蛋白质纯化的一般原则及方法选择

合集下载

蛋白质在分离纯化中保持稳定的方法及应用

蛋白质在分离纯化中保持稳定的方法及应用
蛋白质纯化是生物化学领域的重要技术,其目标是从复杂的生物基质中提取出高纯度的蛋白质,同时保持其生物学活性。纯化过程中需遵循一些基本原则,如选择适当的纯化方法和条件,以最大限度地保持蛋白质的稳定性和活性。常用的蛋白质分离纯化方法包括沉淀法、层析法、电泳法和超滤法等。这些方法基于蛋白质的物理化学性质,如溶解度、分子大小、电荷和亲和力等差异,实现蛋白质的分离。其中,沉淀法通过改变溶液的pH值、离子强度或加入有机溶剂等,使蛋白质从溶液中沉淀出来。层析法则是利用蛋白质在固定相和流动相之间的分配平衡,实现蛋白质的分离。电泳法根据蛋白质的电荷和分子大小,在电场作用下进行分离。而超滤法则是利用膜技术,根据蛋白质分子大小进行分离。在选择纯化方法时,需考虑蛋白质的性质、纯化目的以及后续应用等因素。同时,优化操作条件,如温度、pH值、离子强度和缓冲液成分等,也是提高蛋白可以实现蛋白质的高效分离纯化,为后续的蛋白质研究和应用提供有力支持。

蛋白质的分离纯化

蛋白质的分离纯化

蛋白质的分离纯化蛋白质是生命体中最基本的分子之一,它在细胞内发挥着重要的功能。

由于蛋白质的复杂性和多样性,研究人员通常需要从复杂的混合物中分离和纯化蛋白质。

蛋白质的分离纯化是生物化学和生物技术领域中非常重要的一项工作,它为我们深入研究蛋白质的结构和功能提供了必要的条件。

蛋白质的分离纯化可以通过多种不同的方法实现,这些方法包括离心法、凝胶过滤法、电泳法、层析法等。

在选择合适的方法时,研究人员需要考虑到蛋白质的特性以及实验的要求。

离心法是最常用的分离方法之一,在离心过程中,通过调整离心力和离心时间,可以实现不同密度的蛋白质的分层。

这种方法适用于分离大分子量的蛋白质。

凝胶过滤法是利用孔径不同的凝胶将蛋白质分离开来。

通常使用的凝胶有琼脂糖凝胶和聚丙烯酰胺凝胶,这些凝胶具有不同的孔径,可以根据蛋白质的分子量选择合适的凝胶进行分离。

电泳法是基于蛋白质的电荷和分子量差异而进行分离的方法。

最常用的电泳方法是SDS-PAGE电泳,通过使用SDS(十二烷基硫酸钠)对蛋白质进行解性和蛋白质间的形成复合物,使得蛋白质在电泳过程中仅仅受到电场力的影响,从而实现蛋白质的分离。

层析法是一种利用物质在载体上的分配和吸附性质进行分离的方法。

常见的层析方法有凝胶层析、亲和层析、离子交换层析等。

凝胶层析是通过利用载体颗粒的孔径进行分离,亲和层析是将特定配体固定在载体上,与目标蛋白质结合,从而实现分离,而离子交换层析是利用载体表面电荷与目标蛋白质的电荷相互作用进行分离。

