2005年高考理科数学试卷及答案(重庆)

合集下载

2005年全国统一高考数学试卷ⅰ(理)

2005年全国统一高考数学试卷ⅰ(理)

2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A. B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A.B.C.D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA ⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A. B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A.B.C.D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx 的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,=×(2×1+2×)=,其面积S△ABC故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m=155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指数幂运算后【分析】利用二项式定理的通项公式T r+1令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9﹣r=【解答】解:由通项公式得T r+1(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x 有两个交点时,其斜率k的取值范围是()A.B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,其面积S△ABC=×(2×1+2×)=,故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m= 155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指【分析】利用二项式定理的通项公式T r+1数幂运算后令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9【解答】解:由通项公式得T r+1﹣r=(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知x 0 πy ﹣﹣1 0 1 0 ﹣故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M 是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB 为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n >0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是ξ0 10 20 30P0.670 0.287 0.041 0.002∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。

2005年普通高等学校招生全国统一考试数学及答案(重庆卷.文)

2005年普通高等学校招生全国统一考试数学及答案(重庆卷.文)

2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题(文史类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-y x B .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x2.=+-)12sin12)(cos12sin12(cosππππ( )A .23-B .21-C .21 D .23 3.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)(=x f ,则使得 x x f 的0)(<的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)4.设向量a =(-1,2),b =(2,-1),则(a ·b )(a +b )等于 ( )A .(1,1)B .(-4,-4)C .-4D .(-2,-2)5.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为 ( )A .)3,0(B .)2,3(C .)4,3(D .)4,2(6.已知βα,均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平等于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个8.若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于 ( )A .5B .7C .9D .119.若动点),(y x 在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为( )A .⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2)20(442b b b bC .442+bD .b 210.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面 各连接中点,已知最底层正方体的棱长为2,且该塔形 的表面积(含最底层正方体的底面面积)超过39,则 该塔形中正方体的个数至少是 ( ) A .4 B .5 C .6 D .7第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上.11.若集合}0)5)(2(|{},034|{2<--∈=<+-∈=x x R x B x x R x A ,则=B A .12.曲线3x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 . 13.已知βα,均为锐角,且=-=+αβαβαtan ),sin()cos(则 . 14.若y x y x -=+则,422的最大值是 .15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 . 16.已知B A ),0,21(-是圆F y x F (4)21(:22=+-为圆心)上一动点,线段AB 的垂直平 分线交BF 于P ,则动点P 的轨迹方程为 .三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.18.(本小题满分13分)加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为109、98、87, 且各道工序互不影响.(Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.19.(本小题满分13分)设函数∈+++-=a ax x a x x f 其中,86)1(32)(23R . (1)若3)(=x x f 在处取得极值,求常数a 的值; (2)若)0,()(-∞在x f 上为增函数,求a 的取值范围.20.(本小题满分13分)如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC. 已知,21,2,2===AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E —PC —D 的大小. 21.(本小题满分12分)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程;(2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.22.(本小题满分12分)数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(211≥-=n a b n n(Ⅰ)求b 1、b 2、b 3、b 4的值;(Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S数学试题(文史类)答案一、选择题:每小题5分,满分50分.1.A2.D3.D4.B5.C6.B7.B8.A9.A 10.C 二、填空题:每小题4分,满分24分. 11.}32|{<<x x 12.38 13.1 14.22 15.4517 16.13422=+y x 三、解答题:满分76分. 17.(本小题13分)解:)4sin(sin )2sin(21cos 21)(22ππ+++--+=x a x x x x f)4sin(cos sin )4sin(sin cos 2cos 2222ππ+++=+++=x a x x x a x x x )4sin()2()4sin()4sin(222πππ++=+++=x a x a x因为)(x f 的最大值为)4sin(,32π++x 的最大值为1,则,3222+=+a所以,3±=a 18.(本小题13分) (Ⅰ)解:1078798109=⨯⨯=P ; (Ⅱ)解法一: 该种零件的合格品率为107,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)103(13=-解法二:恰好取到一件合格品的概率为189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)107(103)107()103(107333223213=+⋅+⋅⋅C C C19.(本小题13分)解:(Ⅰ)).1)((66)1(66)(2--=++-='x a x a x a x x f因3)(=x x f 在取得极值, 所以.0)13)(3(6)3(=--='a f 解得.3=a 经检验知当)(3,3x f x a 为时==为极值点.(Ⅱ)令.1,0)1)((6)(21===--='x a x x a x x f 得当),()(,0)(),,1(),(,1a x f x f a x a -∞>'+∞-∞∈<在所以则若时 和),1(+∞上为增 函数,故当)0,()(,10-∞<≤在时x f a 上为增函数. 当),()1,()(,0)(),,()1,(,1+∞-∞>'+∞-∞∈≥a x f x f a x a 和在所以则若时 上为增函 数,从而]0,()(-∞在x f 上也为增函数.综上所述,当)0,()(,),0[-∞+∞∈在时x f a 上为增函数. 20.(本小题13分)解法一:(Ⅰ)因PD ⊥底面,故PD ⊥DE ,又因EC ⊥PE ,且DE 是PE 在面ABCD 内的射影,由三垂直线定理的逆定理知 EC ⊥DE ,因此DE 是异面直线PD 与EC 的公垂线.设DE=x ,因△DAE ∽△CED ,故1,1,2±===x x xCD AE x 即(负根舍去).从而DE=1,即异面直线PD 与EC 的距离为1.(Ⅱ)过E 作EG ⊥CD 交CD 于G ,作GH ⊥PC 交PC 于H ,连接EH. 因PD ⊥底面, 故PD ⊥EG ,从而EG ⊥面PCD.因GH ⊥PC ,且GH 是EH 在面PDC 内的射影,由三垂线定理知EH ⊥PC. 因此∠EHG 为二面角的平面角.在面PDC 中,PD=2,CD=2,GC=,23212=-因△PDC ∽△GHC ,故23=⋅=PC CG PD GH , 又,23)21(12222=-=-=DG DE EG故在,4,,π=∠=∆EHG EG GH EHG Rt 因此中即二面角E —PC —D 的大小为.4π 解法二:(Ⅰ)以D 为原点,DA 、DC 、DP 分别为x 、y 、 z 轴建立空间直角坐标系.由已知可得D (0,0,0),P (0,0,)2, C (0,2,0)设),0,2,(),0)(0,0,(x B x x A 则>).0,23,(),2,21,(),0,21,(-=-=x CE x PE x E 由0=⋅⊥CE PE CE PE 得,即.23,0432==-x x 故 由CE DE CE DE ⊥=-⋅=⋅得0)0,23,23()0,21,23(,又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=DE ,故异面直线PD 、 CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,y ,z ).由0=⋅PC DG 得0)2,2,0(),,0(=-⋅z y 即),2,1,0(,2==DG y z 故可取作EF ⊥PC 于F ,设F (0,m ,n ), 则).,21,23(n m EF --= 由0212,0)2,2,0(),21,23(0=--=-⋅--=⋅n m n m PC EF 即得,又由F 在PC 上得).22,21,23(,22,1,222-===+-=EF n m m n 故 因,,PC DG PC EF ⊥⊥故平面E —PC —D 的平面角θ的大小为向量DG EF 与的夹角.故,4,22||||cos πθθ===EF DG 即二面角E —PC —D 的大小为.4π21.(本小题12分)解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b a c a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃--22.(本小题12分)解法一:(I );22111,111=-==b a 故.320,2013;421431,43;3821871,87443322===-===-==b a b a b a 故故故(II )因231)34(3832)34)(34(=⨯=--b b ,2231222)34()34)(34(,)34()34(-=--=-b b b b故猜想.2,32}34{的等比数列公比是首项为=-q b n因2≠n a ,(否则将2=n a 代入递推公式会导致矛盾),034,3436162038212)34(2,36162034368163421134).1(8162511111≠--=--=--=---=---=--=-≥-+=++++b b a a a b a a a a a b n a aa n n n n n n n n n n n n n 因故故2|34|=-q b n 确是公比为的等比数列. n n b b 23134,32341⋅=-=-故因, )1(34231≥+⋅=n b n n ,121211+=-=n n n n n b b a a b 得由 n n n b a b a b a S +++= 2211故)152(313521)21(31)(2121-+=+--=++++=n nn b b b n n n 解法二:(Ⅰ)由,052168,21121111=++-+=-=++n n n n n n n n a a a a b a a b 代入递推关系得 整理得,342,0364111-==+-+++n n n n n n b b b b b b 即 .320,4,38,2,143211=====b b b b a 所以有由(Ⅱ)由,03234),34(234,342111≠=--=--=++b b b b b n n n n所以故的等比数列公比是首项为,2,32}34{=-q b n).152(313521)21(31)(21,121211).1(34231,23134212211-+=+--=++++=+++=+=-=≥+⋅=⋅=-n nn b b b b a b a b a S b b a a b n b b n n n nn n n n n n n n n n n 故得由即解法三:(Ⅰ)同解法一 (Ⅱ)2342312)34(3832,38,34,32=⨯=-=-=-b b b b b b 因此故又因的等比数列公比是首项为猜想).1(81625,2231,2,32}{111≥-+=≠⋅=-=-+++n a a a a b b q b b nnn n nn n n n1222181625121121111----+=---=-++n n n n n n n a a a a a b b;3681036636816--=----=n n n n n a a a a a3681636816211211111212-----=---=-++++++n nn n n n n n a a a a a a b b).(2361620368163624361n n n nn n n n b b a a a a a a -=--=-----=+,231,2}{,0321112n n n n n b b q b b b b ⋅=-=-≠=-++的等比数列是公比因 从而112211)()()(b b b b b b b b n n n n n +-++-+-=---nn n n n n n n n n n n b a b a b a S b b a a b n +++=+=-=≥+⋅=+-=++++=-- 2211121,121211).1(342312)22(312)222(31故得由。

