原来的土地上进行农业耕作的地方4、在家庭中应用:利用家庭的庭院、阳台或天台来种花、种菜,既有娱乐性,又有一定的观赏性和经济收益,而且操作简便、干净卫生5、作为中小学校的教具和作为高等院校、科研院所的研究工具6、在开发太空事业中的应用无土栽培作物之所以能够取得高产优质,是因为它提供给作物生长的水分、养分、光照、温度、湿度等环境条件比作物千百年来生长的土壤环境要来得优越。

了解作物在无土栽培条件下养分、水分和温度等对作物生长的影响是成功进行无土栽培的基础。

根系是植物吸收养分和水分主要的器官,它的生长状况与植物地上部的生长息息相关。

无土栽培的显著优越性之一就表现在植物的根际环境要比土壤的易于控制。

根系的形态:一株植株所有的根的总体称为根系。

植物从种子萌发开始,胚根从种皮中伸出并向下生长,这种从胚中长出的根称为主根,随着生长过程的进行,又会在主根上长出侧根,而当侧根长到一定的时候又会长出次一级的侧根,这样不断生长就形成了一个植物的根系。

无土栽培技术介绍

无土栽培技术介绍

无土栽培技术介绍
无土栽培技术是一种新兴的种植技术,它不需要深埋土壤,而是将植物置于含液体基质中,并利用外界补充的营养物质来支持植物的生长发育。

无土栽培技术具有温室效应、防护作用、降低耕作和运输成本等优点,在植物种植中受到广泛应用。

无土栽培技术包括水培法、培养基法、气培法和混合培养法等。

水培法是最常见的,通常将植物放置在水中,以满足植物的水分需求。

培养基法是将植物放置在含有营养物质的培养基中,以满足植物的营养需求。

气培法是利用植物自身吸收空气中的营养物质来满足植物的营养需求。

混合培养法是将水培法和培养基法结合起来,利用水培法满足植物的水分需求和培养基法满足植物的营养需求。

无土栽培技术的优势在于可以有效控制植物的生长环境,调节土壤的pH值和营养成分,更好地把握植物的生长和发育。

另外,无土栽培技术还可以有效减少用水,减少土壤污染,提高产量,改善作物品质,延长果实保鲜期,并且可以在特殊条件下实现种植,如极端气候和无土壤环境等。

然而,无土栽培技术也有一些缺点,其中最大的一个是它会消耗大量能源,特别是在保持温室温度和湿度适宜的条件下,会耗费大量的资源。

此外,无土栽培技术的投资成本也非常高,除了设备费用之外,还需要支付大量的营养液和其他资源。

无土栽培技术是一种新兴的种植技术,有效控制植物的生长环境,可以减少用水,减少土壤污染,提高产量,改善作物品质,延长果实保鲜期,但也存在一些问题,需要开发更加可持续的技术来改善使用效率和效益,以更好地服务于社会。

无土栽培精品PPT课件

无土栽培精品PPT课件

穴盘育苗 成型的塑料有孔育苗钵
岩棉块育苗 基菲(Jiffy)育苗块育苗
(二)无土育苗的设施设备准备
催芽室
催芽室内设多 层育苗架或育 苗车、空调、 照明设备、自 动喷雾调湿装 置等。
绿化、 训化设施
电热温床
一般温室、 大棚可以 满足需要。
辅助加温设施, 包括电加热线、 控温仪、开关、 导线、交流接 触器等。
病原菌积累
空气、灌溉 水、前作种 植过程滋生
基质本身
结构变劣 长期使用
第三节 无土育苗技术
➢无土育苗方式 ➢无土育苗设施设备准备 ➢无土育苗的基质及营养液准备 ➢无土育苗过程及环境调控
(一)无土育苗方式
1)穴盘育苗 2)塑料钵育苗 3)基质育苗床育苗 4)岩棉块育苗 5)基菲育苗块育苗 6)聚氨酯泡沫小块育苗 7)工厂化无土育苗 8) 组织培养快繁育苗
1.按来源分为天然基质和人工合成基质。
如沙、石砺等为天然基质;而岩棉、泡沫塑料等为人工合成基质。
2.按组分分为无机基质和有机基质。
如沙、泡沫塑料、岩棉和珍珠岩等以无机物组成为无机基质;而泥炭、 树皮、蔗渣等以有机残体组成为有机基质。
3.按组分的不同分为单一基质和复合基质。
如:如沙培、岩棉培使用的沙、岩棉等以一种基质作为植物的生长介质 为单一基质;如蔗渣—沙混合基质由两种或两种以上的单一基质按一 定比例混合制成的基质为复合基质。
(二)固体基质的选择及处理
固体基质的选用原则
根系的适用性
根系环境要求较 高的湿度和透气 性。空气湿润地 区,选用松针、 锯末;干燥地区, 泥炭混合基质效
果较好。
基质的适用性
一般容重0.5 g/cm3,总空隙 度60%,大小空隙 比0.5,化学性 质稳定,PH接 近中性,无毒物 质,都适用。

浅谈中学无土栽培实验的若干问题

浅谈中学无土栽培实验的若干问题

然后 “ 目重 播 ” 根 本 谈 不 上 能 力 的培 养 。两 者 都 直 节 ,
接 把 生 物 实 验 教 学 引 人 了 误 区 。 我 认 为 不 管 是 书 面 考
查 不是 操 作 考查 , 既要 考查 已做 实 验 , 要 适 当 地 创 都 更 建 实验 问 题 情 境 , 学 生 自 己设 计 实 验 方 案 并 进 行 分 让 析 或 实施 。 自 1 8 9 1年恢 复 生物 高 考一 直 到 19 9 4年 , 很 少 出现 能 充 分 体 现 实 验 方 法 和 创 新 能 力 的 实 验 设 计 题 , 来 考去 都 是 课 本 上 的几 个 实 验 , 型 呆 板 , 映 考 题 反 不 出学 生 的 实验 素质 。 但 随 着 素 质 教 育 和 教 学 改 革 的 需 要 , 19 自 9 5年 上海 高 考 到 现 在 全 国各 地 的生 物 单 科 或 综台 科 目考试 , 验 设 计 题 越 来 越 成 为一 种 新 颖 而 实 重 要 的题 型 , 2 0 如 0 1年广 东 高 考 题 里 就 有 两 道 实 验设
计 题, 2 约 0分 。 这 些 情 况 启 发 我 们 在 平 时 的 实 验 教 学
舟绍如下 : 1 1 无基 质 栽 培和 基 质 栽涪实 验 可 以 利 用 无 机 基 如
质 耗 能 型 ; 大范 围 实验 可 以利 用 有 机基 因生态 型 。 如 2 营养 液 配 制 、 制 、 调 注意 的事 项 2 1 营养 液 化 学试 剂 : . 小 范 围实验 , 以 到 化 学 试 剂 商 店 购 买 , 是 成 本 可 但 较高 、 价格 较 贵 ; 范 围 或 低 成 本 的实 验 , 好 采 用 化 大 最 工 厂 生产 的工业 用 袋装 产 品 , 5 k 如 O g或 2 装 的 大量 5 元素 、 : 如 四水 硝 酸 钙 、 水 硫 酸 镁 、 酸 二 氢 铵 , 他 七 磷 其 微 量 元素 可 以 购买 化 学 试 剂 , 硼 酸 、 水 硫 酸 锅 、 如 五 硫 酸锰 、 酸 铵 、 酸 锌 、 台 铁 ( 以 由乙 二胺 四 乙 酸 和 铝 硫 螯 可