在进行蛋白质的分离纯化时,需要注意以下几个关键步骤。

首先是样品制备,通常样品要经过细胞破碎、蛋白质提取等步骤,使得目标蛋白质从复杂的混合物中提取出来。

其次是样品的处理,包括去除杂质、调整蛋白质的溶液环境等。

然后是选择合适的分离方法,根据蛋白质的特性和实验要求来确定最适合的方法。

最后是纯化过程中的监测和分析,通过使用各种蛋白质分析方法,如SDS-PAGE、Western blot等,来确定目标蛋白质的纯化程度和鉴定其存在。

蛋白质的分离纯化方法一

蛋白质的分离纯化方法一

楚雄师范学院化学与生命科学系
范树国
2.聚丙烯酰胺凝胶电泳(PAGE)
3.毛细管电泳
楚雄师范学院化学与生命科学系
范树国
4.等电聚焦电泳
等电聚焦电泳法测定蛋白质pI
5.SDS-PAGE
6.离子交换层析
离子交换纤维素: 离子交换交联葡聚糖:兼有分子筛效应 离子交换交联琼脂糖:
楚雄师范学院化学与生命科学系
楚雄师范学院化学与生命科学系
范树国
普通电泳、等电聚焦、 双向电泳、脉冲电泳、 毛细管电泳 从电泳结果分:自由界 面电泳、区带电泳、盘 状电泳 从装置上分: 圆盘电 泳(柱状)、水平板电 泳、垂直板电泳。 从支持物分: 自由界 面电泳、纸电泳(或薄 膜电泳)、凝胶电 泳( PAGE ,琼脂糖胶, 淀粉胶等)
沉降的速度与颗粒的重量、密度和形状有关。离心后按其沉降 的速度不同,彼此分开形成区带。再进行光学定位,针刺或冰 冻切片采样分析。
蔗糖密度梯度
聚蔗糖密度梯度
楚雄师范学院化学与生命科学系
范树国
3.凝胶过滤
交联葡聚糖(Sephadex);聚丙烯酰胺凝胶(Bio-Gel P );琼脂糖凝胶(Sepharose,Bio-Gel A)
稳定蛋白质胶体溶液的主要因素 ①蛋白质表面极性基团形成的水化膜将蛋白质颗粒彼此隔开, 不会互相碰撞凝聚而沉淀。 ②两性电解质非等电状态时,带同种电荷,互相排斥不致聚集 而沉淀。
一旦电荷被中和或水化膜被破坏,蛋白质颗粒聚集,便从溶液 中析出沉淀。
楚雄师范学院化学与生命科学系
范树国
(二)蛋白质的沉淀
①盐析法 向蛋白质溶液中加入大量的中性盐[(NH4)2SO4、 Na2SO4、NaCl],使蛋白质脱去水化层而聚集沉淀。 ②有机溶剂沉淀法 破坏水化膜,降低介电常数。 ③重金属盐沉淀 pH大于等电点时,蛋白质带负电荷,可与 重金属离子(Hg2+. Pb2+. Cu2+ 等)结成不溶性沉淀 ④生物碱试剂和某些酸类沉淀法 pH小于等电点时,蛋白质 带正电荷,易与生物碱试剂和酸类的负离子生成不溶性沉淀。 生物碱试剂:是指能引起生物碱沉淀的一类试剂,单宁酸、 苦味酸、钨酸。酸 类:三氯乙酸、磺基水杨酸。 ⑤加热变性沉淀 往往是不可逆的。

第四章蛋白质化学第六节蛋白质及氨基酸分离纯化与测定

第四章蛋白质化学第六节蛋白质及氨基酸分离纯化与测定
第六节 蛋白质的分离纯化与测定
一、一般原则及基本步骤
材料的预处理及细胞破碎 蛋白质的抽提
蛋白质的粗分级
等电点沉淀法 盐析法 有机溶剂沉淀法
蛋白质的细分级
凝胶层析法 离子交换层析法 亲和层析
1
二、蛋白质的分离纯化方法
◇(一)根据分子大小不同的纯化方法 ◇(二)利用溶解度差别的纯化方法 ◇(三)根据电荷不同的纯化方法 ◇(四)利用选择性吸附的纯化方法 ◇(五)利用配体的特异性亲和力的纯化方法
磷酸基
SE-纤维素(强弱酸型)
磺乙基
SP-纤维素(强弱酸型)
磺丙基
常用的阴离子交换剂
离子交换剂
可电离基团
可电离基团结构
AE-纤维素(弱减型)
氨基乙基
PAB-纤维素(弱减型) 对氨基苯甲酸
DEAE-纤维素 (中弱减型)
DEAE -Sephadex (中弱减型)
二乙基氨基乙基 二乙基氨基乙基
DEAE -纤维素(强减型) 二乙基氨基乙基
(3)有分级分离现象 (4)要求对有机溶剂低温预冷。
16
4.温度对蛋白质溶解度的影响
• 在一定温度范围内,约0-40℃之间,大部分球状 蛋白质的溶解度随温度升高而增加,但也有例外, 例如人的血红蛋白从0到25℃,溶解度随温度上升 而降低。
• 在40-50℃以上开始变性,一般在中性pH介质中即 失去溶解力。
⑴蛋白质周围的水化层(hydration shell),保护了 蛋白质粒子,避免了相互碰撞,使蛋白质形成稳定 的胶体溶液。
⑵蛋白质两性电解质,分子间静电排斥作用。(存在 双电层)蛋白质粒子在水溶液中是带电的,带电的 原因主要是吸附溶液中的离子或自身基团的电离。 蛋白质表面的电荷与溶液中反离子的电荷构成双电 层。