2005年高考试题——数学理(必修+选修I)

2005年高考试题——数学理(必修+选修I)

2005年普通高等学校招生全国统一考试 理科数学(必修+选修I )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么P(A²B)=P(A)²P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()( 其中R 表示球的半径一、选择题1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( )A .2B .3C .4D .54.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33 C .34 D .235.已知双曲线)0(1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 6.当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .23C .4D .43 7.)21(22≤≤-=x x x y 的反函数是( )A .)11(112≤≤--+=x x yB .)10(112≤≤-+=x x yC .)11(112≤≤---=x x yD .)10(112≤≤--=x x y8.设x x f a a x f a x x a 的则使函数0)(),22(log )(,102<--=<<的取值范围是 ( )A .)0,(-∞B .),0(+∞C .)3log ,(a -∞D .),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域面积为 ( )A .2B .23 C .223 D .210.在△ABC 中,已知C BA sin 2tan =+,给出以下四个论断 ( )①tanA ²cotB=1 ②0<sinA+sinB ≤2 ③sin 2A+cos 2B=1④cosA 2+cos 2B=sin 2CA .①③B .②④C .①④D .②③11.点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点12.设直线l 过点(-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( )A .±1B .±21 C .±33 D .±3第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中。

2005年普通高等学校招生全国统一考试数学试卷重庆卷文

2005年普通高等学校招生全国统一考试数学试卷重庆卷文

2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k kn n P P C k P --=)1()(第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A.5)2(22=+-y x B.5)2(22=-+y xC.5)2()2(22=+++y x D.5)2(22=++y x 2.=+-)12sin 12)(cos 12sin 12(cos ππππ ( )A.23-B.21-C.21D.233.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得x x f 的0)(<的取值范围是( )A.)2,(-∞B.),2(+∞C.(-∞,-2)∪(2,+∞)D.(-2,2)4.设向量a =(-1,2),b =(2,-1),则(a ·b )(a +b )等于 ( )A.(1,1)B.(-4,-4)C.-4D.(-2,-2)5.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为( )A.)3,0(B.)2,3(C.)4,3(D.)4,2(6.已知βα,均为锐角,若qp q p 是则,2:),sin(sin :πβαβαα<++<的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有( )A.1个B.2个C.3个D.4个8.若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于 ( )A.5B.7C.9D.119.若动点),(y x 在曲线)0(14222>=+b b y x 上变化,则y x 22+的最大值为 ( )A.⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b bB.⎪⎩⎪⎨⎧≥<<+)2(2)20(442b b b bC.442+bD.b 210.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 ( )A.4B.5C.6D.7第二部分(非选择题共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上.11.若集合}0)5)(2(|{},34|{2<--∈=<+-∈=xxRxBxxRxA,则A∩B= .12.曲线3xy=在点(1,1)处的切线与x轴、直线2=x所围成的三角形的面积为 .13.已知βα,均为锐角,且=-=+αβαβαtan),sin()cos(则 .14.若yxyx-=+则,422的最大值是 .15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 .16.已知BA),0,21(-是圆FyxF(4)21(:22=+-为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为 .三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤.17.(本小题满分13分)若函数)4sin(sin)2sin(22cos1)(2ππ+++-+=xaxxxxf的最大值为32+,试确定常数a的值.18.(本小题满分13分)加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为109、98、87,且各道工序互不影响.(Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.19.(本小题满分13分)设函数∈+++-=a ax x a x x f 其中,86)1(32)(23R. (1)若3)(=x x f 在处取得极值,求常数a 的值; (2)若)0,()(-∞在x f 上为增函数,求a 的取值范围.20.(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC. 已知,21,2,2===AECDPD求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角E-PC-D的大小. 21.(本小题满分12分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为)0,3 ((1)求双曲线C的方程;(2)若直线2:+=kxyl与双曲线C恒有两个不同的交点A和B,且2>⋅(其中O为原点).求k的取值范围.22.(本小题满分12分)数列).1(0521681}{111≥=++-=++naaaaaannnnn且满足记).1(211≥-=nabnn(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列}{nb的通项公式及数列}{nnba的前n项和.nS.。

2005年高考全国试题分类解析(圆锥曲线)

2005年高考全国试题分类解析(圆锥曲线)

2005年高考全国试题分类解析(圆锥曲线)一、选择题:1重庆卷) 若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2+2y 的最大值为(A ) (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b b ;(B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b ; (D) 2b 。

2. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 3. (天津卷)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )A .2±B .34±C .21±D .43±4.(天津卷)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为(B )A .43B . 72C . 86D . 905. (上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在6. (山东卷)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( B ) (A )1 (B )2 (C )3 (D )47 (全国卷Ⅰ)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为(A )(A )23 (B )23 (C )26 (D )332A .)22,22(-B .)2,2(-C .)42,42(D .)81,81(-8.(全国卷II) 双曲线22149x y -=的渐近线方程是( C) (A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±9. (全国卷II)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(C )(A)(B) (C) 65 (D) 5610. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(D )(A) 2 (B) 3 (C) 4 (D) 5 11. (全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(D )(A )2 (B )12(C )2 (D 1- 12. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线xy 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( B )A .23+6B .21C .21218+D .2113 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A )1617( B ) 1615 ( C ) 87 ( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A )33 ( B ) 31 ( C ) 22 ( D ) 2115.(湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为(D ) A .30ºB .45ºC .60ºD .90º16. (湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( D ) A .30ºB .45ºC .60ºD .90º17. (湖北卷)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A .163B .83 C .316 D .38 18. (福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( C )A .21B .23 C .27 D .5 19. (福建卷)设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-20. (广东卷)若焦点在轴上的椭圆2212x y m +=的离心率为12,则m=(B)(B)32(C)83(D)2321. (全国卷III)已知双曲线2212yx-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为(C )(A )43 (B )53(C)3 (D22.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( D )A .324+B .13-C .213+ D .13+二、填空题:1.(江西卷)以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 ③④ (写出所有真命题的序号)2. (重庆卷)已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为22413x y +=。

2005年全国各地高考数学试题及解答分类汇编大全(06数列)

2005年全国各地高考数学试题及解答分类汇编大全(06数列)

2005年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题:1.(2005福建文、理)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .64解:由7916a a +=,得a 8=8,∴817844d -==-,∴a 12=1+8×74=15,选(A)2. (2005广东)已知数列{}n x 满足212x x =,)(2121--+=n n n x x x , ,4,3=n . 若2lim =∞→n x x ,则=1x ( B ) A .23B .3C .4D .5解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim =∞→n x x ,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n nx x x x 即, ∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列,令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==---+-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+= ∴2323)21(321111lim lim ==⎥⎦⎤⎢⎣⎡-+=-∞→∞→xx x x n x n x ,∴31=x ,故选B . 解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x , ∴其特征方程为0122=--a a ,解得 211-=a ,12=a , nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212x c =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.3.(2005湖南文)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .23 [评述]:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.【思路点拨】本题涉及数列的相关知识与三角间的周期关系., 【正确解答】[解法一]:由a 1=0,).(1331++∈+-=N n a a a n n n 得a 2=-⋅⋅⋅⋅⋅⋅==,0,3,343a a由此可知: 数列{a n }是周期变化的,且三个一循环,所以可得:a 20=a 2=-.3故选B.[解法二]:设tan n n a α=,则1tan tan3tan()31tan tan 3n n nn a y παπαπα+-===-+,则13n n παα=-+,由10a =可知,00α=,故数列{n α}是以零为首项,公差为3π-的等差数列,20019()3παα=+⨯-,202019tan tan()3a πα==-=选B【解后反思】这是一道综合利用数列内部之间递推关系进行求解的题目.当我们看到有递推式存在时,不要急于通过代入,达到一个个来求解的目的, 如此这般, 既显得过于复杂,同时破坏了数学的逻辑性,而要通过化简,找到最直接的途径.本题中巧妙的逆用了两角和与差的正切公式,得出此数列为等差数列的结论,顺利达到求解的目的.4.(2005湖南理)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 2=5,则l i m 21321111()n n n a a a a a a →∞++++---= ( )A .2B .23 C .1 D .21[评析]:本题考查了等差数列,等比数列的通项公式和求和公式及数列极限相关交汇知识。

2005年高考试题——理综(重庆卷)

2005年高考试题——理综(重庆卷)