无土栽培技术:无土栽培技术的介绍

无土栽培技术:无土栽培技术的介绍

无土栽培技术:无土栽培技术的介绍无土栽培即不用土壤,用溶液培养植物的方法,包括水培和沙培。

19世纪中,W.克诺普等发展了这种方法。

到20世纪30年代开始把这种技术应用到农业生产上。

在二十一世纪人们进一步改进技术,使得无土栽培发展起来。

下面我们一起去了解一下无土栽培技术吧!无土栽培技术:一、主要技术方法1、秸秆栽培基质的发酵。

秸秆堆腐前的准备:(1)作物秸秆可选用小麦秸、玉米秸等作物秸秆,秸秆量应大于栽培槽体积的2倍,如一般一个标准大(666.7平方米)种植樱桃番茄时,栽培槽的体积约20 立方米,准备小麦秸的体积40立方米以上,先将秸秆碎,长度小于4厘米,然后用水浸润备用。

(2)采用秸秆复合微生物制剂堆腐发酵秸秆。

(3)牛粪4立方米,在秸秆堆腐前一周,与秸秆腐熟菌掺混,使秸秆腐熟菌在牛粪中扩繁。

(4)尿素的用量约为秸秆量的0.5%,40 立方米秸秆需25千克的尿素。

秸秆堆腐的方法:秸秆堆的底宽2米,高度1.8~2.0米,长度不限。

每铺20厘米秸秆,撒一层掺有秸秆腐熟菌的牛粪和适量的尿素,若秸秆浸润的水不足,再喷洒适量的水,以用手紧握秸秆,指缝间有水被挤出为度。

此法将秸秆一直堆到1.8~2.0米的高度,建堆完成。

然后覆盖塑料膜,减少堆内水分蒸发。

2~3天后,堆内温度可达70°c以上;15天左右进行翻堆,将边沿部位的秸秆翻入堆中间,使秸秆与牛粪进一步混匀,若秸秆干燥,可适量补充水分;翻堆后,再堆腐15天左右,秸秆半腐熟,已没有了韧性,手握既断,c/n比在30~40之间,即可作为无土栽培的基质使用。

2、栽培操作技术。

(1)栽培槽:栽培槽采用地挖沟槽铺塑料膜的方式。

以樱桃番茄为例:樱桃番茄采用大小行种植,行距60厘米~70厘米,单行挖栽培槽,栽培槽的形状为三角形,上口20厘米,深度25厘米,沟底要平,避免局部积水;在栽培槽内,铺0.1毫米的塑料膜;在塑料膜上填充发酵秸秆做基质,用脚踏实;定植樱桃番茄苗,株距35厘米。

无土栽培

无土栽培

无土栽培又称为营养液栽培或水耕栽培,是利用无机营养液直接向作物提供生长发育所必需的营养元素,代替由土壤和有机质向作物提供营养的栽培方式。

无土栽培的兴起,使农业、园艺和林木生产进人了新的技术发展阶段,使大规模应用土壤耕作的传统生产方式,逐渐转入人为和自动控制植物的栽培环境,立体化和工厂化的现代生产方式,具有广阔的发展前景。

土壤是农业的基本生产资料,它对农作物的主要作用是固定支撑根系、供给水分和营养元素降解有毒物质等。

而植物的生长,主要依靠自身的光合作用。

当人们满足了作物光合作用对温度光热、气体【二氧化碳、氧气】、水分、营养元素条件要求及植株被固定后,可以不用土壤在任何地方种植作物。

近年来,我国众多的园艺学工作者结合我国国情,在无土栽培技术及其配套技术的研究方面做了大量工作,使无土栽培技术更加适于我国的农业生产实情。

随着我国经济和科研水平的不断提高,无土栽培已从试验研究、小面积生产示范阶段进入大面积生产应用阶段。

使无土栽培技术迅速推广。

目前世界上采用无土栽培技术的国家有100多个,无土栽培技术有30多种。

最先进的国家当属荷兰,其无土栽培面积达8000hm2。

我国的无土栽培研究起步于1976年,是在山东农业大学进行的。

80年代后,无土栽培作为一项新技术引起了农业科技界和各级领导的高度重视,在进行理论研究的同时,根据不同作物对营养的需要研制出多种营养液专用配方和相应的配套技术。

1985年全国无土栽培面积不到2hm2,现已发展到2000多hm2。

无土栽培的方式很多,大体可分为无基质栽培和基质栽培两大类,每一大类中又可细分出许多类型,概括如下:目前我国在生产上应用的无土栽培方式主要有:营养液膜法(作物的根系直接与营养液接触,营养液深度不到1cm,营养液循环利用)、深液流法(作物的根系浸在营养液里,营养液深度为5cm~10cm,温度变化比较平缓)、浮板毛管法(在深液流法的基础上,在栽培槽内增加一块泡沫塑料浮板,根系可以在浮板上下生长,便于吸收氧气)及袋培法等(用白色聚乙烯袋,内装基质,用滴灌法浇营养液)。

《无土栽培》课件

《无土栽培》课件
《无土栽培》PPT课件
无土栽培是一种新型的种植方式,可以在没有土壤的情况下进行农作物的种 植。本课件将介绍无土栽培的定义、优势、技术、应用以及未来趋势。
什么是无土栽培?
• 无土栽培的定义是一种种植方式,在没有使用传统土壤的情况下,通过使用特定的培养基 和技术,种植各种农作物。
• 无土栽培与传统种植方式相比有很大的区别,包括土壤的使用、水分和养分的供应方式等。
无土栽培的优势
1 节约资源
无土栽培可以节约大 量的水资源,减少土 壤和化肥的使用,降 低对环境的压力。
2 环境友好
由于无土栽培不需要 大面积的土地,可以 在城市等有限的空间 中进行种植,减少土 地资源的消耗。
3 高效便捷
无土栽培可以实现全 年无季节限制的生产, 提高农作物产量,同 时方便管理和维护。
无土栽培的技术
水培
利用水中溶解的养 分,直接供应给植 物的根系,以水为 介质进行种植。
培养基培植
使用特定的培养基, 通常是一种不含土 壤的介质,来供应 植物生长所需的水 分和养分。
微生物菌种 培植
通过培养特定的微 生物菌种,为植物 提供养分,并帮助 植物抵御害虫和病 菌的侵袭。
空气墙种植
利用垂直墙面进行 种植,通过水分和 养分的循环供应, 实现高密度的城市 农业。
无土栽培在不同领域的应用
农业种植
无土栽培可以在农业领域广泛应用,种植 各种蔬菜、水果和谷物,提高产量和质量。
健康食品
无土栽培可以生产出无农药和化肥残留的 健康食品,满足人们对有机食品的需求。
城市园林
无土栽培可以在城市中建设垂直农场、屋 顶花园等城市园林项目,增加城市内的绿 色空间。
社区种植
无土栽培可以在社区中推广,让市民参与 种植,增加社区的互动和减少食品运输成 本。

