实验三:使用matlab求解最小费用最大流算问的题目
求解最大流问题的matlab程序(Matlab program for solving maximum flow problems)
求解最大流问题的matlab程序(Matlab program for solvingmaximum flow problems)Maximum flow algorithmAlgorithm idea: the maximum flow problem is actually a feasible flow {fij}, which makes the V (f) reach the maximum. If you give a feasible flow F, as long as there is no judgment in N augmenting path on the F, if there is an augmented path, improved F, a new feasible flow rate increases; if there is no augmenting path, get the maximum flow.1. labeling method for maximum flow (Ford, Fulkerson)Starting with a feasible flow (a general zero flow), the following labeling procedure and the adjustment process are followed until no augmenting path about F can be found.(1) labeling processIn this process, the points in the network are divided into labeled and unlabeled points, and the labeled points are divided into two kinds: checked and unchecked. Each label label information points are expressed in two parts: the first label show that the label from which point to start the traceback path from the VT to find out is augmented; second label is said to have checked whether the vertex.At the start of the label, mark vs (s, 0), when vs is the label, but at the end of the check point, and the rest are unlabeled points, denoted as (0, 0).Take a label without checking the point VI, for all unlabeled points, vj:A. for arc (VI, VJ), if fij<cij, then give the VJ label (VI,0), then the VJ point becomes the label, which is not checked.B. for arc (VI, VJ), if fji>0, then give the VJ label (-vi, 0), then the VJ point becomes the label, which is not checked.Thus, VI becomes a labeled and checked point, and its second label is denoted as 1. Repeat the steps above and, once VT is marked, indicate an extended path from VI to P, and VT into the adjustment process.If all the labels have been checked and the label process fails, the algorithm ends with the feasible flow being the maximum flow.(2) adjustment processFrom the VT point, through the first label of each point, backward tracing, we can find the augmenting path P. For example, if the first label of VT is VK (or -vk), then the arc (VK, VT) (or correspondingly (VT, VK)) is the arc on the P. Next, check the first label of VK, and if it is VI (or -vi), find (VI, VK) (or VI (VK)). Check the first label of VI, and so on, until vs. At this point, the entire augmenting path is found. Calculate the Q at the same time as you look for the augmenting path:Q=min{min (cij-fij), minf*ij}Convective f is subject to the following modifications:F'ij = fij+Q (VI, VJ) set prior to the arc in P'sF'ij = fij-Q (VI, VJ) and P to arc setF'ij = f*ij (VI, VJ) does not belong to the set of PNext, all tags are cleared and the new feasible stream 'f' is re entered into the labeling process.Matlab procedures for solving the maximum flow problem. (2007-05-22 19:41:06) reprint label: maximum flow problem matlabCall way: need to be abstracted into graph matrix, abstract methods: (I, J, C, f) i--- nock, j--- arrow, c---v (I, J) the capacity of f---v (I, J) of the flow.main programFunction R=maxliu (R)While (1)VV=zengguang (R);If VV==inf return; endR (VV (1), 4) =R (VV ((1)) 4) +VV ((2) *min) (VV ((:: 