2005年普通高等学校招生全国统一考试理科综合能力测试以下数据可供解题时参考:相对原子质量(原子量):H:1 He:4 C:12 N:14 O:16第I卷一、选择题(本题包括13小题。

每小题只有一个....选项符合题意)1.连续分裂的动物体细胞的生长即体积增大,发生在细胞周期的()A.分裂间期B.分裂前期C.分裂中期D.分裂后期2.右图表示在适宜的温度、水分和CO2条件下,两种植物光合作用强度的变化情况。

下列说法错误..的是()Array A.当光照强度增加到一定程度时,光合作用强度不再增加,即达到饱和B.C3植物比C4植物光合作用强度更容易达到饱和C.C4植物比C3植物光能利用率高D.水稻是阴生植物,玉米是阳生植物3.当人体处于饥饿状态时()A.肾上腺素分泌减少,胰高血糖素分泌增加B.肾上腺素分泌增加,胰高血糖素分泌增加C.肾上腺素分泌减少,胰高血糖素分泌减少D.肾上腺素分泌增加,胰高血糖素分泌减少4.关于抗体的产生、特性和作用等的叙述,错误..的是()A.抗毒素是抗体B.抗体都能被蛋白酶分解C.淋巴细胞都能产生抗体D.抗体在某些特殊情况下会对自身成分起免疫反应5.科学家通过基因工程的方法,能使马铃薯块茎含有人奶主要蛋白。

以下有关该基因工程的叙述,错误..的是()A.采用反转录的方法得到的目的基因有内含子B.基因非编码区对于目的基因在块茎中的表达是不可缺少的C.马铃薯的叶肉细胞可作为受体细胞D.用同一种限制酶,分别处理质粒和含目的基因的DNA,可产生黏性末端而形成重组DNA分子6.现有以下几种措施:①对燃烧煤时产生的尾气进行除硫处理,②少用原煤做燃料,③燃煤时鼓入足量空气、,④开发清洁能源。

其中能减少酸雨产生的措施的是 ( )A .①②③B .②③④C .①②④D .①③④7.下列气体的制备可采用右图装置的是( ) A .铜与浓硝酸反应制NO 2 B .铜与稀硝酸反应制SO C .乙醇与浓硫酸反应制乙烯D .氯化钠与浓硫酸反应制HCl8.在体积可变的密闭容器中,反应mA (气)+nB (固) (气)达到平衡后,压缩容器的体积,发现A 的转化率随之降低。

2005年高考数学试题全集32套

2005年高考数学试题全集32套

2005年全国高考数学试题全集(3)(10套)目录2005年普通高等学校招生全国统一考试(辽宁卷) (2)2005年普通高等学校招生全国统一考试理科数学(山东卷) (15)2005年普通高等学校招生全国统一考试文科数学(山东卷) (25)2005年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷) (34)2005年普通高等学校招生全国统一考试数学试题(文史类)(重庆卷) (46)2005年普通高等学校招生全国统一考试数学(理工农医类)(浙江卷) (57)2005年普通高等学校招生全国统一考试数学(文史类)(浙江卷) (68)2005年普通高等学校春季招生考试数学(理工农医类)(北京卷) (77)2005年普通高等学校春季招生考试数学(文史类)(北京卷) (86)2005年上海市普通高等学校春季招生考试 (94)2005年普通高等学校招生全国统一考试(辽宁卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()(其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数.111-++-=iiz 在复平面内,z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命 题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④ 5.函数1ln(2++=x x y 的反函数是( )A .2x x e e y -+=B .2x x e e y -+-=C .2x x e e y --= D .2xx e e y ---=6.若011log 22<++aa a,则a 的取值范围是( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(7.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立, 则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范 围是( )A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)9.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-810.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x aλλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A .0<λB .0=λC .10<<λD .1≥λ11.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .2112.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.nxx )2(2121--的展开式中常数项是 .14.如图,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻, 5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答) 16.ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的球面上,求△ABC 的边长. 18.(本小题满分12分)如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?19.(本小题满分12分)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ;(Ⅱ)证明.332<n S20.(本小题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在 (I )的条件下,求ξ、η的分布列及E ξ、E η;(Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资. 金60万元.设x 、y 分别表示生产甲、乙产 品的数量,在(II )的条件下,x 、y 为何 值时,ηξyE xE z +=最大?最大值是多少? (解答时须给出图示) 21.(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.2005年普通高等学校招生全国统一考试(辽宁卷)数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

2005届重庆市高三(理科数学)联合诊断性考试(第一次)

2005届重庆市高三(理科数学)联合诊断性考试(第一次)

x2005届重庆市高三(理科数学)联合诊断性考试(第一次)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

一、选择题:(本大题12个小题,每小题5分,共60分)各题答案必需答在答题卡上。

1.若集合{}{}2|11,|0M x x N x x =->=< ,那么A .M N M =B .M N ÜC .M N ÝD .M N N = 2.已知公比为q 的等比数列{}n a ,若()*22n n n b a a n N +=+∈,则数列{}n b 是 A .公比为q 的等比数列 B .公比为2q 的等比数列 C .公差为q 的等差数列 D .公差为2q 的等差数列3.设集合{}{}|2,|3M x x P x x =>=< ,那么“x M ∈或x P ∈”是“x M P ∈ ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件4.若()12:12,:24160l x m y m l m x y ++=-++= 的图象是两条平行直线,则m 的值是 A .1m =或2m =- B .1m = C .2m =- D .m 的值不存在 5.在()0,2π内使sin cos x x >成立的x 的取值范围是 A .5,,424ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ B .,4ππ⎛⎫ ⎪⎝⎭ C .53,,442πππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ D .5,44ππ⎛⎫⎪⎝⎭6.已知函数()f x 的定义域为[],a b ,函数()f x 的图象如右图所示,则函数()fx 的图象是DCBA7.已知函数21x y x-=+,按向量a平移此函数图象,使其化简为反比例函数的解析式,则向量a为A .()1,1-B .()1,1-C .()1,1--D .()1,18.若函数()()()()tan 02lg 0x x f x x x ⎧≥⎪+=⎨-<⎪⎩ ,则()2984f f π⎛⎫+⋅-= ⎪⎝⎭A .12B .12-C .2D .2-9.已知直线12:,:0l y x l ax y =-= ,其中a 为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动时,a 的取值范围是A .(3⎫⎪⎪⎝⎭ B.3⎝⎭ C .3⎫⎪⎪⎝⎭ D .( 10.已知()f x 是R 上的增函数,点()()1,1,1,3A B -在它的图象上,()1f x -是它的反函数,那么不等式()12log1fx -<的解集为A .{}|11x x -<<B .{}|28x x <<C .{}|13x x <<D .{}|03x x << 11.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金A .大于10gB .小于10gC .大于等于10gD .小于等于10g12.在数列{}n a 中,如果存在非零常数T ,使得m T m a a +=对于任意的非零自然数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫数列{}n a 的周期。