无土栽培的种植方法

无土栽培的种植方法

无土栽培的种植方法无土栽培是指在种植过程中不使用传统土壤的一种种植方法,它通过其他介质来提供植物生长所需的养分和水分。

无土栽培的优势包括节约用水、减轻环境污染以及将种植空间从限制在室外的土壤中解放出来。

下面将详细介绍几种常见的无土栽培方法,并探讨其种植原理、适用植物以及操作注意事项。

1. 水培法水培法是一种将植物根部悬浮在水中的种植方法。

种植时,首先选择适合水培的植物,如绿叶蔬菜、香草等。

然后将种子、幼苗或扦插苗放入网状浮筏或其他支撑物中,使其根部悬浮在水中。

水中添加适量的水培营养液,这样植物根部就可以从水中吸收所需的养分。

水培的优势在于节约用水和快速生长,但需要严密控制养分浓度和水温。

2. 水凝胶法水凝胶法是利用水凝胶来提供植物生长所需的水分和养分。

水凝胶是一种高吸水性的化学物质,能够将水分和养分保持在其内部,并释放给植物根系。

种植时,将水凝胶粉末或颗粒混合进栽培容器中的介质中,然后将种子、幼苗或扦插苗放入其中。

水凝胶会吸收周围的水分,并逐渐释放给植物的根系。

水凝胶法适用于各种室内植物和观赏植物,优点是方便管理和节省用水。

3. 培养细胞法培养细胞法是将植物生长放在富含养分的培养基中进行的种植方法。

培养基是一种含有各种养分和生长因子的凝胶状物质,可以通过添加营养液来提供植物所需的养分。

种植时,将种子、幼苗或植物组织放入培养基中,通常会在实验室或专业设备中进行。

培养细胞法通常用于研究植物的生长发育和组织培养,对一般户外或室内种植不太实用。

4. 纤维和废料床法该方法是利用纤维材料或废料床作为种植介质,提供植物所需的养分和水分。

纤维材料可以是泥炭、腐殖质、椰纤维等,废料床可以是稻草、木屑、麦皮等。

种植时,将种子、幼苗或扦插苗放到纤维或废料床中,通过加入适量的水和养分溶液来满足植物的生长需求。

这种方法具有良好的通气性和保水性,适用于户外种植和大规模种植。

无土栽培的优点在于节约用水、减轻环境污染以及解决土壤有限的问题。

无土栽培(英文版)

无土栽培(英文版)

