七年级上册数学全册单元试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学全册单元试卷测试卷附答案

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.

(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;

(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .

证明:过点 E 作 EH∥AB,

∴∠FEH=∠BFE(▲),

∵AB∥CD,EH∥AB,(辅助线的作法)

∴EH∥CD(▲),

∴∠HEG=180°-∠CGE(▲),

∴∠FEG=∠HFG+∠FEH=▲ .

(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.

【答案】(1)90°

(2)解:∠GEF=∠BFE+180°−∠CGE,

证明:过点 E 作 EH∥AB,

∴∠FEH=∠BFE(两直线平行,内错角相等),

∵AB∥CD,EH∥AB,(辅助线的作法)

∴EH∥CD(平行线的迁移性),

∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),

∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,

故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平

行,同旁内角互补;∠BFE+180°−∠CGE;

(3)解:∠GPQ+∠GEF=90°,

理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,

∴∠BFQ=∠BFE,∠CGP=∠CGE,

在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,

∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.

即∠GPQ+∠GEF=90°.

【解析】【解答】(1)解:如图1,过E作EH∥AB,

∵AB∥CD,

∴AB∥CD∥EH,

∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,

∵∠CGE=130°,

∴∠HEG=50°,

∴∠GEF=∠HEF+∠HEG=40°+50°=90°;

故答案为:90°;

【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平

分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=

∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.

2.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.

(1)点E,,共线时,如图,求的度数;

(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.

【答案】(1)解:如图中,由翻折得: ,

(2)解:如图,结论: .

理由:如图中,由翻折得:

如图,结论:,

理由: ,

.

【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.

3.如图,线段AB=20cm.

(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?

(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.

【答案】(1)解:设x秒点P、Q两点相遇根据题意得:

2x+3x=20,

解得x=4

答:4秒后,点P、Q两点相遇。

(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒

②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒

【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;

(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。

4.如图

(1)观察思考

如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;

(2)模型构建

如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;

(3)拓展应用

8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?

请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.

【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段

(2)解:,

理由:设线段上有m个点,该线段上共有线段x条,

则x=(m-1)+(m-2)+(m-3)+…+3+2+1,

∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),

相关文档
最新文档