05年高考重庆卷-数学文

05年高考重庆卷-数学文

2005年普通高等学校招生全国统一考试(重庆卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 参考公式如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ). 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=C k n P k (1-p )n -k. 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A.(x -2)2+y 2=5 B.x 2+(y -2)2=5C.(x +2)2+(y +2)2=5D.x 2+(y +2)2=52.(cos π12-sin π12)(cos π12+sin π12)=( )A.-32B.-12C.12D.323.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-2,2)4.设向量a =(-1,2),b =(2,-1),则(a·b)(a +b)等于( ) A.(1,1) B.(-4,-4) C.-4 D.(-2,-2)5.不等式组⎩⎪⎨⎪⎧x -2 <2log 2(x 2-1)>1的解集为( )A.(0,3)B.(3,2)C.(3,4)D.(2,4)6.已知α、β均为锐角,若p ∶sin α<sin(α+β),q ∶α+β<π2,则p 是q 的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③存在直线l ⊂α、直线m ⊂β使得l ∥m ;④存在异面直线l 、m ,使得l ∥α,l ∥β,m ∥α,m ∥β. 其中,可以判定α与β平行的条件有( ) A.1个 B.2个 C.3个 D.4个8.若(1+2x )n 展开式中含x 3的项的系数等于含x 的项的系数的8倍,则n 等于( ) A.5 B.7 C.9 D.119.若动点(x ,y )在曲线x 24+y 2b2=1(b >0)上变化,则x 2+2y 的最大值为( )A.⎩⎪⎨⎪⎧b 24+4 (0<b <4)2b (b ≥4) B.⎩⎪⎨⎪⎧b 24+4 (0<b <2)2b b ≥2 C.b 24+4 D.2b10.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中心.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( )A.4B.5C.6D.7第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分.11.若集合A ={x ∈R│x 2-4x +3<0},B ={x ∈R│(x -2)(x -5)<0},则A ∩B = . 12.曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为 . 13.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 14.若x 2+y 2=4,则x -y 的最大值是 .15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 .16.已知A (-12,0),B 是圆F :(x -12)2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .三、解答题:本大题共6小题,共76分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数f (x )=1+cos2x 2sin(π2-x )+sin x +a 2sin(x +π4)的最大值为2+3,试确定常数a 的值.18.(本小题满分13分)加工某种零件需经过三道工序.设第一、二、三道工序的合格率分别为910,89,78,且各道工序互不影响.(Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.19.(本小题满分13分)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R. (Ⅰ)若f (x )在x =3处取得极值,求常数a 的值; (Ⅱ)若f (x )在(-∞,0)上为增函数,求a 的取值范围. 20.(本小题满分13分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC .已知PD =2,CD =2,AE =12,求(Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E -PC -D 的大小.21.(本小题满分12分)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (Ⅰ)求双曲线C 的方程; (Ⅱ)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA ·OB>2(其中O 为原点),求k 的取值范围.22.(本小题满分12分)数列{a n }满足a 1=1且8a n +1a n -16a n +1+2a n +5=0 (n ≥1).记b n =1a n -12(n ≥1).(Ⅰ)求b 1、b 2、b 3、b 4的值;(Ⅱ)求数列{b n }的通项公式及数列{a n b n }的前n 项和S n .2005年普通高等学校招生全国统一考试(重庆卷)1.A [解析]法(一):利用轨迹法,设P (x ,y )为所求圆上一点,其关于原点(0,0)对称的点P 1(-x ,-y )必在已知圆上,将(-x ,-y )代入已知圆方程即可得答案A.法(二):已知该圆圆心为(-2,0),其关于原点对称的点(2,0)为所求圆的圆心,两对称圆半径相同,利用圆的标准方程得答案A.2.D [解析]⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12=cos 2π12-sin 2π12=cos π6=32.3.D [解析]利用偶函数的关于轴对称的性质,则有f (x )在(0,+∞)上为减函数且f (-2)=0,作出一个符合条件的图象(如图)得:f (x )<0的解集为(-2,2).4.B [解析]a·b =-1×2+2×(-1)=-4 a +b =(1,1)⇒a·b(a +b)=(-4,-4).5.C. [解析]原不等式组化为⎩⎪⎨⎪⎧0<x <4x <-3,或x >3 解集为(3,4).6.B [解析]充分性或必要性成立,都须证明,而不成立只须举反例.充分性不成立,如当α=β=45°,有sin α<sin(α+β),但α+β=π2,充分性不成立,易证0<α<α+β<π2,则sin α<sin(α+β)成立.7.B [解析]①中α⊥γ β⊥γ,则α与β可平行也可垂直,③中α与β可相交,可平行.由线面平行的性质以及面面平行的性质与判定可确定②,④正确.8.A [解析]含x 3项的系数为C 3n ×23,含x 项的系数为C 1n ×2,由C 3n ×23=8C 1n ×2 得n =5.9.A [解析]利用三角函数设参结合二次函数求最值. 设x =2sin θ y =b cos θ,则k =x 2+2y =4sin 2θ+2b cos θ=-4cos 2θ+2b cos θ+4=-4(cos θ-b 4)2+4+b 24(│cos θ│≤1) 当0<b 4<1即0<b <4时 cos θ=b 4 k 大=4+b 24当b4≥1时 b ≥4 cos θ=1时k 大=2b . 10.C11.{x │2<x <3} 12.83[解析]f ′(x )=3x 2 f ′(1)=3 过点(1,1)的切线方程为y =3x -2,它与x 轴交点为(23,0)与x =2交点为(2,4),S △=12×(2-23)×4=83. 13.1 [解析]cos(α+β)=sin(α-β)⇒cos αcos β-sin αsin β=sin αcos β-cos αsin β⇒cos β(cos α-sin α)+sin β(cos α-sin α)=0⇒(cos α-sin α)(cos β+sin β)=0由α、β均为锐角得cos α-sin α=0⇒tan α=114.22 [解析]解法(一):设参法:设x =2cos θ y =2sin θx -y =2cos θ-2sin θ=22cos(θ+π4),当cos(θ+π4)=1时(x -y )max =1.解法二:设k =x -y ,由⎩⎪⎨⎪⎧k =x -y x 2+y 2=4整理成一元二次方程,利用Δ≥0,即可求最大值.15.1745 [解析]1-C 28C 210=1745 16.x 2+43y 2=1 [解析]由图知P A =PB ,P A +PF =BF =r ,结合椭圆定义,知点P 的轨迹为椭圆,其中c =12 a =1 b 2=34,从而求得答案.17.解:f (x )=1+2cos 2x -12sin(π2-x )+sin x +a 2sin(x +π4)=2cos 2x 2cos x +sin x +a 2sin(x +π4)=sin x +cos x +a 2sin(x +π4)=2sin(x +π4)+a 2sin(x +π4)=(2+a 2)sin(x +π4)因为f (x )的最大值为2+3,sin(x +π4)的最大值为1,则2+a 2=2+3,所以a =±3.18.(Ⅰ)解:P =910×89×78=710.(Ⅱ)解法一:该种零件的合格品率为710,由独立重复试验的概率公式得:恰好取到一件合格品的概率为 C 13·710·(310)2=0.189,至少取到一件合格品的概率为 1-(310)3=0.973. 解法二:恰好取到一件合格品的概率为 C 13·710·(310)2=0.189,至少取到一件合格品的概率为 C 13·710·(310)2+C 23(710)2·310+C 33(710)3=0.973. 19.解:(Ⅰ)f ′(x )=6x 2-6(a +1)x +6a =6(x -a )(x -1). 因f (x )在x =3取得极值,所以f ′(3)=6(3-a )(3-1)=0. 解得a =3.经检验知当a =3时,x =3为f (x )的极值点. (Ⅱ)令f ′(x )=6(x -a )(x -1)=0得x 1=a ,x 2=1.当a <1时,若x ∈(-∞,a )∪(1,+∞),则f ′(x )>0,所以f (x )在(-∞,a )和(1,+∞)上为增函数,故当0≤a <1时,f (x )在(-∞,0)上为增函数.当a ≥1,若x ∈(-∞,1)∪(a ,+∞),则f ′(x )>0,所以f (x )在(-∞,1)和(a ,+∞)上为增函数,从而f (x )在(-∞,0)上也为增函数.综上所述,当a ∈[0,+∞)时,f (x )在(-∞,0)上为增函数.20.解法一:(Ⅰ)因PD ⊥底面,故PD ⊥DE ,又因EC ⊥PE ,且DE 是PE 在面ABCD 内的射影,由三垂线定理的逆定理知EC ⊥DE ,因此DE 是异面直线PD 与EC 的公垂线.设DE =x ,因△DAE ∽△CED ,故x AE =CDx,即x 2=1,x =±1(负根舍去).从而DE =1,即异面直线PD 与EC 的距离为1.(Ⅱ)过E 作EG ⊥CD 交CD 于G ,作GH ⊥PC 交PC 于H ,连接EH .因PD ⊥底面,故PD ⊥EG ,从而EG ⊥面PCD .因GH ⊥PC ,且GH 是EH 在面PDC 内的射影,由三垂线定理知EH ⊥PC . 因此∠EHG 为二面角的平面角.在面PDC 中,PD =2,CD =2,GC =2-12=32,因△PDC ∽△GHC ,故GH =PD ·CG PC =32,又EG =DE 2-DG 2=12-(12)2=32,故在Rt △EHG 中,GH =EG ,因此∠EHG =π4,即二面角E -PC -D 的大小是π4.解法二:(Ⅰ)以D 为原点,DA 、DC 、DP分别为x 、y 、z 轴建立空间直角坐标系.由已知可得D (0,0,0)、P (0,0,2)、C (0,2,0),设A (x,0,0)(x >0), 则B (x,2,0),E (x ,12,0),PE =(x ,12,-2),CE =(x ,-32,0).由PE ⊥CE 得PE ·CE =0,即x 2-34=0,故x =32.由DE ·CE =(32,12,0)·(32,-32,0)=0得DE ⊥CE ,又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线.易得|DE |=1,故异面直线PD 、CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,y ,z ).由DG ·PC=0得(0,y ,z )·(0,2,-2)=0,即z =2y ,故可取DG=(0,1,2).作EF ⊥PC 于F ,设F (0,m ,n ),则EF =(-32,m -12,n ).由EF ·PC =0得(-32,m -12,n )·(0,2,-2)=0, 即2m -1-2n =0, 又由F 在PC 上得n =-22m +2,故m =1,n =22,EF =(-32,12,22). 因EF ⊥PC ,DG ⊥PC ,故平面角E -PC -D 的平面角θ的大小为向量EF 与DG 的夹角.故cos θ=22,θ=π4, 即二面角E -PC -D 的大小为π4.21.解:(Ⅰ)设双曲线方程为 x 2a 2-y 2b 2=1 (a >0,b >0). 由已知得a =3,c =2,再由a 2+b 2=22,得b 2=1.故双曲线C 的方程为x 23-y 2=1.(Ⅱ)将y =kx +2代入x 23-y 2=1得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0,Δ=(62k )2+36(1-3k 2)=36(1-k 2)>0. 即k 2≠13且k 2<1. ①设A (x A ,y A ),B (x B ,y B ),则x A +x B =62k1-3k 2,x A +x B =-91-3k 2, 由OA ·OB >2得x A x B +y A y B >2,而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)-91-3k 2+2k 62k 1+3k 2+2=3k 2+73k 2-1.于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解此不等式得13<k 2<3. ② 由①、②得13<k 2<1. 故k 的取值范围为(-1,-33)∪(33,1).22.解:(Ⅰ)a 1=1,故b 1=11-12=2;a 2=78,故b 2=178-12=83;a 3=34,故b 3=134-12=4;a 4=1320,故b 4=203.(Ⅱ)因(b 1-43)(b 3-43)=23×83=(43)2,(b 2-43)2=(43)2,(b 1-43)(b 3-43)=(b 2-43)2故猜想{b n -43}是首项为23,公比q =2的等比数列.因a n ≠2,(否则将a n =2代入递推公式会导致矛盾)故a n +1=5+2a n16-8a n (n ≥1).因b n +1-43=1a n +1-12-43=16-8a n 6a n -3-43=20-16a n6a n -3,2(b n -43)=2a n -12-83=20-16a n 6a n -3=b n +1-43,b 1-43≠0,故{b n -43}确是公比为q =2的等比数列.因b 1-43=23,故b n -43=13·2n,b n =13·2n +43(n ≥1).由b n =1a n -12得a n b n =12b n +1,故S n =a 1b 1+a 2b 2+…+a n b n =12(b 1+b 2+…+b n )+n=13(1-2n )1-2+53n =13(2n +5n -1).。