SOILLESS CULTURE of Greenhouse VegetablesAlmost all of the vegetables we find on grocery-store shelves are produced either directly or indirectly in open-field soil. However, soil itself isn't necessary for plant growth - only some of its constituents.Field soil serves two basic purposes: it acts as a reservoir to retain nutrients and water, and it provides physical support for the plant through its root system. Artificial means can also provide these important requirements for plant growth with equal (and sometimes better) growth and yield results compared to field soil, although at substantially greater expense. Well-drained, pathogen-free field soil of uniform texture is the least-expensive medium for plant growth, but soil doesn't always occur in this perfect package. Some soils are poorly textured or shallow, and provide an unsatisfactory root environment because of limited aeration and slow drainage. Pathogenic organisms are a common problem in field soils. When adverse conditions are found in soil and reclamation is impractical, some form of soilless culture may be justified. This guide describes the materials used in soilless culture and discusses management practices in various soilless systems.DEFINING SOILLESS CULTURE Soilless culture is an artificial means of providing plants with support and a reservoir for nutrients and water. The simplest and oldest method for soilless culture is a vessel of water in which inorganic chemicals are dissolved to supply all of the nutrients that plants require. Often called solution culture or water culture, the method was originally termed hydroponics (i. e., "water working") by W. F. Gericke in the 1930s. Over the years, hydroponics has been used sporadically throughout the world as a commercial means of growing both food and ornamental plants. Today, it is used widely in research facilities as a technique for studying plant nutrition. Various modifications of pure-solution culture have occurred. Gravel or sand is sometimes used in soilless systems to provide plant support, and retain some nutrients and water. The retention of nutrients and water can be further improved through the use of spaghnum peat, vermiculite, or bark chips. These are the most commonly used materials, but others - such as rice hulls, bagasse (sugarcane refuse), sedge peat, and sawdust - are used sometimes as constituents in soilless mixes. Straw bales have been used as growing medium in England and Canada. Rockwool (porous stone fiber) is used in Europe, but there is little experience with it in this country.Since the major constituent of the media in artificial growing systems may be solid or liquid, it is appropriate to use the term soilless culture in reference to this general type of growing system and reserve the term hydroponics for those in which water is the principal constituent. Soilless culture methods may thus be classified as either solid- or liquid-medium systems.TYPES OF SOILLESS CULTURE Liquid-medium systems are further differentiated from solid-medium systems by method of operation. Liquid systems are generally closed circuit with respect to nutrient-solution supply: the solution is recirculated from a supply reservoir either continuously or intermittently for a period of days or weeks. The two most common liquid systems in use today are nutrient-flow technique (NFT) and gravel-bed culture.An NFT growing system consists of a series of narrow channels through which nutrient solution is recirculated from a supply tank. A plumbing system of plastic tubing and a submersible pump in the tank are basic components. The channels are generally constructed of opaque plastic film or plastic pipe (fig. 1); asphalt-coated wood or fiberglass also has been used. The basic characteristics of all NFT systems is the shallow depth of solution that is maintained in the channels. Flow is usually continuous,but some systems are operated intermittently by supplying solution a few minutes every hour. The purpose of intermittent flow is to assure adequate aeration of the root systems. This also reduces the energy required; but under rapid-growth conditions, plants could experience water stress if the flow period is too short or infrequent.Therefore, intermittent-flow management seems better adapted to mild-temperature periods or to plantings during their early stages of development. Capillary matting is sometimes used in the bottom of NFT channels, principally to avoid the side-to-side meandering of the solution stream around young root systems, but it also acts as a reservoir by retaining nutrients and water during periods when flow ceases.NFT channels are frequently designed for a single row of plants with a channel width of 6 to 8 inches (15 to 20 cm). Wider channels of 12 to 15 inches (30 to 38 cm) have been used to accommodate two rows of plants, but meandering of the shallow solution stream becomes a problem with greater width. To minimize this problem, small dams can be created at intervals down the channel by placing thin wooden sticks crossways in the stream, or by the use of capillary matting. The channels will need to be sloped 4 to 6 inches per 100feet (10 to 15 cm per 30 in) to maintain gravity flow of the solution. Flow rate into the channels should be in the range of 1 to 2 quarts a minute (I to 2 liters a minute). Channel length should be limited to a maximum of 100 feet (30 in) in order to minimize increased solution temperature on bright days. The ideal solution temperature for tomatoes is 68o to 77o F (20o to 25o C). Temperatures of 59o or 86o F (15o or 3O o C) have been shown to decrease growth and yield of tomatoes. Black plastic-film channels will cause solution temperature to increase on sunny days. During cloudy weather, it may be necessary to heat the solution to the desirable temperature. Solution temperatures in black plastic channels can be decreased by shading or painting the surfaces white or silver. Cooper (1979) provides greater detail on NFT management.Gravel-bed culture utilizes a waterproof trough filled with pea gravel (or some other inert material of similar size), which is plumbed to a nutrient solution reservoir (fig. 2). Gravel particles retain very little water and nutrients, so the system must recirculate solution from the supply tank to the beds several times a day by means of a time clock and submersible pump. Some gravel systems are designed to be fed from the surface through perforated pipes, and drained at the base of the trough through a slitted drain line; others are both subirrigated and drained through a single pipe at the bottom of the bed. The advantage of the two-pipe system is that any root growth into the drain line will not interfere with the uniform distribution of nutrient solution to the bed. In either case, however, root growth will eventually clog the drain line and rotary cleaning equipment must be used to remove it.Gravel-bed troughs are generally 24 to 36 inches (60 to 90 cm) in width and 8 inches (20 cm) deep. Pea gravel must be thoroughly washed before use to remove particles of soil or other material that might clog the drain line. Care should be used in selecting a gravel supply that is free from pathogenic organisms. Treatment of the gravel by steam sterilization or an appropriate fungicide is a wise practice when condition of the material is uncertain.The nutrient-solution supply tank should be large enough to hold a volume of solution about twice that required to fill the beds; this provides a good marginof safety.The plumbing-system lines and submersible pumps should have the capacity to fill the beds in about 15 minutes, and allow complete drainage in 30 to 45 minutes.When managed properly, NFT and gravel-bed systems are capable of growing good crops, but there are some disadvantages that should be taken into consideration. The nutrient concentration of a recirculated nutrient solution is in a continuous state of change because plants are removing elements at different rates. Therefore, some means of monitoring and replenishing must be used to avoid deficiencies (and perhaps toxicities from excesses of some elements). This increases the cost of equipment and laboratory analysis. Recirculatedsystems are power dependent. If electrical energy is disrupted, there is little reservoir of water and nutrients to protect the plants from stress. Recirculation of the solution is an ideal means of spreading any pathogenic organism (such as water-mold fungi) that may be inadvertently introduced to the system. For these reasons, more management care, experience, and capital will be necessary for success with recirculated liquid-medium systems.Solid-medium soilless culture may employ any one of many types of suitable media in various types of containers. Basic requirements are a material of uniform texture that drains well yet retains some nutrients and water, a container in which the material is confined, and a means of supplying nutrient solution. A well-drained sandy loam could be used as a growing medium, but a supply of very uniform soil in the volume required may be difficult to find, and the weight of soil is much greater than other types of material. Sand has been used in soilless systems in which the entire floor of a greenhouse is filled a foot or more in depth, but it is rarely used in container systems because of its weight. Where sand is used, particle-size distribution is an important consideration in order to maintain a good balance between drainage (aeration) and nutrient and water retention. Particle sizes should be in the range of 0.1 to 1.0 mm with an average of 0.25 to 0.50 mm.Full-floor sand culture has been successful for vegetable culture in greenhouses and is considered a good means of providing plants with a uniform, well-drained rooting medium (fig. 3). Installation requires excavation of the greenhouse floor to the intended fill depth, and grading (about 4 inches per 100 feet [10 cm per 30 m]) for drainage. First, the graded area is covered with 10-mil plastic sheeting to prevent root penetration into the underlying soil. Then a system of drain tubes at the spacing of the plant rows is laid out on the plastic and connected to a common drain at the lower end of the house. Sand is then filled to the intended depth over the plastic sheeting and drain lines. Be careful to select sand according to its particle-size distribution, and its freedom from pathogens and constituents that might be toxic to the crop plants. Because of the permanent preparations for full-floor sand culture, it is recommended that sand intended for use in the system be given a growth test in containers before actually filling the greenhouse to determine if it meets the basic requirements.Sand-culture systems for tomatoes or cucumbers are typically irrigated and fertilized by trickle irrigation. The nutrient solution should be supplied at each irrigation because of the relatively low nutrient retention of sand. Irrigation frequency will vary with the crop, its growth stage, and the temperature, but will range from two to several times a day. Depending upon plant size and temperature, tomato and cucumber plants will require in the range of 1/2 to 4 quarts (1/2 to 4 liters) per plant a day. CONTAINER GROWINGSoilless culture in bags, pots, or troughs with a lightweight medium is the simplest, most economical, and easiest to manage of all soilless systems. The most common types of media used in containerized systems of soilless culture are peat-lite (Boodley and Sheldrake 1977), or a mixture of bark and wood chips. Container types range from long wooden troughs in which one or two rows of plants are grown, to polyethylene bags or rigid plastic pots containing one to three plants. Bag or pot systemsusing bark chips or peat-lite are in common use throughout the United States and offer some major advantages over other types of soilless culture: (1) the medium materials have excellent retention qualities for nutrients and water; (2) containers of medium are readily moved in or out of the greenhouse whenever necessary or desirable; (3) they are lightweight and easily handled; (4) the medium is useful for several successive crops; (5) the containers are significantly less expensive and less time-consuming to install- and (6) in comparison with recirculated-hydroponic systems, the nutrient-solution system is less complicated and less expensive to manage. From a plant-nutrition standpoint, the latter advantage is of significant importance. In a recirculated system, the solution is continuously changing in its concentration and its nutrient balance because of differential plant uptake.In the bag or pot system, the volume of medium per container varies from about 1/2 cubic foot ( 14 liters) in vertical poly bags or pots to 2 cubic feet (56 liters) in lay-flat bags. In the vertical-bag system, 4-mil black poly bags with pre-punched drain holes at the bottom are common. One, or sometimes two, tomato or cucumber plants are grown in each bag (fig. 4). Lay-flat bags accommodate two or three plants (fig. 5). In either case, the bags are aligned in rows with spacing appropriate to the type of crop being grown. It is good practice to place vertical bags or pots on a narrow sheet of plastic film to prevent root contact or penetration into the underlying soil. Lay-flat bags, which have drainage slits (or overflow ports) cut along the sides an inch (2. 