3));EndThe outer function 1, the expansion matrix of the graph RFunction VV=zengguang (R)% for the shortest extension chain, requiring labeling, starting at 1, and ending at the maximumK=size (R, 1);N=max (R ((:: 2));B=R (:: 1:2);For i=1:k;A (I, 1) =R (I, 3) -R (I, 4);If R (I, 1) ~=1&&R (I, 2) ~=n;A (I, 2) =R (I, 4);ElseA (I, 2) =0;EndEndR=1;For i=1:nFor j=1:kIf (A (J, 1) (~=0) and B (J, 1) ==i) V (R::) =[i, B (J, 2)];r = r + 1.endif (i) = 0) & & (b, i, 2) = = 1)v (r) = (1, b), (d) (1);r = r + 1.endendendp = zeros (n, n).for i = 1: size (v, 1)p (v (i, 1), v (i, 2)) = 1.endq = dijkstra (p, 1, n).if q = inf (vv = inf); return; end for i = 1: length (q) (1).pi = (q (1, i), q (1, i + 1)];r1 = find (b (1) = p (1));r2 = find (b (2) = p (1));rr = intersect (r1, r2).d = 1.the isempty() (rr)r1 = find (b (1) = p (1));r2 = find (b (2) = p (1));rr = intersect (r1, r2).d = - 1.end(i) = rr.- (i) = -.endfor i = 1: size (vv. 1)if it (i) = = 1)aa (i, 1) = ((i, 1), (1);endif it (i) = = 1)aa (i, 1) = ((i, 1), (2);endend(:, 2) = tt.vv: (3) = sa;外部函数2, dijkstra方法求最段路. the foot = dijkstra (v, x, y)% 正权数m = size (v, 1).t = zeros (m, 1);% t的初始化 inft = t ^ - 1.dml =;% lmd的初始化 infp = t;% p的初始化 infs = zeros (n, 1);% s的初始化 (进入s集的点为1)s (x) = 1);% 根据本题已知的初始化p (x) = 0 (x) = 0,; french;k = x;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 计算 p"(1)a = find (s = 0).aa = find (s = 1).the size (a, 1) = mbreak;endfor i = 1: size (a, 1)pi = (i, 1).if v (k, l) = 0.if t (pp) (p (k) + v (k, l). (p) = (p (k) + v (k, l).dml (pi) = k;endendendmi = min (t (a));if mi = infbreak;elsed = find (t = e).d = d (1);p (d) = mi.(d) = inf, 为了避免同样的数字出现两次. k = d(d) = 1.endendthe mdl (y) = inffoot = inf.return;endfoot (1).g = 2; m = y;"(1)if h = x x x x x x xbreak;endfrench football (g) = (h).g = g + 1.h = (h); mdlendpace = foot);for i = 1: length (foot)foot (1, i) = (1) / length (foot) + 1 (i). end。
最小费用最大流问题matlab程序
下面的最小费用最大流算法采用的是“基于Floyd最短路算法的Ford和Fulkerson迭加算法”,其基本思路为:把各条弧上单位流量的费用看成某种长度,用Floyd求最短路的方法确定一条自V1至Vn的最短路;再将这条最短路作为可扩充路,用求解最大流问题的方法将其上的流量增至最大可能值;而这条最短路上的流量增加后,其上各条弧的单位流量的费用要重新确定,如此多次迭代,最终得到最小费用最大流。
本源码由GreenSim团队原创,转载请注明function [f,MinCost,MaxFlow]=MinimumCostFlow(a,c,V,s,t)%%MinimumCostFlow.m% 最小费用最大流算法通用Matlab函数%% 基于Floyd最短路算法的Ford和Fulkerson迭加算法% GreenSim团队原创作品,转载请注明%% 输入参数列表% a 单位流量的费用矩阵% c 链路容量矩阵% V 最大流的预设值,可为无穷大% s 源节点% t 目的节点%% 输出参数列表% f 链路流量矩阵% MinCost 最小费用% MaxFlow 最大流量%% 第一步:初始化N=size(a,1);%节点数目f=zeros(N,N);%流量矩阵,初始时为零流MaxFlow=sum(f(s,:));%最大流量,初始时也为零flag=zeros(N,N);%真实的前向边应该被记住for i=1:Nfor j=1:Nif i~=j&&c(i,j)~=0flag(i,j)=1;%前向边标记flag(j,i)=-1;%反向边标记endif a(i,j)==infa(i,j)=BV;w(i,j)=BV;%为提高程序的稳健性,以一个有限大数取代无穷大endendendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在elseRE=0;end%% 第二步:迭代过程while RE==1&&MaxFlow<=V%停止条件为达到最大流的预设值或者没有从s到t的最短路%以下为更新网络结构MinCost1=sum(sum(f.*a));MaxFlow1=sum(f(s,:));f1=f;TS=length(R)-1;%路径经过的跳数LY=zeros(1,TS);%流量裕度for i=1:TSLY(i)=c(R(i),R(i+1));endmaxLY=min(LY);%流量裕度的最小值,也即最大能够增加的流量for i=1:TSu=R(i);v=R(i+1);if flag(u,v)==1&&maxLY<c(u,v)%当这条边为前向边且是非饱和边时f(u,v)=f(u,v)+maxLY;%记录流量值w(u,v)=a(u,v);%更新权重值c(v,u)=c(v,u)+maxLY;%反向链路的流量裕度更新elseif flag(u,v)==1&&maxLY==c(u,v)%当这条边为前向边且是饱和边时 w(u,v)=BV;%更新权重值c(u,v)=c(u,v)-maxLY;%更新流量裕度值w(v,u)=-a(u,v);%反向链路权重更新elseif flag(u,v)==-1&&maxLY<c(u,v)%当这条边为反向边且是非饱和边时 w(v,u)=a(v,u);c(v,u)=c(v,u)+maxLY;w(u,v)=-a(v,u);elseif flag(u,v)==-1&&maxLY==c(u,v)%当这条边为反向边且是饱和边时 w(v,u)=a(v,u);c(u,v)=c(u,v)-maxLY;w(u,v)=BV;elseendendMaxFlow2=sum(f(s,:));MinCost2=sum(sum(f.