2005年高考分类解析(圆)

2005年高考分类解析(圆)

2005年高考全国试题分类解析(圆锥曲线)一、选择题:1重庆卷) 若动点(x ,y )在曲线14222=+by x(b >0)上变化,则x 2+2y 的最大值为(A )(A)⎪⎩⎪⎨⎧≥<<+)4(2)40(442b bb b ; (B)⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C)442+b; (D) 2b 。

2. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18(B)41 (C)21 (D)13. (天津卷)设双曲线以椭圆192522=+yx长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )A .2±B .34±C .21±D .43±4.(天津卷)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny mx 中的m 和n,则能组成落在矩形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为(B )A .43B . 72C . 86D . 905. (上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 6. (山东卷)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214yx +=的交点为A 、B 、,点P 为椭圆上的动点,则使P A B ∆的面积为12的点P 的个数为( B )(A )1 (B )2 (C )3 (D )4 7 (全国卷Ⅰ)已知双曲线)0( 1222>=-a yax 的一条准线为23=x ,则该双曲线的离心率为(A )(A )23 (B )23 (C )26(D )332A .)22,22(-B .)2,2(-C .)42,42(D .)81,81(-8.(全国卷II) 双曲线22149xy-=的渐近线方程是( C)(A) 23y x =±(B) 49y x =±(C) 32y x=±(D) 94y x=±9. (全国卷II)已知双曲线22163xy-=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(C )(A)5(B)6(C)65(D)5610. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(D )(A) 2 (B) 3 (C) 4 (D) 5 11. (全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(D )(A )2(B )12(C )2- (D 112. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( B )A .23+6B .21C .21218+D .2113 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A )1617 ( B )1615 ( C )87 ( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆22221(0)x y a b ab+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A )33 ( B )31 ( C )22 ( D )2115.(湖南卷)已知双曲线22ax -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a(O 为原点),则两条渐近线的夹角为(D ) A .30ºB .45ºC .60ºD .90º16. (湖南卷)已知双曲线22ax -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a(O 为原点),则两条渐近线的夹角为( D ) A .30º B .45ºC .60ºD .90º17. (湖北卷)双曲线)0(122≠=-mn nymx离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A .163B .83 C .316 D .3818. (福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( C )A .21 B .23 C .27 D .5 19. (福建卷)设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-20. (广东卷)若焦点在轴上的椭圆2212xym+=的离心率为12,则m=(B)32(C)83(D)2321. (全国卷III)已知双曲线2212yx -=的焦点为F 1、F 2,点M 在双曲线上且120,M F M F ⋅=则点M 到x 轴的距离为(C )(A )43(B )53(C3(D22.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by ax 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( D )A .324+B .13-C .213+ D .13+二、填空题:1.(江西卷)以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2O P O A O B =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-yxyx与椭圆有相同的焦点.其中真命题的序号为 ③④ (写出所有真命题的序号)2. (重庆卷)已知⎪⎭⎫⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为22413x y +=。

2005年高考理科数学全国卷试题及答案

2005年高考理科数学全国卷试题及答案

2005年高考理科数学全国卷Ⅲ试题及答案(四川陕西甘肃等地区用)源头学子小屋本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60分在每小题所给的四个答案中有且只有一个答案是正确的)1.已知α是第三象限的角,则2α是( ). A.第一或二象限的角 B.第二或三象限的角 C.第一或三象限的角 D.第二或四象限的角2. 已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m 的值为( ).A.0B.-8C.2D.10 3.在(x-1)(x+1)8的展开式中x 5的系数是( )A.-14B.14C.-28D.284.设三棱柱ABC-A 1B 1C 1的体积是V ,P.Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61B.V 41C.V 31D.V 21 5.)3x 4x 22x 3x 1(lim 221x +--+-→=( )A.-21B.21C.-61D.61 6.若55ln ,33ln ,22ln ===c b a ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c 7.设0≤x<2π,且x 2sin 1-=sinx-cosx, 则( )A.0≤x ≤πB.4π≤x ≤47πC.4π≤x ≤45πD.2π≤x ≤23π 8.=∙+xx x x 2cos cos 2cos 12sin 22( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A.tanxB.tan2xC.1D.219.已知双曲线1222=-y x 的焦点为F 1.F 2,点M 在双曲线上且021=∙MF MF ,则点M 到x 轴的距离为( )A.34 B.35 C.332 D.3 10.设椭圆的两个焦点分别为F 1.F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A.22 B.212- C.22- D.12- 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )个 A.3 B.4 C.6 D.712.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号这些符号与十进制的数的对应关系如下表:A.6EB.72C.5FD.B0二、填空题: 本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.已知复数z 0=3+2i, 复数z 满足z ∙z 0=3z+z 0,则z= 14.已知向量),10,k (OC ),5,4(OB ),12,k (OA -==,且A.B.C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-25,0,25,3, 22, 用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ=16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则P 到AC.BC 距离的的乘积的最大值是 三、解答题(共76分) 17.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.125 1)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形,平面V AD ⊥底面ABCD 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n 的通项k n21.(本小题满分14分)设()11,y x A .()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; 2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围2005年高考理科数学全国卷Ⅲ试题及答案(必修+选修Ⅱ) (四川陕西甘肃等地区用)参考答案13.12i -14.315.7416.317.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.125 1)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?解:记“甲机器需要照顾”为事件A ,“乙机器需要照顾”为事件B ,“丙机器需要照顾”为事件C ,由题意三个事件互不影响,因而A ,B ,C 互相独立(1)由已知有:P (A ∙B )= P(A)∙P(B)=0.05,P (A ∙C )= P(A)∙P(C)=0.1P (C ∙B )= P(B)∙P(C)=0.125 解得P (A )=0.2, P(B)=0.25, P(C)=0.5,所以甲.乙.丙三台机器在这一个小时内各自需要照顾的概率分别为0.2;0.25;0.5.(2)记事件A 的对立事件为A ,事件B 的对立事件为B ,事件C 的对立事件为C , 则P(A )=0.8, P(B )=0.75, P(C )=0.5,于是P(A+B+C)=1-P(A ∙B ∙C )=1-P(A )∙P(B )∙P(C )=0.7. 故在这一个小时内至少有一台需要照顾的概率为0.7.18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD ⊥底面ABCD 1)求证AB ⊥面VAD ;2)求面VAD 与面VDB 所成的二面角的大小.证法一:(1)由于面VAD 是正三角形,设AD 的中点为E ,则VE⊥AD ,而面VAD⊥底面ABCD ,则VE ⊥AB 又面ABCD 是正方形,则AB ⊥CD ,故AB ⊥面VAD (2)由AB ⊥面VAD ,则点B 在平面VAD 内的射影是A ,设VD 的中点为F ,连AF ,BF 由△VAD 是正△,则AF ⊥VD ,由三垂线定理知BF ⊥VD ,故∠AFB 是面VAD 与面VDB 所成的二面角的平面角设正方形ABCD 的边长为a ,则在Rt △ABF 中,,AB=a, AF=23a ,tan ∠AFB =33223==a a AF AB故面VAD 与面VDB 所成的二面角的大小为arctan证明二:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分 则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,02),∴1(0,1,0),(1,0,0),(,0,22AB AD AV ===-……3分 由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥…………4分13(0,1,0)(,0,)02AB AV AB AV ⋅=⋅-=⇒⊥……5分又AB∩AV=A ∴AB ⊥平面VAD …………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量……………………7分设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,0(1,1,220(1,,)(1,1,0)03x n VB yz n z n BD yz =-⎧⎧⎧⋅=⋅--=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=-⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分 ∴(0,1,0)(1,cos ,73AB n ⋅-<>==-11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==qp qn q m 3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=n ………………………………9分∴(0,1,0)(1,cos ,7AB n ⋅-<>==-11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为……12分19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值;(2)若23=⋅,求c a +的值解:(1)由B cos 43=得:47sin =B由ac b =2及正弦定理得:C A B sin sin sin 2= 于是:()BC A C A A C A C C C A A C A 2sin sin sin sin sin cos cos sin sin cos sin cos cot cot +=+=+=+ 774sin 1sin sin 2===BB B(2)由23=⋅得:23cos =⋅B ac ,因B cos 43=,所以:2=ac ,即:2=b 由余弦定理B ac c a b cos 2222⋅-+=得:5cos 2222=⋅+=+B ac b c a于是:()9452222=+=++=+ac c a c a故:c a +=20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n 的通项k n解:由题意得:4122a a a =……………1分 即)3()(1121d a a d a +=+…………3分又0,d ≠d a =∴1…………4分又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===dd a a q ,………6分 所以113+⋅=n k a a n ………8分又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分21.(本小题满分14分)设()11,y x A 、()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线(1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围注:本小题主要考察直线与抛物线等基础知识,考察逻辑推理能力和综合分析、解决问题的能力解法一:(1)⇔=⇔∈FB FA l F A 、B 两点到抛物线的准线的距离相等 因为:抛物线的准线是x 轴的平行线,0≥i y ()2,1=i ,依题意1y 、2y 不同时为0 所以,上述条件等价于()()02121222121=-+⇔=⇔=x x x x x x y y ;注意到:21x x ≠,所以上述条件等价于21=+x x即:当且仅当021=+x x 时,直线l 经过抛物线的焦点F(2)设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以1x 、2x 满足方程02122=-+m x x ,即4121-=+x x A 、B 为抛物线上不同的两点等价于上述方程的判别式0841>+=∆m ,也就是:32>m AB 的中点H 的坐标为为()00,y x ,则有:812210-=+=x x x ,m m x y +=+-=161200由l H ∈得:b m +-=+41161,于是:32321165165=->+=m b 即:l 在y 轴上截距的取值范围是⎝⎛+∞,329 .解法二:(Ⅰ)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F …………………………………………1分 (1)直线l 的斜率不存在时,显然有021=+x x ………………3分 (2)直线l 的斜率存在时,设为k ,截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩……5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩ 22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩………7分 2212104b x x ⇒+=-+≥14b ⇒≥ 即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F ……………9分 (II)解:设直线l 的方程为:y=2x+b,故有过AB 的直线的方程为m x 21y +-=,代入抛物线方程有2x 2+m x 21-=0, 得x 1+x 2=-41.由A.B 是抛物线上不同的两点,于是上述方程的判别式0m 841>+=∆,即321m -> 由直线AB 的中点为)2,2(2121y y x x ++=)m 161,81()m x 21,81(0+-=+--, 则,b 41m 161+-=+ 于是.329321165m 165b =->+= 即得l 在y 轴上的截距的取值范围是,329(+∞22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围解: (1)对函数f(x)=],1,0[x ,x 27x 42∈--求导,得f ’(x)=,)x 2()7x 2)(1x 2()x 2(716x 4222----=--+-,令f ’(x)=0解得x=21或x=27. 当x 变化时,f ’(x), f(x)的变化情况如下表所示:所以,当)21,0(x ∈时,f(x)是减函数;当)1,21(x ∈时,f(x)是增函数当]1,0[x ∈时,f(x)的值域是[-4,-3](II )对函数g(x)求导,则g ’(x)=3(x 2-a 2).因为1a ≥,当)1,0(x ∈时,g ’(x)<5(1-a 2)≤0, 因此当)1,0(x ∈时,g(x)为减函数,从而当x ∈[0,1]时有g(x)∈[g(1),g(0)],又g(1)=1-2a-3a 2,g(0)=-2a,即当x ∈[0,1]时有g(x)∈[1-2a-3a 2,-2a],任给x 1∈[0,1],f(x 1)∈[-4,-3],存在x 0∈[0,1]使得g(x 0)=f(x 1),则[1-2a-3a 2,-2a]]3,4[--⊃,即⎩⎨⎧-≥--≤--3a 24a 3a 212 ②①,解①式得a ≥1或a 35-≤,解②式得23a ≤, 又1a ≥,故a 的取值范围内是23a 1≤≤.。