54 cm) or so above the base, would also benefit from a protective plastic sheet beneath them. Greater detail on lay-flat bag culture is provided byBauerie (1984).Irrigation SystemsNutrient solution is delivered to the containers by supply lines of black polyethylene tubing to spaghetti tubing, spray sticks, or ring drippers in the containers. Application devices have different wetting patterns and are available in different flow rates. The choice of application system is important in order to provide proper wetting of the medium at each irrigation. Texture and porosity of the growing medium, and the surface area to be wetted are important considerations in making the choice. Spaghetti tubing provides a point-source wetting pattern, which might be appropriate for fine-textured types of media and allows water to be conducted laterally with ease. In lay-flat bags, single spaghetti tubes at individual plant holes will provide good wetting of peat-lite media. In a vertical bag containing porous medium, a spray stick with a 90-degree spray pattern will do a good job of irrigation if it is located to wet the majority of the surface. Ring drippers are also a good choice for vertical bags although somewhat more expensive. When choosing an application system for bag or container culture, remember that the objective of irrigation is to distribute nutrient solution uniformly so that all of the medium is wet. Since a root system cannot function in dry medium, dry medium is wasted medium.Growing MediaThe growing medium used in container culture must have good nutrient- and water-holding characteristics, and provide good aeration to the root system. Light weight is another important consideration so that filled containers can be easily handled. Growing media should be free of pathogenic organisms and substances that are toxic to plants. The principal materials that meet these requirements are peat moss, bark, shavings, sawdust, vermiculite, bagasse, and rice hulls. Table 1 provides a summary comparison of the characteristics of these materials. Some should not be used alone, but have one or more characteristics that make them valuable constituents when used in a mixture. Bagasse is low in porosity and high in water-holding capacity, which would lead to poor aeration and drainage if used alone. Because rice hulls have low water-holding capacity and high pore space, plants would be vulnerable to water stress when rice hulls are used alone. Both vermiculite and sawdust are poor choices as sole constituents because their high water-holding capacities can lead to saturation and poor aeration if over-irrigated. Vermiculite particles also tend to collapse with time, resulting in compaction and volume loss. Sawdust (except for cypress and redwood) and bagasse have high carbon: nitrogen ratios (C:N ratios), and require extra nitrogen fertilizer to avoid the competitive demand for nitrogen between microorganisms and the plants. Bagasse, rice hulls, sawdust, and vermiculite possess useful characteristics when used in mixes with other materials in the range of 20 percent to 50 percent of the total volume. Because of their high C:N ratios, bagasse and most sawdust material should be limited to no more than 20 percent of the total volume of a mix.Care should be used in the kind of wood material selected for soilless culture. Cedar, walnut, and eucalyptus may have components that are toxic to plants. Fresh redwood also affects the growth of some plants, but this effect becomes negligible with aging and leaching. The causes of toxicity from wood materials is not clearly understood, but probably varies with the type of plant being grown, and the type and age of wood being used. Wood materials are generally acidic and any toxicity from their use may be due to the effects of acidity on the availability of some nutrients to the plants. In redwood, the toxic component is transient because it decomposes or is leached away during composting. Materials such as pine sawdust decompose rapidly because of the high C:N ratio and, if supplemental nitrogen is not provided or is present in insufficient amount, the deficiency that develops may give the impression of toxicity. The barks of pine, fir, and redwood (and possibly others) can be safely used without growth-retarding effects, but cedar and walnut should be avoided. Sawdust and shavings of pine, fir, and redwood can make good, safe amendments when composted with nitrogen at 13 pounds per cubic yard (8 kg/m 3) for 2 to 3 months.Mixes should not be made merely to take advantage of availability or low cost, but should consider the basic factors of weight, nutrient retention, water-holding capacity, pore space, and C:N ratio. Mixtures of spaghnum peat and horticultural vermiculite (peat-lite) have all of the required characteristics and make an excellent growing medium. Proprietary peat-lite mixes are available, or growers can prepare their own supply from the basic components (Boodley and Sheldrake1977). Barks from pine, fir, cypress, and redwood have been used successfully as a growing medium for greenhouse cucumbers and tomatoes. Particle sizes of bark range generally from 1 to 10 mm in diameter; and the distribution of particle sizes in most mill-run material provides good aeration, and good water- and nutrient-holding characteristics. Abark medium can be used for several successive crops without a significant reduction in volume due to decomposition. A supply of bark with predominantly large particle sizes should be amended with a material such as sawdust, shavings,or bagasse in order to improve water-holdingcapacity.FERTILIZATIONIn field culture, the clay fraction of soils can be expected to supply adequate amounts of at least some of the nutrients required by plants, especially the minor elements.Fertilizer programs for soilless-culture systems must supply all nutrients required by the plants.Carbon, hydrogen, and oxygen are provided from water and carbon dioxide in the air. The grower will supply nitrogen, phosphorus, potassium, calcium,magnesium, sulfur, iron, boron, copper, zinc,manganese, molybdenum, and chlorine. Most medium materials contain small amounts of these elements; but they should not be considered in planning the fertilizer program because they are a small proportion of the requirement, or they may be in forms not readily available to plants.Liquid-medium systems - such as NFT and gravelbed culture - use complete nutrient solutions prepared from soluble inorganic salts containing various elements. Proprietary mixes of all required elements are available, which are simply dissolved inwater to prepare the nutrient solution. These mixes are available in various concentrations and ratios of elements. Nutrient solutions can also be prepared by the grower using readily available soluble salts.Many complete nutrient-solution formulas have been developed and used successfully. All contain the same elements and are generally prepared from the same compounds, although in somewhat different proportions. No one formula is necessarily the best for all plants, but all are capable of providing adequate nutrition. Special formulas are often recommended for a particular crop plant based upon research under the prevailing climatic and water quality conditions at a specific location. These formulas are soundly based for those conditions, but none should be construed as being the best universally under all conditions. They are good points of departure in developing a feeding program for the crop for which they are recommended, and may be well suited for use without alteration.Successful managers seek as much information as possible from reliable sources to develop a sound understanding of plant nutrition and inorganic chemistry before attempting to alter published formulas for their imagined or perceived needs.Improper alteration of formulas can lead to serious adverse effects due to excesses or deficiencies. It is recommended that growers either utilize prepared nutrient mixes obtained from reliable manufacturers or, if preparing their own, follow recommended formulas carefully. Competent assistance should be sought before making changes. Solid-medium systems - such as bark or peat-lite- can be provided with nutrients by three methods: (1) entirely from a complete nutrient solution; (2) from a combination of premixing some elements in the medium and supplying others by liquid feed; or (3) premixing all elements in the medium. The complete nutrient-solution method is commonly used in sand culture and for various mixed media or bark. Nutrient solution is applied up to several times a day to maintain the medium in a moist (but not saturated)condition. This system requires either a supply tank for the nutrient solution or a ratio feeder or fertilizer proportioner that prepares solution upon demand from stock nutrient concentrates. For small greenhouses, the frequent chore of replenishing the solution supply in a tank may be more attractive than investment in a fertilizer proportioner. When using the supply-tank method for a recirculated growing system, the tank should be large enough to hold a volume of solution about twice that required to fill the system. This provides a safe margin of nutrient supply.Nutrient-solution FormulasFormulas for several nutrient solutions are given in the Appendix, along with methods of preparation.While they differ in concentrations of the elements,all have been used successfully by commercial growing operations, principally for the production of tomatoes. Formula I has been widely used in research greenhouses as a general nutrient solution for a wide range of plants, and is a good formula choice where more specific information is not known for a particular crop. It is possible that adjustments in concentrations of some elements (particularly nitrogen, phosphorus, or potassium) may be beneficial to the yield or quality of a given crop.Until research is clear on this, however, it is best to adhere to the basic formula.The formulas in the Appendix list amounts of individual salts to be dissolved in 100 gallons (378liters) of water.This prepares the nutrient solution in the form to be supplied to plants from a storage tank. When a fertilizer proportioner is used, the amount of each salt must be adjusted to account for the dilution rate of the proportioner. By this method, liquid concentrates of the salts are prepared that will be diluted for the final nutrient solution as they are fed through the proportioner. For example (in formula 1), to calculate the amount of potassium nitrate to provide 50 gallons (190 liters) of concentrate to be used with a 200: 1 proportioner, divide 95 grams by 100 to obtain grams per gallon (or by 378 for grams per liter) in the final nutrient solution as shown, then multiply by 200 to obtain the amount in I gallon (or 1 liter) of concentrate, and finally multiply by 50 (or 190 liters) for the amount required for 50 gallons (190 liters) of concentrate. The amount of potassium nitrate required for 50 gallons (190 liters) of 200: 1concentrate is 20.9 pounds or 9550 grams. When preparing concentrates for proportioners, two separate concentrates are required to avoid precipitates. One contains only calcium nitrate and the iron compound; all other ingredients are in the other concentrate. The concentrates are kept in separate tanks and must be used in conjunction with a twin-head proportioner. When activated, the proportioner draws equal volumes from each tank and mixes them with an appropriate amount of water to provide the dilute nutrient solution.When using a proportioner, it is good practice to monitor its operation on a regular basis to be certain that solution of proper concentration of elements is being provided to the plants. This should be done in two ways. A water meter attached to the outlet side will record the volume of solution mixed for aparticular period of time. The depletion of concentrate volume in each tank over the same period of time and the volume of solution supplied should be in the same ratio as the dilution ratio of the proportioner. Another check on the system is to compare periodically the total salt concentration of a physical dilution of both concentrates with water.As an example, mix 200 ml of water with I ml (using a 1-mi pipette for measurement) of each concentrate. Salt concentration can be determined by an analytical laboratory or by a portable battery-operated instrument that measures electrical conductivity (fig. 7). During preparation of the concentrates, measurements of the individual salts should be made very carefully so that the final solution will contain amounts of individual elements as intended in the formula. Mistakes can be made,however, and for this reason it may be wise to sample the final solution from the proportioner and have a complete analysis made in a laboratory on a periodic basis.When premixing fertilizer materials with bark,or bark and sawdust, compounds that supply phosphorus, magnesium, calcium, sulfur, and all minor elements may be added to the growing medium prior to planting. A small amount of nitrogen may also be mixed with the medium I but most and sometimes all of this element is supplied in the irrigation water. Nitrogen is generally supplied in the nitrate form in the range of 100 to 200 ppm. 1The ammonium form of nitrogen, if included, should not exceed 10 percent of the total nitrogen supplied.Potassium also is supplied routinely with nitrogen in the irrigation water at about 200 ppm. A nitrogen/potassium liquid-feed solution providing 150 ppm nitrogen and 2 10 ppm potassium can be prepared by mixing 0.45 pound (208 gm) potassium nitrate and 0.40 pound (182 gm) calcium nitrate in 100 gallons (378 liters) of water. To premix the other elements in the medium per cubic yard (or cubic meter), phosphorus can be supplied as superphosphate (0-20-0) at 2 pounds (1 kg), calcium and magnesium from dolomitic lime at 10 pounds (4.5 kg), and minor elements from trace element mixes such as FTE 503 or Esmigran at 5 ounces (155 gm). Additional iron may be added in dilutedform at I ounce (28 gm) of 138 Fe.The method of premixing all fertilizer materials in the medium before planting may include the use of slow-release nitrogen materials such as Mag-amp,Osmocote, isobutylidene diurea (IBDU), or sulfur-coated urea (SCU). This method is not commonly used but, when compared to the liquid-feed method,it is reported to produce equal or better yields of tomatoes (Sheldrake, Dallwyn, and Sangster 1971).The premix method offers important advantages by eliminating the need to prepare nutrient solutions,and the purchase and maintenance of a fertilizer proportioner. The potential disadvantage of slow-release fertilizers that supply all of the nitrogen and potassium is that they may not be able to release the elements at the proper rate to satisfy the plants'needs. While slow-release fertilizers are widely used in the ornamental plant industry, their success rate and cost-effectiveness on vegetables in soilless culture have not been adequately established. Until more information becomes available, it is suggested that their use be limited to medium amendments in proven fertilizer programs.1ppm (parts per million) = mg per liter. Calculation example: to obtain 100 ppm N from potassium nitrate (14 percent N), 100 / 0. 14= 715 mg potassium nitrate/liter = 0. 715 gm/liter = 2.79 gm potassium nitrate/gallon (1 gallon = 3.785 liters).。