*a));if MaxFlow2<=VMaxFlow=MaxFlow2;MinCost=MinCost2;[L,R]=FLOYD(w,s,t);elsef=f1+prop*(f-f1);MaxFlow=V;MinCost=MinCost1+prop*(MinCost2-MinCost1);returnendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在elseRE=0;endendfunction [L,R]=FLOYD(w,s,t)n=size(w,1);D=w;path=zeros(n,n);%以下是标准floyd算法for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendL=zeros(0,0);R=s;while 1if s==tL=fliplr(L);L=[0,L];returnendL=[L,D(s,t)];R=[R,path(s,t)];s=path(s,t);end(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的支持)。
求网络的最小费用最大流matlab实现
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><!-- saved from url=(0048)/yunyan8/shu/file/wlzxfy.htm --><HTML><HEAD><TITLE>求网络的最小费用最大流</TITLE><META http-equiv=Content-Type content="text/html; charset=gb2312"><META content="MSHTML 6.00.2800.1106" name=GENERATOR><META content=FrontPage.Editor.Document name=ProgId></HEAD><BODY background=求网络的最小费用最大流.files/bb.jpg><TABLE height=5124 cellSpacing=0 cellPadding=0 width=585 align=centerborder=0><TBODY><TR><TD width=585 height=33><P><A href="/yunyan8/shu/file/SHAI.HTM">首页</A>|<Ahref="/2/default.asp?name=yunyan8">留言</A>|<Ahref="/" target=_blank>论坛</A></P></TD></TR><TR><TD width=585 height=38><P align=center><FONT size=5><B><FONTcolor=#3366ff>求网络的最小费用最大流</FONT></B></FONT></P></TD></TR><TR><TD width=585 height=5053><FONTcolor=#3366ff>求网络的最小费用最大流,弧旁的数字是容量(运费)。
实验三:使用matlab求解最小费用最大流算问题
北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。
求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。
为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。
为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
1.最小费用流算法的框图描述。
图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。
求最小费用最大流算法的MATLAB 程序代码
求最小费用最大流算法的MATLAB 程序代码如下(算例):n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;endif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end %如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end %计算最小费用f %显示最小费用最大流wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。
最小费用最大流问题例题讲解
最小费用最大流问题例题讲解
最小费用最大流问题(Minimum Cost Maximum Flow Problem)是一种在特定的多媒体网络中传送给定体积的流量,使总花费最小化的一种算法。
它能满足一些实际生活中的求解,比如电力系统的供求、工厂的物料的分配和两地之间的物品的运输问题,以及更加复杂的产品开发和行业分工中的分布问题等等。
最小费用最大流问题的目标是在满足给定的最大流量要求的前提下,找出具有最小成本的流量方案。
这种问题的解决步骤如下:
1. 在图形中定义网络:用图形表示整个网络,每条边的容量是边上的流量上限。
2. 尝试找出最大流量:在不超过容量限制的前提下,找出输出流量最大的允许方案,也就是最小费用最大流量。
3. 计算最小成本:对所有边的成本进行总结,计算出最小成本。
下面以一个最小费用最大流问题的例题来说明:
假设有一个三角形的网络,它由一个源点S、一个汇点T、一个中间点O以及三条边组成,边的名字分别是SO、OT、OS,它们的容量分别是10、15和5,费用分别是5、3和2。
要求我们在此条件下求解最小费用最大流问题。
解:首先,我们可以求出最大流量:在边SO的容量为10时,我们可以将费用最小的边OT累加,得到最大流量值为10+3=13。
接下来,计算最小费用:根据上述算法,所有边的费用应该都大于等于0,才能累加而得到最大流量。
也就是说,最小费用为
5+3+2=10。
最后,最小费用最大流问题的解为:最大流量13,最小成本10。
实验三:使用matlab求解最小费用最大流算问题教学提纲
n=min(ta,n); %将最短路径上的最小允许流量提取出来
end
for i=1:(size(mcr',1)-1)
if a(mcr(i),mcr(i+1))==inf
a(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;
else
a(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))-n;
if D(i,k)+D(k,j)<D(i,j)
D(i,j)=D(i,k)+D(k,j);
R(i,j)=R(i,k);
end
end
end
k;
D;
R;
end
M=D(1,n);
3.求解如下网络运输图中的最大流最小费用问题:
图2
打开matlab软件,在COMND WINDOW窗口中输入矩阵程序如下:
n=5;
新图E(f)中不考虑原网络D中各个弧的容量cij.为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
end
end
Mm=Mm+n; %将每次叠代后增加的流量累加,叠代完成时就得到最大流量
for i=1:size(a,1)
for j=1:size(a',1)
if i~=j&a(i,j)~=inf
if a(i,j)==A(i,j) %零流弧
c(j,i)=inf;
matlab最大流算法
matlab最大流算法摘要:一、最大流算法简介1.最大流问题的定义2.最大流算法的基本原理二、MATLAB 中的最大流算法1.MATLAB 中最大流算法的实现a.网络数据的表示b.最大流算法的实现c.结果的输出与分析三、最大流算法在MATLAB 中的实际应用1.应用背景与需求2.最大流算法的具体应用a.网络流量优化b.网络资源分配c.其他应用场景四、MATLAB 中最大流算法的优缺点分析1.优点a.高效的计算能力b.灵活的图形界面c.丰富的函数库2.缺点a.参数设置不够灵活b.算法实现不够通用c.需要较高的编程能力正文:一、最大流算法简介在网络分析中,最大流问题是一个经典的问题。
给定一个有向图G=(V,E),其中每条边(u, v) 都具有非负容量c(u, v)。
我们需要找到从源节点s 到汇节点t 的一条路径,使得该路径上的流量最大。
这就是最大流问题。
最大流算法是解决这个问题的有效方法。
最大流算法的基本原理是沿边进行松弛操作,并更新边上的流量。
当所有边的流量都达到最大值时,算法结束。
在实际应用中,最大流算法可以用于网络流量优化、网络资源分配等问题。
二、MATLAB 中的最大流算法MATLAB 提供了丰富的函数库,可以方便地实现最大流算法。
首先,我们需要用MATLAB 表示网络数据。
网络数据包括节点、边和容量信息。
我们可以用邻接矩阵或弧表来表示网络数据。
接下来,我们可以使用MATLAB 中的最大流算法求解最大流问题。
MATLAB 提供了`fmincon`函数,可以用于求解线性规划问题。
我们可以将最大流问题转化为线性规划问题,并使用`fmincon`函数求解。
最后,我们可以使用MATLAB 的图形界面功能,绘制网络图和最大流路径。
这样可以直观地展示最大流问题的解。
三、最大流算法在MATLAB 中的实际应用MATLAB 中的最大流算法可以应用于各种实际问题。
例如,在网络流量优化中,我们可以根据网络结构和流量需求,求解最大流问题,以实现流量的合理分配。
matlab floyd最短路算法例题
matlab floyd最短路算法例题【原创版】目录一、引言二、Floyd 算法的原理与实现1.Floyd 算法的基本思想2.Floyd 算法的实现过程三、MATLAB 中 Floyd 算法的实现1.构建邻接矩阵2.实现 Floyd 算法3.显示最短路径四、Floyd 算法的应用案例1.案例描述2.案例分析五、总结正文一、引言在最短路径问题中,Floyd 算法是一种经典的动态规划算法。
它可以用于求解加权连通图(有向图、无向图)中所有顶点之间的最短路径长度。
本文将介绍 Floyd 算法的原理与实现,并在 MATLAB 中进行演示,最后通过一个实际案例来说明 Floyd 算法的应用。
二、Floyd 算法的原理与实现1.Floyd 算法的基本思想Floyd 算法的基本思想是:对于任意两个顶点 i 和 j,如果从顶点i 到顶点 j 的路径中有一个顶点 k,使得从顶点 i 到顶点 k 的路径长度加上从顶点 k 到顶点 j 的路径长度小于从顶点 i 直接到顶点 j 的路径长度,那么就将当前路径的长度更新为从顶点 i 到顶点 k 的路径长度加上从顶点 k 到顶点 j 的路径长度。
不断更新所有顶点之间的路径长度,直到所有顶点之间的路径长度都达到最短。
2.Floyd 算法的实现过程Floyd 算法的实现过程分为三个步骤:(1)构建邻接矩阵:邻接矩阵是一个二维数组,其中邻接矩阵的元素 a(i, j) 表示顶点 i 到顶点 j 的权值。
如果顶点 i 到顶点 j 之间没有边相连,则 a(i, j) 为无穷大(如 float("inf"))。
(2)初始化距离:将邻接矩阵中所有元素设置为无穷大,然后将主对角线上的元素设置为 0(表示从顶点 i 到顶点 i 的距离为 0)。
(3)迭代更新距离:遍历所有顶点 k,对于每个顶点 i 和 j,如果从顶点 i 到顶点 k 的距离加上从顶点 k 到顶点 j 的距离小于从顶点i 到顶点 j 的距离,那么就将当前距离更新为从顶点 i 到顶点 k 的距离加上从顶点 k 到顶点 j 的距离。
MATLAB中的网络流与最大流最小割问题求解方法
MATLAB中的网络流与最大流最小割问题求解方法随着社会信息化的不断发展,网络已经成为了人们日常生活中不可或缺的一部分。
而网络的流量管理对于网络的高效运行至关重要。
在网络流领域中,最大流最小割问题是一种经典且重要的问题,它在图论和算法设计领域都具有广泛的应用。
在本文中,我们将介绍MATLAB中的网络流与最大流最小割问题求解方法。
一、网络流与最大流最小割问题简介网络流问题是指在网络中有一定容量限制的边上,如何使得网络中的流量达到最大的问题。
最大流最小割问题则是网络流问题的一个特殊情况,其中要求找到一个最小割,使得割后网络中的流量达到最大。
通常情况下,网络流问题常常以有向图的形式表示,每条边上都被赋予了一个容量,并存在一个源点和一个汇点。
二、MATLAB中的网络流包在MATLAB中,有许多优秀的网络流包可以用来求解网络流与最大流最小割问题。
其中,最为常用的是Network Flow Toolbox和Combinatorial Optimization Toolbox。
这两个包提供了一系列的函数和算法,可以帮助我们解决各种类型的网络流问题。
三、网络流与最大流最小割问题的建模与求解在使用MATLAB解决网络流与最大流最小割问题之前,首先我们需要进行问题的建模。
通常情况下,我们需要确定图的结构、边的容量和源点与汇点的位置。
在建模完成后,我们可以使用MATLAB中的网络流包提供的函数进行求解。
1. 使用Network Flow Toolbox求解网络流问题Network Flow Toolbox是MATLAB中一个常用的网络流包,它提供了一系列函数用于求解网络流与最大流最小割问题。
其中最常用的函数是maxflow函数,它可以用来计算网络中的最大流。
首先,我们需要使用网络流对象来表示图结构。
在建立网络流对象后,我们可以使用addnode函数向图中添加节点,使用addedge函数向图中添加边。
同时,我们可以使用setcaps函数来指定边的容量。
MATLAb最短路问题
[ { v 1 , v 4 , v 5 } ] [ { e 1 , e 2 , e 3 } ]
MATLAb最短路问题
返回
关联矩阵
对 无 向 图 G , 其 关 联 矩 阵 M = ( m i) j , 其 中 :
G 的图解如图.
MATLAb最短路问题
定义 在 图 G 中 , 与 V 中 的 有 序 偶 ( v i , v j ) 对 应 的 边 e , 称 为 图 的 有 向
边 ( 或 弧 ) , 而 与 V 中 顶 点 的 无 序 偶 v i v j相 对 应 的 边 e , 称 为 图 的 无 向 边 . 每 一 条 边 都 是 无 向 边 的 图 , 叫 无 向 图 ; 每 一 条 边 都 是 有 向 边 的 图 , 称 为 有 向 图 ; 既 有 无 向 边 又 有 有 向 边 的 图 称 为 混 合 图 .