2005年高考理科数学试卷及答案(重庆)

2005年高考理科数学试卷及答案(重庆)

2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-yx B .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x 2.=-+2005)11(ii( )A .iB .-iC .20052D .-200523.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)4.已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向量AC 与DA 的夹角为( )A .54arccos2-πB .54arccosC .)54arccos(-D .-)54arccos(-5.若x ,y 是正数,则22)21()21(xy yx +++的最小值是( )A .3B .27 C .4D .296.已知α、β均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有 ( )A .1个B .2个C .3个D .4个8.若)12(xx -n展开式中含21x项的系数与含41x项的系数之比为-5,则n 等于 ( )A .4B .6C .8D .109.若动点(y x ,)在曲线)0(14222>=+b by x上变化,则y x 22+的最大值为 ( )A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b bC .442+bD .2b10.如图,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使AE : EB=AF : FC=AG : GD=2 : 1,记O 为 三平面BCG 、CDE 、DBF 的交点,则三棱 锥O —BCD 的体积等于 ( ) A .91 B .81 C .71D .41第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上.11.集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则B A = .12.曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= .13.已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+= .14.nnn n n 231233232lim+-+∞→= .15.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 .16.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号). ①菱形②有3条边相等的四边形 ③梯形④平行四边形⑤有一组对角相等的四边形三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ的最大值为2,试确定常数a 的值.18.(本小题满分13分)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求: (Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE .19.(本小题满分13分) 已知R a ∈,讨论函数)1()(2+++=a ax x e x f x 的极值点的个数.20.(本小题满分13分)如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求:(Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.21.(本小题满分12分)已知椭圆C 1的方程为1422=+yx,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.22.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a nn a a nn n 且.(Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:每小题5分,满分50分.1.A 2.A 3.D 4.C 5.C 6.B 7.B 8.B 9.A 10.C 二、填空题:每小题4分,满分24分.11.}30|{<<x x 12.1± 13.1 14.-3 15.12845 16.②③⑤三、解答题:满分76分. 17.(本小题13分).15,.444111sin ),sin(441sin 2cos 212cos2sin cos 4cos 2)(:2222±==++=++=+=+=a aax axa x x x a x xx f 解之得由已知有满足其中角解ϕϕϕ18.(本小题13分)解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P CC C P CC P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE解法二: (Ⅰ),324530)(210241614==+=CC C C P(Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元). 19.(本小题13分).0)12()2(0)()],12()2([)2()1()(:222=++++='++++=+++++='a x a x x f a x a x e a x e a ax x e x f x xx 得令解(1)当.0)4(4)12(4)2(22>-=-=+-+=∆a a a a a a:),)(()(,,,0)12()2(,402121212从而有下表于是不妨设有两个不同的实根方程时或即x x x x e x f x x x x a x a x a a x--='<=++++><即此时)(x f 有两个极值点.(2)当0)12()2(,4002=++++===∆a x a x a a 方程时或即有两个相同的实根21x x =于是21)()(x x e x f x -=')(,0)(,;0)(,21x f x f x x x f x x 因此时当时故当>'>>'<无极值.(3),0)12()2(,40,02>++++<<<∆a x a x a 时即当)(,0)]12()2([)(2x f a x a x e x f x 故>++++='为增函数,此时)(x f 无极值. 因此当)(,40,2)(,04x f a x f a a 时当个极值点有时或≤≤<>无极值点.20.(本小题13分) 解法一:(Ⅰ)因AB ⊥面BB 1C 1C ,故AB ⊥BE.又EB 1⊥EA ,且EA 在面BCC 1B 1内的射影为EB. 由三垂线定理的逆定理知EB 1⊥BE ,因此BE 是异面直线AB 与EB 1的公垂线,在平行四边形BCC 1B 1中,设EB=x ,则EB 1=24x -,作BD ⊥CC 1,交CC 1于D ,则BD=BC ·.233sin =π在△BEB 1中,由面积关系得0)3)(1(,23221421222=--⋅⋅=-x x xx 即.3,1±=±=x x 解之得(负根舍去),33cos21,,322=⋅-+∆=πCE CEBCE x 中在时当解之得CE=2,故此时E 与C 1重合,由题意舍去3=x .因此x =1,即异面直线AB 与EB 1的距离为1.(Ⅱ)过E 作EG//B 1A 1,则GE ⊥面BCC 1B ,故GE ⊥EB 1且GE 在圆A 1B 1E 内, 又已知AE ⊥EB 1故∠AEG 是二面角A —EB 1—A 1的平面角. 因EG//B 1A 1//BA ,∠AEG=∠BAE ,故.2221tan ===ABBE AEG解法二:(Ⅰ)平面又由得由⊥=⋅⊥AB EB AE EB AE ,0,11 而BB 1C 1C 得AB ⊥EB 1从而1EB AB ⋅=0..,0)(111111的公垂线与是异面直线故线段即故EB AB BE EB EB EB AB EB EA EB AB EA EB EB ⊥=⋅+⋅=⋅+=⋅设O 是BB 1的中点,连接EO 及OC 1,则在Rt △BEB 1中,EO=21BB 1=OB 1=1,因为在△OB 1C 1中,B 1C 1=1,∠OB 1C 1=3π,故△OB 1C 1是正三角形,所以OC 1=OB 1=1,又因∠OC 1E=∠B 1C 1C -∠B 1C 1O=,3332πππ=-故△OC 1E 是正三角形,所以C 1E=1,故CE=1,易见△BCE 是正三角形,从面BE=1,即异面直线AB 与EB 1的距离是1.(Ⅱ)由(I )可得∠AEB 是二面角A —EB 1—B 的平面角,在Rt △ABE 中,由AB=2,BE=1,得tanAEB=2.又由已知得平面A 1B 1E ⊥平面BB 1C 1C ,故二面角A —EB 1—A 1的平面角AEB ∠-=2πθ,故 .22cot )2tan(tan ==∠-=AEB AEB πθ解法三:(I )以B 为原点,1BB 、BA 分别为y 、z 轴建立空间直角坐标系. 由于BC=1,BB 1=2,AB=2,∠BCC 1=3π,在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0,2,0),)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a.,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥面BCC 1B 1,故AB ⊥BE. 因此BE 是异面直线AB 、EB 1的公垂线, 则14143||=+=BE ,故异面直线AB 、EB 1的距离为1.(II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量 EA A B 与11的夹角..22tan ,32cos ),2,21,23(),2,0,0(1111==⋅=--===θθ即故因A B EA EA BA A B21.(本小题12分)解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-yx(II )将.0428)41(1422222=+++=++=kx x k yxkx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆kk k即 .412>k①0926)31(1322222=---=-+=kx x k yxkx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A B A B A B B A A kx kx x x y y x x y y x x OB OA kx x kk x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=kk kk k kk x x k x x kB A B A.0131315,613732222>--<-+kk kk 即于是解此不等式得.31151322<>k k或 ③由①、②、③得.11513314122<<<<kk或故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----22.(本小题12分)(Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+kk k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a nn a nn a n nnn n两边取对数并利用已知不等式得 n nn a nn a ln )2111ln(ln 21++++≤+.211ln 2nn nn a +++≤ 故nn n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n上式从1到1-n 求和可得 welcome@ 第 11 页 共 11 页121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n nn a a.22111121121121111)3121(211<-+-=--⋅+--++-+-=nnn nn即).1(,2ln 2≥<<n e a a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n 对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a nn a n nn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n.11113121211<--++-+-=nn因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n e eb b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立.。