无土栽培方案及注意事项

无土栽培方案及注意事项

无土栽培方案及注意事项
一、无土壤的培养基,选择
无土栽培实际上不需要土壤耕作,因为它不需要土壤耕作,你需要一些东西来代替土壤,在选择这一替代媒介需要注重土壤介质的特性,介质的优点和缺点。

如果不是水文化的选择,材料的选择更多是由你来决定。

例如,你需要种植九层楼,你可以选择高渗透性的介质,如椰子树。

二、建议选择水培
有很多农民不推荐水培,但我认为作物选择的水培,因为水培作物有高和快的生长。

三、营养液的选择
当然,营养液是由作物的选择决定的,每种营养需要量的作物种植比例有所不同,更不用说不同生育期作物对养分需求的不同。

因为无土壤培养基的培养基通常是中性的,因此在持续生长过程中需要添加营养液以确保生长需要。

四、PH值
在没有土壤的文化中,最重要的是控制PH值,但也有很多人因为PH值的不正确控制而导致作物生长的直接原因。

由于大多数无土培养基都是中性的,不具有酸碱抗冲击能力,如果在PH值波动引起的生长过程中较大,则会导致作物生长限制。

无土栽培

无土栽培

1.无土栽培:是指不用天然土壤,而用营养液或固体基质加营养液栽培作物的方法。

2.非固体基质栽培:根系直接生长在营养液或含有营养成分的潮湿空气之中,根际环境中除了育苗时用固体基质外,一般不使用固体基质。

它可以分为水培和雾培.3.水培:作物根系直接生长在营养液液层中的无土栽培方法。

根据营养液液层的深度分为:营养液膜技术(NFT):以1~2㎝的浅层流动营养液来种植作物;深液流水培技术(DFT):液层深度6~8㎝;浮板毛管水培技术(FCH):在5~6㎝深的营养液层中放置一块上铺无纺布的泡沫板,根系生长在湿润的无纺布上.4.雾培:雾培又称喷雾培或气培,它是将营养液用喷雾的方法,直接喷到作物根系上。

5.固体基质培:简称基质培,指作物根系生长在各种天然或人工合成的固体基质环境中,通过固体基质固定根系,并向作物供应营养和氧气的方法。

6.营养液:是将含有植物生长发育所必需的各种营养元素的化合物和少量为使某些营养元素的有效性更为长久的辅助材料,按一定的数量和比例溶解于水中所配制而成的溶液。

7.电导率(EC):指单位距离的溶液其导电能力的大小,国际上它常以毫西门子/厘米(mS/cm)或微西门子/厘米(µS/cm)来表示。

8.生理平衡:能够满足植物按其生长发育要求吸收到一切所需的营养元素,又不会影响到其正常生长发育的营养液,它是生理平衡的营养液。

有协助作用和颉颃作用。

9.化学平衡:主要是指营养液配方中的有些营养元素的化合物当其离子浓度达到一定的水平时就会相互作用而形成难溶性化合物而从营养液中析出,从而使营养液中某些营养元素的有效性降低以致影响到营养液中这些营养元素之间的相互平衡。