则称w(P) w(e)为路径P的权. eE(P)
(2) 在赋权图G中,从顶点u到顶点v的具有最小权的路
P*(u,v),称为u到v的最短路.
MATLAb最短路问题
返回
固定起点的最短路
最短路是一条路径,且最短路的任一段也是最短路. 假设在u0-v0的最短路中只取一条,则从u0到其 余顶点的最短路将构成一棵以u0为根的树.
称为相邻的边. (4)边和它的端点称为互相关联的. (5)既没有环也没有平行边的图,称为简单图. (6)任意两顶点都相邻的简单图,称为完备图,记为Kn,其中n
为顶点的数目.
( 7)若V=X Y,X Y= ,X 中任两顶点不相邻,Y 中任两顶
点不相邻,称G为二元图;若X 中每一顶点皆与Y 中一切顶点 相邻,称为完备二元图,记为Km,n,其中m,n 分别为X 与Y 的顶 点数目.
实验三使用matlab求解最小费用最大流算问题
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流。
根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f的最小费用的可扩充链.为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:
end
n=min(ta,n); %将最短路径上的最小允许流量提取出来
end
for i=1:(size(mcr',1)-1)
if a(mcr(i),mcr(i+1))==inf
a(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;
else
a(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))-n;
北京联合大学
实验报告
项目名称:运筹学专题实验报告
学 院:自动化专 业:物流工程
班 级:1201B学 号:21
姓 名:管水城成 绩:
2015年5月6日
实验三:使用matlab求解最小费用最大流算问题
一、实验目的:
(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
C=[0 10 8 0 0;0 0 0 2 7;0 5 0 10 0;0 0 0 0 4;0 0 0 0 0]
b=[0 4 1 0 0;0 0 0 6 1;0 2 0 3 0;0 0 0 0 2;0 0 0 0 0]
Matlab中求函数的最小值
MATLAB优化应用§1 线性规划模型一、线性规划课题:实例1:生产计划问题假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。
每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。
每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。
甲单位产品的利润70元,乙单位产品的利润120元。
问如何安排生产,才能使该厂所获的利润最大。
建立数学模型:设x1、x2分别为生产甲、乙产品的件数。
f为该厂所获总润。
max f=70x1+120x2s.t 9x1+4x2≤36004x1+5x2≤20003x1+10x2≤3000x1,x2≥0实例2:投资问题某公司有一批资金用于4个工程项目的投资,其投资各项目时所得的净收益(投入资金锪百分比)如下表:B和C的投资要大于项目D的投资。
试确定全文该公司收益最大的投资分配方案。
建立数学模型:设x1、x2 、x3 、x4分别代表用于项目A、B、C、D的投资百分数。
max f=0.15x1+0.1x2+0.08 x3+0.12 x4s.t x1-x2- x3- x4≤0x2+ x3- x4≥0x1+x2+x3+ x4=1x j≥0 j=1,2,3,4实例3:运输问题有A、B、C三个食品加工厂,负责供给甲、乙、丙、丁四个市场。
三个厂每天生产食品箱数上限如下表:四个市场每天的需求量如下表:求在基本满足供需平衡的约束条件下使总运输费用最小。
建立数学模型:设a i j 为由工厂i 运到市场j 的费用,x i j 是由工厂i 运到市场j 的箱数。
b i 是工厂i 的产量,d j 是市场j 的需求量。
b= ( 60 40 50 ) d= ( 20 35 33 34 )s.tx i j ≥0当我们用MATLAB 软件作优化问题时,所有求maxf 的问题化为求min(-f )来作。
约束g i (x)≥0,化为 –g i ≤0来作。
Matlab求最大值最小值概要
毕业论文题目:用MATLAB分析最小值和最大值的问题姓名:木扎帕尔·木合塔尔专业:数学与应用数学班级: 2003-6班院(系):数理信息学院指导老师:阿不力米提新疆师范大学MATLAB求最小值和最大值木扎帕尔.木合塔尔新疆师范大学数理信息学院03-6班摘要:我们一般在学习和工作中遇到一些函数,并需要其最小值与最大值,本文讨论一些复杂的函数的最小值与最大值,用MATLAB来求解及分析.关键词:最小值;最大值;MATLAB.用MATLAB分析最小值和最大值的问题我们在学习和工作中需要求解一些函数的最小值和最大值,并用最小值和最大值来分析日常生活中我们遇到的一些问题.一般的问题我们能直接计算出来,但对有一些问题来说求救它的最小值和最大值很复杂,MATLAB具有强大的计算功能,以下我们要讨论的主要问题就是用MATLAB能计算出那些复杂的问题.先看以下例子[1]用钢板制造容积为V的无盖长方形水箱,问怎样选择水箱的长,宽,高才最省钢板.