2005年普通高考数学试题及答案(四川、陕西、云南理科卷)

2005年普通高考数学试题及答案(四川、陕西、云南理科卷)

2005年普通高等学校招生全国统一考试理科数学(全国卷III )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷一、选择题:每小题5分,共60分.1.已知α为第三象限角,则2α所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为 ( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数是 ( )A .-14B .14C .-28D .284.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为( )A .16V B .14VC .13VD .12V5.=+--+-→)342231(lim 221x x x x n ( )A .21-B .21C .61-D .616.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c 7.设02x π≤≤,sin cos x x -,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43B .53CD10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )ABC.2D1 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )A .3个B .4个C .6个D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B= ( )A .6EB .72C .5FD .B0第Ⅱ卷二、填空题:每小题4分,共16分,把答案填在题中横线上.13.已知复数=+=++=z z z z z z i z 则复数满足复数,3,23000 .14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取,22,3,25,0,25,3,22---用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ= . 16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是 三.解答题:共74分. 17.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、 乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概 率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率.18.(本小题满分12分)如图,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(Ⅰ)证明AB ⊥平面VAD ;(Ⅱ)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cotA+cotC 的值; (Ⅱ)设c a BC BA +=⋅求,23的值.20.(本小题满分12分)在等差数列}{n a 中,公差412,0a a a d 与是≠的等差中项.已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k21.(本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线.(Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.22.(本小题满分12分)已知函数].1,0[,274)(2∈--=x xx x f (Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意 使得)()(10x f x g =成立,求a 的取值范围.参考答案一、1.B 2.C 3.B 4.C 5.C 6.A 7.C 8.B 9.C 10.C 11.D 12.B二、13、i 231-,14、23-,15、7416、3三、解答题:17.解:记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C ,由题意.各台机器是否需要照顾相互之间没有影响,因此,A ,B ,C 是相互独立事件(Ⅰ)由题意得: P (A ·B )=P(A)·P(B)=0.05P (A ·C )=P(A)·P(C)=0.1 P (B ·C )=P(B)·P(C)=0.125解得:P(A)=0.2;P(B)=0.25;P(C)=0.5所以, 甲、乙、丙每台机器需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)记A 的对立事件为,A B 的对立事件为B ,C 的对立事件为C ,则5.0)(,75.0)(,8.0)(===C P B P A P ,于是7.0)()()(1)(1)(=⋅⋅-=⋅⋅-=++C P B P A P C B A P C B A P 所以这个小时内至少有一台机器需要照顾的概率为0.7. 18.证明:方法一:(Ⅰ)证明:VAD AB ABCD VAD AD ABCDAB ADAB ABCDVAD 平面平面平面平面平面平面⊥⇒⎪⎪⎭⎪⎪⎬⎫⋂=⊂⊥⊥(Ⅱ)解:取VD 的中点E ,连结AF ,BE ,∵△VAD 是正三形, ∴AE ⊥VD ,AE=AD 23∵AB ⊥平面VAD , ∴AB ⊥AE.又由三垂线定理知BE ⊥VD. 因此,tan ∠AEB=.332=AE AB 即得所求二面角的大小为.332arctan方法二:以D 为坐标原点,建立如图所示的坐标图系. (Ⅰ)证明:不防设作A (1,0,0),则B (1,1,0), )23,0,21(V , )23,0,21(),0,1,0(-==VA AB由,0=⋅VA AB 得AB ⊥VA. 又AB ⊥AD ,因而AB 与平面VAD 内两条相交直线VA ,AD 都垂直. ∴AB ⊥平面VAD.(Ⅱ)解:设E 为DV 中点,则)43,0,41(E , ).23,0,21(),43,1,43(),43,0,43(=-=-=DV EB EA由.,,0DV EA DV EB DV EB ⊥⊥=⋅又得 因此,∠AEB 是所求二面角的平面角,,721||||),cos(=⋅=EB EA EB EA解得所求二面角的大小为.721arccos19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由b 2=a c 及正弦定理得 .sin sin sin 2C A B = 于是BC A C A A C A C C C A A C A C A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1cot cot +=+=+=+=+.774sin 1sin sin 2===B B B (Ⅱ)由.2,2,43cos ,23cos 232====⋅=⋅b ca B B ca BC BA 即可得由得由余弦定理 b 2=a 2+c 2-2a c+cosB 得a 2+c 2=b 2+2a c ·cosB=5.3,9452)(222=+=+=++=+c a ac c a c a20.解:依题设得,)1(1d n a a n -+= 4122a a a = ∴)3()(1121d a a d a +=+,整理得d 2=a 1d , ∵0,d ≠ ,1a d =∴得,nd a n = 所以, 由已知得d ,3d ,k 1d ,k 2d ,…,k n d n …是等比数列. 由,0≠d 所以数列 1,3,k 1,k 2,…,k n ,… 也是等比数列,首项为1,公比为.9,3131===k q 由此得 等比数列),3,2,1(39,3,9}{111 ==⨯===+-n q k q k k n n n n 所以公比的首项, 即得到数列.3}{1+=n n n k k 的通项21.解:(Ⅰ)B A FB FA l F ,||||⇔=⇔∈两点到抛物线的准线的距离相等.∵抛物线的准线是x 轴的平行线,2121,,0,0y y y y 依题意≥≥不同时为0,∴上述条件等价于;0))((2121222121=-+⇔=⇔=x x x x x x y y∵21x x ≠, ∴上述条件等价于 .021=+x x 即当且仅当021=+x x 时,l 经过抛物线的焦点F.(II )设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以21,x x 满足方程,02122=-+m x x 得4121-=+x x ;A ,B 为抛物线上不同的两点等价于上述方程的判别式,0841>+=∆m 即.321->m设AB 的中点N 的坐标为),(00y x ,则.16121,81(2100210m m x y x x x +=+-=-=+=由.329321165165,41161,=->+=+-=+∈m b b m l N 于是得即得l 在y 轴上截距的取值范围为(+∞,329). 22.解:(I )对函数)(x f 求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-=' 令0)(='x f 解得.2721==x x 或当x 变化时,)(),(x f x f '的变化情况如下表:所以,当)21,0(∈x 时,)(x f 是减函数;当)1,21(∈x 时,)(x f 是增函数.当]1,0[∈x 时,)(x f 的值域为[-4,-3]. (II )对函数)(x g 求导,得).(3)(22a x x g -=' 因为1≥a ,当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈ 又,2)0(,321)1(2a g a a g -=--=即]1,0[∈x 时有].2,321[)(2a a a x g ---∈ 任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =,则].3,4[]2,321[2--⊃---a a 即⎩⎨⎧-≥--≤--.32,43212a a a 解①式得 351-≤≥a a 或;解②式得.23≤a又1≥a ,故a 的取值范围为.231≤≤a①。