10.营养液配方:在一定体积的营养液中,规定含有各种必需营养元素盐类的数量称为营养液配方。

11.配置营养液一般配置浓缩贮备液(也叫母液)和工作营养液(或叫栽培营养液,即直接用来种植作物用的)两种。

营养液中的溶存氧浓度:在一定温度一定大气压条件下单位体积营养液中溶解的阳畦的数量,以毫克/升来表示。

四年级劳技教案无土栽培实验(整理1)

四年级劳技教案无土栽培实验(整理1)

未来发展趋势预测
01
技术创新
随着科技的不断进步,无土栽培技术将不断创新和完善。例如,通过研
发新型基质材料、改进灌溉系统和优化环境调控技术等手段,提高无土
栽培的产量和品质。
02
智能化管理
借助物联网、大数据和人工智能等技术手段,实现无土栽培系统的智能
化管理。通过实时监测植物生长环境参数和生理指标,自动调节温光水
04 实验中遇到的问 题及解决方案
常见问题汇总
种子不发芽或发芽率低
01
可能由于种子质量、水分不足、温度不适宜等原因导致。
植物生长缓慢
02
可能是由于光照不足、养分不均衡或水分管理不当等原因造成。
植物出现病虫害
03
无土栽培环境中,植物可能会受到真菌、细菌等病原体的侵害。
针对性解决方案提供
种子不发芽或发芽率低 选用优质种子,确保充足的水分和适宜的温度,如使用加 热垫保持恒温。
通过团队合作,培养学生协作精神和 集体荣誉感。
让学生在实践中发现问题、解决问题, 培养其独立思考和解决问题的能力。
探究植物生长条件
通过实验了解植物生 长的必需条件,如光 照、温度、水分、养 分等。
通过对比实验,了解 土壤栽培和无土栽培 的异同点。
探究不同条件对植物 生长的影响,了解植 物生长的规律。
小组内成员互相评价表现
每位成员在实验中都能够积极参 与,认真完成自己的任务,体现
了良好的团队合作精神。
在实验过程中,大家能够互相帮 助,共同解决问题,展现了较强
的协作能力。
部分成员在实验中表现突出,能 够主动承担责任,为小组实验的
顺利进行做出了重要贡献。
优秀经验分享和交流环节
通过本次实验,我们深刻体会到了无土栽培技术的优势,如节省空间、节约水资源 等。

无土栽培种植技术

无土栽培种植技术

无土栽培种植技术一、无土栽培技术简介1、无土栽培的概念无土栽培是最近几十年发展起来的一种蔬菜栽培新技术,它不是在土壤里栽培蔬菜,而是把蔬菜生长所需要的矿质营养物质,溶于水中配成营养液,通过一定的栽培设施形式,在一定的栽培基质中,用营养液进行蔬菜的栽培。

因为不用土壤栽培,所以称无土栽培,又称营养液栽培或称水培法。

2、无土栽培的优点长势强、产量高、品质好、收益大;节约肥、水;病虫害轻微,产品清洁卫生;节省劳力,减少轮作换花;栽培地点,选择余地大;有利于实现蔬菜栽培的产业化和现代化。

3、无土栽培类型A.基质栽培:(1)无机基质①粒状基质:砂培、珍珠岩培等②泡沫基质:聚乙烯等泡沫塑料栽培③纤维基质:岩绵、矿绵等栽培④其他:蛭石等栽培(2)有机基质:草炭、锯末、稻壳、树皮等栽培B.半基质栽培:在栽培容器中,基质、营养液和空气各占一定空间比例的栽培形式C.无基质栽培:①水培②喷雾栽培4、无土栽培应用范围①目前我国日光温室无土栽培主要蔬菜示范应用范围是:黄瓜、番茄、菜豆、甜椒、生菜、西瓜、厚皮甜瓜、空心菜、甘蓝、绿菜花、芹菜等。

②我国无土栽培主要栽培类型的应用范围是:有机生态型无土栽培和浮板毛管水无土栽培。

③无土栽培是农业科技发展到一定阶段的产物,它的应用要求较高的设备投入和技术条件。

二、立体无土栽培技术立体栽培也叫垂直栽培是立体化的无土栽培,这种栽培是在不影响平面栽培的条件下,通过四周竖立起来的柱形栽培向空间发展,充分利用温室空间和太阳能,以提高土地利用率3~5培,可提高单位面积产量2~3倍。

1、立体栽培的类型(1)柱状栽培栽培柱采用杯状石棉水泥管、硬质塑料管、陶瓷管或瓦管,在管四周按螺旋位置开孔,并做成耳状突出,以便种植作物,栽培容器中装入基质,重叠在一起形成栽培柱。

也可采用专门的无土栽培柱,栽培柱由若干个短的模形管构成,每一个模形管有几个突出的杯状物,用以种值作物。

(2)长袋状栽培栽培袋采用直径15厘米、厚0.15毫米的聚乙烯筒膜,长度一般为2米,底端结紧以防基质落下,从上端装入基质成为香肠的形状,上端结扎,然后悬挂在温室中,袋子的周围开一些2.5~5厘米的孔,用以种植作物。

《无土栽培》-(水培花卉)(课件)-六年级上册劳动苏教版

《无土栽培》-(水培花卉)(课件)-六年级上册劳动苏教版
生产应用始于20世纪70年代,主要是水稻无土育秧, 蔬菜作物无土育苗。1980年全国成立了蔬菜工厂化育苗协作组,除研究无 土育苗外,还进行了保护地无土栽培技术研究。2016年中科院植物研究所 和福建三安集团建立起世界最大面积的全人工光植物工厂中科三安植物工厂, 实现了无土栽培蔬菜生产的大规模产业化应用。
02
优点
8
01
1、节水、省肥、高产:无土栽培中作物所需各种营养元素是人为配制成营养 液施用的,水分损失少,营养成分保持平衡,吸收效率高,并且是根据作物种 类以及同一作物的不同生育阶段,科学地供应养分。因此作物生长发育健壮, 生长势强,可充分发挥出增产潜力。 2、清洁卫生无污染:土壤栽培施有机肥,肥料分解发酵,产生臭味污染环境, 还会使很多害虫的卵孳生,危害作物,而无土栽培施用的是无机肥料,不存在 这些问题,并可避免受污染土壤中的重金属等有害物质的污染。 3、省工省力、易于管理:无土栽培不需要中耕、翻地、锄草等作业,省力省 工。浇水追肥同时解决,并由供液系统定时定量供给,管理方便,不会造成浪 费,大大减轻了劳动强度。
无土栽培(水培花卉)
1
CONTENT S
01 无土栽培

02 优点

03 类型
2
01
无土栽培
3
01
01
无土栽培,是指以水、草炭或森林腐叶土、蛭石等介质作植株根系的 基质固定植株,植物根系能直接接触营养液的栽培方法。无土栽培中 营养液成分易于控制,且可随时调节。在光照、温度适宜而没有土壤 的地方,如沙漠、海滩、荒岛,只要有一定量的淡水供应,便可进行。 无土栽培根据栽培介质的不同分为水培、雾(气)培和基质栽培。水 培是指植物根系直接与营养液接触,不用基质的栽培方法。最早的水 培是将植物根系浸入营养液中生长,这种方式会出现缺氧现象,严重 时造成根系死亡。常采用营养液膜法的水培方式,即一层很薄的营养 液层,不断循环流经作物根系,既保证不断供给作物水分和养分,又 不断供给根系新鲜氧气。