解:设水箱长,宽,高分别是x,y,z.已知xyz=V,从而z=V/xy.水箱表面的面积 S=xy+V/xy(2x+2y)=xy+2V(1/x+1/y),S的定义域D={(x,y)︱0<x<+∞,0<y<+∞}.这个问题就是求函数S在区域D内的最小值.解方程组∂S/∂x=y+2V(-1/2x)=y-2V/2x=0,yy ψ''(x,y)=-2(p-x). []2),(y x xy ψ''-xx ψ''(x,y) yyψ''(x,y) =42x +4xy+42y -8px-8py+52p .在稳定点(2p/3,2p/3), ∆=-2p /3<0,A=-2p/3<0.从而稳定点(2p/3,2p/3)是函数ψ,即ϕ的极大点.由题意, ϕ在稳定点(2p/3,2p/3)必取到最大值.当x=2p,y=2p/3时,z=2p-x-y=2p/3,即三角形三边长的和为定数时,等边三角形的面积最大.森林失火了!消防站接到报警后派多少消防队员前去救火呢?派的队员越多,森林的损失越小,但是救援的开支会越大,所以需要综合考虑森林损失费和救援费与消防队员人数之间的关系,以总费用最小来决定派出队员的数目.问题分析 损失费通常正比于森林烧毁的面积,而烧毁面积于失火,灭火的时间有关,灭火时间又与灭火时间长短有关.记失火时刻为t=0 ,开始救火时刻为t=1t ,灭火时刻为t=2t .设在时刻t 森林烧毁面积为B(t),则造成损失的森林烧毁面积为B(2t ).建模要对函数B(t)的形式作出合理的简单假设.模型假设 需要对烧毁森林的损失费,救援费及火势蔓延程度δB/δd 的形式作出假设.1. 损失费与森林烧毁面积B(2t )成正比,比例系数1c 为烧毁单位面积的损失费.2. 从失火到开始救火这段时间(0≤t ≤1t )内,火势蔓延程度δB/δd 与时间t 成正比,比例系数β称火势蔓延速度.3. 派出消防队员x 名,开始救火以后(t ≥1t )火势蔓延速度降为β-x λ,其中λ可视为每个队员的平均灭火速度.显然应有β<x λ.4. 每个消防队员单位时间的费用为2c ,于是每个队员的救火费用是2c (2t -1t );每个队员的依次性支出是3c .描述:fminunc给定初值,求多变量标量函数的最小值。
最小费用最大流问题matlab程序
最小费用最大流问题m a t l a b程序下面的最小费用最大流算法采用的是“基于Floyd最短路算法的Ford和Fulkerson迭加算法”,其基本思路为:把各条弧上单位流量的费用看成某种长度,用Floyd求最短路的方法确定一条自V1至Vn的最短路;再将这条最短路作为可扩充路,用求解最大流问题的方法将其上的流量增至最大可能值;而这条最短路上的流量增加后,其上各条弧的单位流量的费用要重新确定,如此多次迭代,最终得到最小费用最大流。
本源码由GreenSim团队原创,转载请注明function [f,MinCost,MaxFlow]=MinimumCostFlow(a,c,V,s,t)%%MinimumCostFlow.m% 最小费用最大流算法通用Matlab函数%% 基于Floyd最短路算法的Ford和Fulkerson迭加算法% GreenSim团队原创作品,转载请注明%% 输入参数列表% a 单位流量的费用矩阵% c 链路容量矩阵% V 最大流的预设值,可为无穷大% s 源节点% t 目的节点%% 输出参数列表% f 链路流量矩阵% MinCost 最小费用% MaxFlow 最大流量%% 第一步:初始化N=size(a,1);%节点数目f=zeros(N,N);%流量矩阵,初始时为零流MaxFlow=sum(f(s,:));%最大流量,初始时也为零flag=zeros(N,N);%真实的前向边应该被记住for i=1:Nfor j=1:Nif i~=j&&c(i,j)~=0flag(i,j)=1;%前向边标记flag(j,i)=-1;%反向边标记endif a(i,j)==infa(i,j)=BV;w(i,j)=BV;%为提高程序的稳健性,以一个有限大数取代无穷大endendendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在elseRE=0;end%% 第二步:迭代过程while RE==1&&MaxFlow<=V%停止条件为达到最大流的预设值或者没有从s到t的最短路%以下为更新网络结构MinCost1=sum(sum(f.*a));MaxFlow1=sum(f(s,:));f1=f;TS=length(R)-1;%路径经过的跳数LY=zeros(1,TS);%流量裕度for i=1:TSLY(i)=c(R(i),R(i+1));endmaxLY=min(LY);%流量裕度的最小值,也即最大能够增加的流量for i=1:TSu=R(i);v=R(i+1);if flag(u,v)==1&&maxLY<c(u,v)%当这条边为前向边且是非饱和边时f(u,v)=f(u,v)+maxLY;%记录流量值w(u,v)=a(u,v);%更新权重值c(v,u)=c(v,u)+maxLY;%反向链路的流量裕度更新elseif flag(u,v)==1&&maxLY==c(u,v)%当这条边为前向边且是饱和边时w(u,v)=BV;%更新权重值c(u,v)=c(u,v)-maxLY;%更新流量裕度值w(v,u)=-a(u,v);%反向链路权重更新elseif flag(u,v)==-1&&maxLY<c(u,v)%当这条边为反向边且是非饱和边时w(v,u)=a(v,u);c(v,u)=c(v,u)+maxLY;w(u,v)=-a(v,u);elseif flag(u,v)==-1&&maxLY==c(u,v)%当这条边为反向边且是饱和边时w(v,u)=a(v,u);c(u,v)=c(u,v)-maxLY;w(u,v)=BV;elseendendMaxFlow2=sum(f(s,:));MinCost2=sum(sum(f.