2005年高考全国试题分类解析(圆锥曲线)

2005年高考全国试题分类解析(圆锥曲线)

2005年高考全国试题分类解析(圆锥曲线)一、选择题:1重庆卷) 若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2+2y 的最大值为(A ) (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b b ;(B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b ; (D) 2b 。

2. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 3. (天津卷)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )A .2±B .34±C .21±D .43±4.(天津卷)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为(B )A .43B . 72C . 86D . 905. (上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在6. (山东卷)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( B ) (A )1 (B )2 (C )3 (D )47 (全国卷Ⅰ)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为(A )(A )23 (B )23 (C )26 (D )332A .)22,22(-B .)2,2(-C .)42,42(D .)81,81(-8.(全国卷II) 双曲线22149x y -=的渐近线方程是( C) (A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±9. (全国卷II)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(C )(A)(B) (C) 65 (D) 5610. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(D )(A) 2 (B) 3 (C) 4 (D) 5 11. (全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(D )(A )2 (B )12(C )2 (D 1- 12. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线xy 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( B )A .23+6B .21C .21218+D .2113 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A )1617( B ) 1615 ( C ) 87 ( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A )33 ( B ) 31 ( C ) 22 ( D ) 2115.(湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为(D ) A .30ºB .45ºC .60ºD .90º16. (湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( D ) A .30ºB .45ºC .60ºD .90º17. (湖北卷)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A .163B .83 C .316 D .38 18. (福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( C )A .21B .23 C .27 D .5 19. (福建卷)设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-20. (广东卷)若焦点在轴上的椭圆2212x y m +=的离心率为12,则m=(B)(B)32(C)83(D)2321. (全国卷III)已知双曲线2212y x-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=u u u u r u u u u r则点M 到x 轴的距离为(C )(A )43 (B )53(C)3 (D22.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( D )A .324+B .13-C .213+ D .13+二、填空题:1.(江西卷)以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=u u u r u u u r,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+u u u r u u u r u u u r则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 ③④ (写出所有真命题的序号)2. (重庆卷)已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为22413x y +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题(理工农医类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟.注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k k n n P P C k P --=)1()(第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-y xB .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x 2.=-+2005)11(ii( ) A .iB .-iC .20052D .-200523.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞YD .(-2,2)4.已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向量与DA 的夹角为( )A .54arccos 2-πB .54arccos C .)54arccos(-D .-)54arccos(- 5.若x ,y 是正数,则22)21()21(x y y x +++的最小值是( )A .3B .27 C .4D .29 6.已知α、β均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有 ( )A .1个B .2个C .3个D .4个8.若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于 ( )A .4B .6C .8D .109.若动点(y x ,)在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为 ( )A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b bC .442+bD .2b10.如图,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使 AE : EB=AF : FC=AG : GD=2 : 1,记O 为 三平面BCG 、CDE 、DBF 的交点,则三棱 锥O —BCD 的体积等于 ( )A .91B .81 C . 71D .41第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上. 11.集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则B A I = .12.曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= . 13.已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+= .14.n n n n n 231233232lim +-+∞→= . 15.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 .16.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号). ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ的最大值为2,试确定常数a 的值.18.(本小题满分13分) 在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求: (Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 19.(本小题满分13分)已知R a ∈,讨论函数)1()(2+++=a ax x e x f x的极值点的个数.20.(本小题满分13分) 如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求: (Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值. 21.(本小题满分12分)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.22.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nnn 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:每小题5分,满分50分.1.A 2.A 3.D 4.C 5.C 6.B 7.B 8.B 9.A 10.C 二、填空题:每小题4分,满分24分.11.}30|{<<x x 12.1± 13.1 14.-3 15.1284516.②③⑤ 三、解答题:满分76分. 17.(本小题13分).15,.444111sin ),sin(441sin 2cos 212cos2sin cos 4cos 2)(:2222±==++=++=+=+=a a ax a x ax xx a x x x f 解之得由已知有满足其中角解ϕϕϕ18.(本小题13分) 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).19.(本小题13分).0)12()2(0)()],12()2([)2()1()(:222=++++='++++=+++++='a x a x x f a x a x e a x e a ax x e x f x x x 得令解(1)当.0)4(4)12(4)2(22>-=-=+-+=∆a a a a a a:),)(()(,,,0)12()2(,402121212从而有下表于是不妨设有两个不同的实根方程时或即x x x x e x f x x x x a x a x a a x --='<=++++><x),(1x -∞x 1 ),(21x x2x),(2+∞x)(x f '+ 0- 0+ )(x f)(1x f 为极大值)(2x f 为极小值即此时)(x f 有两个极值点.(2)当0)12()2(,4002=++++===∆a x a x a a 方程时或即有两个相同的实根21x x = 于是21)()(x x e x f x-=')(,0)(,;0)(,21x f x f x x x f x x 因此时当时故当>'>>'<无极值.(3),0)12()2(,40,02>++++<<<∆a x a x a 时即当)(,0)]12()2([)(2x f a x a x e x f x 故>++++='为增函数,此时)(x f 无极值. 因此当)(,40,2)(,04x f a x f a a 时当个极值点有时或≤≤<>无极值点.20.(本小题13分) 解法一:(Ⅰ)因AB ⊥面BB 1C 1C ,故AB ⊥BE.又EB 1⊥EA ,且EA 在面BCC 1B 1内的射影为EB.由三垂线定理的逆定理知EB 1⊥BE ,因此BE 是异面直线 AB 与EB 1的公垂线,在平行四边形BCC 1B 1中,设EB=x ,则EB 1=24x -, 作BD ⊥CC 1,交CC 1于D ,则BD=BC ·.233sin=π在△BEB 1中,由面积关系得0)3)(1(,23221421222=--⋅⋅=-x x x x 即. 3,1±=±=x x 解之得(负根舍去),33cos21,,322=⋅-+∆=πCE CE BCE x 中在时当解之得CE=2,故此时E 与C 1重合,由题意舍去3=x .因此x =1,即异面直线AB 与EB 1的距离为1.(Ⅱ)过E 作EG//B 1A 1,则GE ⊥面BCC 1B ,故GE ⊥EB 1且GE 在圆A 1B 1E 内, 又已知AE ⊥EB 1故∠AEG 是二面角A —EB 1—A 1的平面角. 因EG//B 1A 1//BA ,∠AEG=∠BAE ,故.2221tan ===AB BE AEG 解法二:(Ⅰ)平面又由得由⊥=⋅⊥AB EB AE EB AE ,0,11 而BB 1C 1C 得AB ⊥EB 1从而1EB AB ⋅=0..,0)(111111的公垂线与是异面直线故线段即故EB AB BE EB EB EB AB EB EA EB AB EA EB EB ⊥=⋅+⋅=⋅+=⋅设O 是BB 1的中点,连接EO 及OC 1,则在Rt △BEB 1中,EO=21BB 1=OB 1=1,因为在△OB 1C 1中,B 1C 1=1,∠OB 1C 1=3π,故△OB 1C 1是正三角形, 所以OC 1=OB 1=1,又因∠OC 1E=∠B 1C 1C -∠B 1C 1O=,3332πππ=-故△OC 1E 是正三角形,所以C 1E=1,故CE=1,易见△BCE 是正三角形,从面BE=1,即异面直线AB 与EB 1的距离是1.(Ⅱ)由(I )可得∠AEB 是二面角A —EB 1—B 的平面角,在Rt △ABE 中,由AB=2, BE=1,得tanAEB=2.又由已知得平面A 1B 1E ⊥平面BB 1C 1C , 故二面角A —EB 1—A 1的平面角AEB ∠-=2πθ,故.22cot )2tan(tan ==∠-=AEB AEB πθ解法三:(I )以B 为原点,1BB 、BA 分别为y 、z 轴建立空间直角坐标系. 由于BC=1,BB 1=2,AB=2,∠BCC 1=3π, 在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0,2,0),)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a .,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥面BCC 1B 1,故AB ⊥BE. 因此BE 是异面直线AB 、EB 1的公垂线, 则14143||=+=,故异面直线AB 、EB 1的距离为1. (II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量A B 与11的夹角..22tan ,32||||cos ),2,21,23(),2,0,0(111111===--===θθ即故因A B EA A B21.(本小题12分)解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x OB OA k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得 .31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1(Y Y Y ---- 22.(本小题12分)(Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+k k k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a n n a n n a n nn n n 两边取对数并利用已知不等式得 n nn a n n a ln )2111ln(ln 21++++≤+ .211ln 2nn n n a +++≤ 故n n n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n 上式从1到1-n 求和可得11 121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n n n a a ΛΛ.22111121121121111)3121(211<-+-=--⋅+--++-+-=n nn n n Λ即).1(,2ln 2≥<<n e a a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n 对成立,故 ).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a n n a n n n n 令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b n n n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n Λ.11113121211<--++-+-=n n Λ因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n e e b b a b n n 故 故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立.。

相关文档
最新文档