无土栽培与土培的优势比较

无土栽培与土培的优势比较

无土栽培与土培的优势比较无土栽培和土培是两种不同的植物栽培方法,它们各有优势和劣势。

下面是对这两种方法进行1200字以上的优势比较:一、成本和资源使用效益比较:无土栽培:无土栽培采用水培、气溶胶或无土介质等方法,不需要大量的土壤资源。

由于不需要购买土壤和肥料,因此可以节省成本。

而且由于水和养分可以循环利用,减少了浪费的机会。

此外,无土栽培允许农作物在较小的空间中生长,因此可以节约土地资源。

土培:土培方式传统且常规,通过使用土壤来提供植物生长所需的养分和水分。

土培过程需要购买和运输大量的土壤,并且会频繁更换,成本较高。

而且土壤养分无法循环利用,容易造成资源浪费。

此外,土壤的使用需要大量的土地空间,节约土地资源的效益不高。

综上所述,无土栽培相对于土培而言,成本和资源使用效益较高。

二、病虫害控制比较:无土栽培:无土栽培通过人工调控的方式提供适宜的环境和营养,使得植物生长更健康。

在无土栽培过程中,使用的介质和水都经过消毒处理,减少了病虫害的传播和感染风险。

此外,因为无土栽培一般在室内进行,所以可以随时监测和控制环境条件,更容易发现和处理病虫害问题。

土培:土培方式的土壤中存在各种微生物和有机物质,有利于植物生长,但同时也更容易滋生病虫害。

土培中的病虫害传播较为普遍,一旦发生病虫害,治疗起来也较为困难。

尽管可以采取一些措施来预防病虫害,例如使用化学农药,但对环境和人体健康可能带来一定的负面影响。

综上所述,无土栽培相对于土培而言,能够更好地控制病虫害的发生和传播。

三、植物生长效果比较:无土栽培:由于无土栽培中提供了适宜的环境和营养,能够更好地控制植物的生长情况。

无土栽培中的水分和养分可以直接供给植物根系,使得植物生长更为快速和均匀。

此外,无土栽培中植物的根系不需要扎根在土壤中,能够更好地吸收养分和水分,促进植物的生长。

土培:土培方式的植物生长受土壤环境和土壤质量的限制。

土培中的土壤质量和养分分布不均匀,容易造成植物根系的阻碍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(四)供水系统
(一)栽培场所
(一)催芽室 黑暗或弱光;温度20~25℃ ;湿度较 高。 (二)绿化室 温度15~20℃ ;弱光;通风。
(二)栽培架与栽培容器
(一)栽培架
材料:角铁、铝合金、木头。 规格:4~6层;间距30cm、宽50~ 60cm;长2.7m。
(二)栽培容器
材料:塑料。 塑料育苗盘:62×24×5cm;50×30×5cm。
(二)育苗盘生产
品种选择
种子处理
摆盘上架
采收
绿化2天
(三)苗床生产
建苗床
装基质
播种
10~12cm采收
管理
三、绿豆芽
(一)容器生产 (二)苗床生产
绿豆芽
(一)容器生产
品种选择 生产步骤
浸种 播种 25℃催芽 后期培养
容器
5~7d,芽长10cm采收
(二)苗床生产
建苗床(1m,5~6m) 装基质(5cm)
图示:栽培架与栽培容器
图示:栽培架与栽培容器
图示:沙培芽菜栽培槽
(三)栽培基质
单一或复合基质。
(四)供水系统
1.规模化生产 自动喷雾装置。 2.家庭式生产 喷壶等。
三、基本过程
(一)一般芽菜 (二)工厂化芽菜
(一)一般芽菜
种子处理
播种
暗室生长
采收
绿化室生长
(二)工厂化芽菜
四、技术关键
种子或营养器官
黑暗或弱光
嫩芽、芽苗、芽球或幼茎 类型:籽芽菜;体芽菜
(二)优点 1.营养丰富,品质好,具保健功能; 2.符合绿色食品的标准; 3.周期短,复种指数高,经济效益大; 4.栽培形式多样,易操作; 5.易进行立体化、工厂化生产。
二、基本设施 (一)栽培场所 (二)栽培架与栽培容器 (三)栽培基质
幼苗期
15~20℃
长日照(低温、短日照)
(二)育苗盘生产
品种选择
种子处理
摆盘上架
采收
绿化
(三)苗床生产
建苗床
装基质
播种
采收
管理
二、萝卜苗 (一)对环境条件的要求 (二)育苗盘生产 (三)苗床生产
萝卜苗
(一)对环境条件的要求
1.温度 发芽期:20~25℃ ;幼苗期:15~ 20℃ 。 2.光照 长日照。 3.基质pH值与湿度 5.3~7.0;60~80%。
(一)防杂菌 (二)控制温度 (三)保持湿度
一、豌豆苗 二、萝卜苗 三、绿豆芽
四、花生芽 五、香椿芽 六、刺嫩芽
一、豌豆苗 (一)对环境条件的要求 (二)育苗盘生产 (三)苗床生产
豌豆苗
(一)对环境条件的要求
发芽期
18~20℃ 5.5~6.7 基质 湿度 60~70% 空间 85~90%
温度 光照 基质pH值
第十章 芽苗菜的无土栽培技术
学习目标: 基本掌握芽菜生产的优点、设施
组成以及典型芽菜的生产技术。
知识点:
芽菜所需的基本设施。
技能:
典型芽菜的生产技术。
第一节 芽苗菜概述 第二节 芽苗菜生产例举
一、概念与优点 二、基本设施
三、基本过程 四、技术关键
一、概念与优点
(一)概念 (二)优点
(一)概念
一、什么叫芽苗菜?可分为几种类型? 二、生产芽苗菜有哪些优点? 三、如何生产豌豆、萝卜、绿豆和刺嫩芽等芽 苗类蔬菜? 四、芽苗菜生产中的关键技术是什么?
Байду номын сангаас
覆沙5cm厚
播种
浸种催芽
8~10cm采收
四、花生芽
选种 浸种(20℃ ,12~20h
一次催芽(25~30℃,4cm)
二次催芽(20~35℃,摞盘、倒盘) 采收(根长0.1~1.5cm、胚轴长1.5cm)
花生芽
五、香椿芽
生产方式(立体盘栽) 浸种催芽(55℃,12h,23℃ 播种(珍珠岩厚2.5cm,覆1.5cm) 采收(12~15d、胚轴长10cm 喷雾管理
香椿芽
六、刺嫩芽
(一)无基质水插 (二)有基质畦插
刺嫩芽
(一)无基质水插
注水 30cm 枝条 管理30~40d 20cm 1m
栽培槽
采收2~3茬
(二)有基质畦插
扦插 15~20cm 剪取枝条 基质
管理30~40d
20cm 1~1.2m 栽培槽
采收1~2茬
含义
概述
生产优点 生产例举
豌豆 萝卜 绿豆 花生 香椿 刺嫩芽
相关文档
最新文档