*a));if MaxFlow2<=VMaxFlow=MaxFlow2;MinCost=MinCost2;[L,R]=FLOYD(w,s,t);elsef=f1+prop*(f-f1);MaxFlow=V;MinCost=MinCost1+prop*(MinCost2-MinCost1);returnendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在 elseRE=0;endendfunction [L,R]=FLOYD(w,s,t)n=size(w,1);D=w;path=zeros(n,n);%以下是标准floyd算法for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendL=zeros(0,0);R=s;while 1if s==tL=fliplr(L);L=[0,L];returnendL=[L,D(s,t)];R=[R,path(s,t)];s=path(s,t);end。
最新用MATLAB分析最小值和最大值的问题
用M A T L A B分析最小值和最大值的问题毕业论文题目:用MATLAB分析最小值和最大值的问题姓名:木扎帕尔·木合塔尔专业:数学与应用数学班级: 2003-6班院(系):数理信息学院指导老师:阿不力米提新疆师范大学用MATLAB分析最小值和最大值的问题新疆师范大学数理信息学院数学系03-6班作者姓名:木扎帕尔.木合塔尔指导老师:阿不力米提2008年5月用MATLAB分析最小值和最大值的问题木扎帕尔.木合塔尔新疆师范大学数理信息学院03-6班摘要:我们一般在学习和工作中遇到一些函数,并需要其最小值与最大值,本文讨论一些复杂的函数的最小值与最大值,用MATLAB来求解及分析.关键词:最小值;最大值;MATLAB.用MATLAB分析最小值和最大值的问题森林失火了!消防站接到报警后派多少消防队员前去救火呢?派的队员越多,森林的损失越小,但是救援的开支会越大,所以需要综合考虑森林损失费和救援费与消防队员人数之间的关系,以总费用最小来决定派出队员的数目.问题分析 损失费通常正比于森林烧毁的面积,而烧毁面积于失火,灭火的时间有关,灭火时间又与灭火时间长短有关.记失火时刻为t=0 ,开始救火时刻为t=1t ,灭火时刻为t=2t .设在时刻t 森林烧毁面积为B(t),则造成损失的森林烧毁面积为B(2t ).建模要对函数B(t)的形式作出合理的简单假设.模型假设 需要对烧毁森林的损失费,救援费及火势蔓延程度δB/δd 的形式作出假设.1. 损失费与森林烧毁面积B(2t )成正比,比例系数1c 为烧毁单位面积的损失费.2. 从失火到开始救火这段时间(0≤t ≤1t )内,火势蔓延程度δB/δd 与时间t 成正比,比例系数β称火势蔓延速度.3. 派出消防队员x 名,开始救火以后(t ≥1t )火势蔓延速度降为β-x λ,其中λ可视为每个队员的平均灭火速度.显然应有β<x λ.4. 每个消防队员单位时间的费用为2c ,于是每个队员的救火费用是2c (2t -1t );每个队员的依次性支出是3c .无约束最优化问题在实际应用中也比较常见,如工程中常见的参数反演问题。
matlab 最小值算法 -回复
matlab 最小值算法-回复Matlab最小值算法是一个广泛应用于数据分析和数值计算领域的重要工具。
它被用于寻找给定数据集中的最小值,并且在科学研究、工程设计和决策制定等领域具有重要的作用。
本文将一步一步回答关于Matlab最小值算法的问题,包括概述算法的原理、使用的函数、示例代码和应用领域等方面。
首先,让我们来了解Matlab最小值算法的原理。
最小值算法的目标是在给定的数据集中找到最小值,并返回其对应的索引位置。
一般情况下,数据集可以是一维向量、二维矩阵或多维数组。
算法的基本思想是比较数据集中的每个元素,记录下最小值并跟踪其对应的索引。
在Matlab中,我们可以使用`min()`函数来实现最小值算法。
这个函数可以接受多个输入参数,其中第一个参数是要查找最小值的数据集。
我们可以通过在函数调用时指定不同的参数来适应不同类型的数据集,例如,对于向量数据集,我们只需提供一个向量参数即可。
为了演示最小值算法的用法,让我们考虑一个例子。
假设我们有一个向量`A`,包含5个元素,我们希望找出其中最小的值。
以下是实现这一目标的示例代码:A = [4, 2, 6, 1, 3];[min_value, min_index] = min(A);在这段代码中,我们首先定义了一个名为`A`的向量,并将其赋值为包含5个元素的向量。
然后,我们使用`min()`函数来查找`A`中的最小值。
函数的结果会被保存到变量`min_value`和`min_index`中。
`min_value`将包含最小值4,`min_index`则记录了最小值所在的索引位置3。
除了一维向量之外,最小值算法也适用于多维数组。
例如,我们可以对一个2x3的矩阵进行最小值算法:B = [5, 8, 2; 9, 1, 4];[min_value, min_index] = min(B);在这个示例中,我们定义了一个名为`B`的2x3矩阵,并将其赋值为指定的元素。
MATLAB解方程与最优化问题求解
例3求解线性规划问题
min f(x)=2x1+x2
x s.t.
3 x1 x 2 3 4 x1 3 x 2 6 x1 2 x 2 2 x1 0, x 2 0
• 程序如下: clc clear f=[2,1]%目标函数的系数向量 A=[-3,-1;-4,-3;-1,-2;]; b=[-3;-6;-2]; lb=[0;0]; [x,f]=linprog(f,A,b,[],[],lb,[])
[x,fval]=fmincon(@fname,x0,A,b, Aeq,beq,Lbnd,Ubnd,NonF,options)
其中,x、fval、fname、x0和options的含义与求最小 值函数相同。其余参数为约束条件,参数NonF为 非线性约束函数的M文件名。如果某个约束不存 在,则用空矩阵来表示。
例2 求f(x)=x3-2x-5在[0,5]内的最小值点。 (1) 建立函数文件mymin.m。 function fx=mymin(x)
fx=x.^3-2*x-5;
(2) 调用fmin函数求最小值点。 x=fmin('mymin',0,5)
x=
0.8165
2.2 有约束最优化问题求解
MATLAB最优化工具箱提供了一个fmincon函数,专 门用于求解各种约束下的最优化问题。该函数的 调用格式为:
b=[13,-9,6,0]';
x=A\b
1.2.运用符号运算解法
命令如下: clc clear [x1,x2,x3,x4]=solve(‘2*x1+x2-5*x3+x4-13’,…)
2. 最优化问题求解 2.1 无约束最优化问题求解 MATLAB提供了3个求最小值的函数,它们的调用格 式为: (1)[x,fval]=fminbnd(@fname,x1,x2,options):求一 元函数在(xl,x2)区间中的极小值点x和最小值fval。 (2)[x,fval]=fminsearch(@fname,x0,options):基于单 纯形算法求多元函数的极小值点x和最小值fval。 (3)[x,fval]=fminunc(@fname,x0,options):基于拟牛 顿法求多元函数的极小值点x和最小值fval。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机, Matlab R2006a
三、算法步骤、计算框图、计算程序等
1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA
新图E(f)中不考虑原网络D中各个弧的容量cij.为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
while mrd~=inf %一直叠代到以花费为权值找不到最短路径
for i=1:(size(mcr',1)-1)
if a(mcr(i),mcr(i+1))==inf
ta=A(mcr(i+1),mcr(i))-a(mcr(i+1),mcr(i));
else
ta=a(mcr(i),mcr(i+1));
for i=1:size(Mmr,1)
for j=1:size(Mmr',1)
if Mmr(i,j)~=0
mc=mc+Mmr(i,j)*C(i,j); %最小花费为累加各条路径实际流量与其单位流量花费的乘积
end
end
end
利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr.m
function[mr,mrd]=floyd_mr(a)
1.最小费用流算法的框图描述。
图一
2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.m
function[Mm,mc,Mmr]=mp_mc(a,c)
A=a; %各路径最大承载流量矩阵
C=c; %各路径花费矩阵
Mm=0; %初始可行流设为零
mc=0; %最小花费变量
mcr=0;
mrd=0;
n=0;
if D(i,k)+D(k,j)<D(i,j)
D(i,j)=D(i,k)+D(k,j);
R(i,j)=R(i,k);
end
end
end
k;
D;
R;
end
M=D(1,n);
3.求解如下网络运输图中的最大流最小费用问题:
图2
打开matlab软件,在COMND WINDOW窗口中输入矩阵程序如下:
n=5;
北京联合大学
实验报告
项目名称:运筹学专题实验报告
学 院:自动化专 业:物流工程
班 级:1201B学 号:2012100358081
姓 名:管水城成 绩:
2015 年 5 月 6 日
实验三:使用matlab求解最小费用最大流算问题
一、实验目的:
(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
end
n=min(ta,n); %将最短路径上的最小允许流量提取出来
end
for i=1:(size(mcr',1)-1)
if a(mcr(i),mcr(i+1))==inf
a(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;
else
a(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))-n;
c(i,j)=inf;
c(j,i)=C(j,i);
elseif a(i,j)~=0 %非饱合弧
c(j,i)=C(j,i);
c(i,j)=C(i,j);
end
end
end
end
[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)
n=inf;
end
C=[0 10 8 0 0;0 0 0 2 7;0 5 0 10 0;0 0 0 0 4;0 0 0 0 0]
b=[0 4 1 0 0;0 0 0 6 1;0 2 0 3 0;0 0 0 0 2;0 0 0 0 0]
mr=[mr,R(rd,n)];
rd=R(rd,n);
end
福得算法MATLAB源代码,文件名为floyd.m
function[D,R]=floyd(a)
n=size(a,1);
D=a;
for i=1:n
for j=1:n
R(i,j)=j;
end
end
R;
for k=1:n
for i=1:n
for j=1:n
%下面是计算最小花费的数值
for i=1:size(A,1)
for j=1:size(A',1)
if A(i,j)==inf
A(i,j)=0;
end
if a(i,j)==inf
a(i,j)=0;
end
end
end
Mmr=A-a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量
end
end
Mm=Mm+n; %将每次叠代后增加的流量累加,叠代完成时就得到最大流量
for i=1:size(a,1)
for j=1:size(a',1)
if i~=j&a(i,j)~=inf
if a(i,j)==A(i,j) %零流弧
c(j,i)=inf;
c(i,j)=C(i,j);
elseif a(i,j)==0 %饱合弧
2.求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流。
根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f的最小费用的可扩充链.为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:
n=size(a,1);
[D,R]=floyd(a); %通过福德算法得到距离矩阵(D)和路径矩阵(R)
mrd=D(1,n); %提取从起点1到终点n的最短距离
rd=R(1,n); %提取从起点1开始沿最短路径上下一个点的编号(rd)
mr=[1,rd]; %从起点1开始沿最短路径到rd点的最短路径
while rd~=n %通过循环将最短路径依次提取出来,直到rd点就是最后一个点