蛋白质纯化方法总结

蛋白质纯化方法总结

分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。

1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。

为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。

然后根据不同的情况,选择适当的方法,将组织和细胞破碎。

动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。

植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。

细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。

破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。

组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。

细胞碎片等不溶物用离心或过滤的方法除去。

如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。

如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。

2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。

一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。

这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。

有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。

3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。

进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。

蛋白质的分离纯化方法

蛋白质的分离纯化方法

蛋白质的分离纯化方法根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。

根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。

透析和超滤是分离蛋白质时常用的方法。

透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。

超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。

这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。

它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。

由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。

所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。

当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。

例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。

使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。

常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。

可以根据所需密度和渗透压的范围选择合适的密度梯度。

密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。

蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。

凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。

凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。

四种蛋白纯化方式的原理及优缺点的简述

四种蛋白纯化方式的原理及优缺点的简述

一.分子筛(凝胶层析)原理:用一般的柱层析方法使相对分子质量不同的溶质通过具有分子筛性质的固定相(凝胶),从而使蛋白质分离。

优点:1.洗脱条件简单,往往只需要一种缓冲溶液,可以使用任何缓冲液。

2.实验操作相对简单3.条件温和,对蛋白活性保持率高4.既可以对标签蛋白纯化也可以对非标签蛋白纯化。

缺点:1. 工艺放大困难:分子筛层析无法遵循线性放大原则,即使遵循柱床高度不变的原则,工艺流速如何进行调整,也是需要面临的问题。

2. 层析柱装填困难3.对上样量有要求4.测定柱效困难5.反复使用层析柱困难二.亲和层析原理:亲和层析是一种吸附层析,亲和层析利用固相介质中的配基与混合生物分子之间亲和能力不同而进行分离,当蛋白混合液通过层析柱时,与配基能够特异性结合的蛋白质就会被吸附固定在层析柱中,其他的蛋白质对配体不具有特异性的结合能力,将通过柱子洗脱下来,这种结合在一定条件下是可逆的,选用适当的洗脱液,改变缓冲液的离子强度和pH 值或者选择更强的配体结合溶液将结合的蛋白质洗脱下来,而无亲和力的蛋白质最先流出层析柱。

优点:1. 亲和层析法是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。

2. 是最有效的生物活性物质纯化方法,它对生物分子选择性的吸附和分离,可以取得很高的纯化倍数。

此外蛋白在纯化过程中得到浓缩,结合到亲和配基后,性质更加稳定,其结果提高了活性回收率。

此外它可以减少纯化步骤,缩短纯化时间,对不稳定蛋白的纯化十分有利。

缺点:1.除特异性的吸附外,仍然会因分子的错误认别和分子间非选择性的作用力而吸附一些杂蛋白质,另洗脱过程中的配体不可避免的脱落进入分离体系。

2. 载体较昂贵,机械强度低,配基制备困难,有的配基本身要经过分离纯化,配基与载体耦联条件激烈等。

三.离子交换层析原理:离子交换层析根据样品表面电荷不同进行分离纯化的技术,根据不同蛋白样品在同一Ph条件下所带电荷正负以及带电荷量不同而将不同蛋白样品分离。

蛋白质的纯化的方法及原理

蛋白质的纯化的方法及原理

蛋白质的纯化的方法及原理蛋白质的纯化是从其来源中去除其他有机物和无机物,使其成为纯净的蛋白质样品的过程。

蛋白质纯化的方法可以根据需要选择,其中常用的方法包括盐析、凝胶过滤、电泳、金属柱层析、亲和层析、离子交换层析、逆相高效液相色谱等。

下面将详细介绍这些方法及其原理。

一、盐析盐析是利用不同浓度的盐溶液对蛋白质溶液进行逐渐稀释,从而使蛋白质发生沉淀的过程。

纯化蛋白质的关键是利用蛋白质与溶剂中离子之间的相互作用来控制蛋白质的溶解和沉淀过程。

在盐析中,通过选择离子强度和种类可以调整蛋白质溶液中所需溶剂化离子的浓度,达到沉淀和纯化蛋白质的目的。

二、凝胶过滤凝胶过滤是一种分子筛分离方法,利用不同孔径的凝胶进行分离。

凝胶的孔径能够排除较大分子,如核酸和细胞碎片,而较小分子,如蛋白质则能通过孔隙,实现纯化。

该方法简单易行,不需要任何特殊设备,适用于中小分子量的蛋白质纯化。

三、电泳电泳是利用蛋白质在电场中的移动性差异进行分离和纯化的方法。

常用的电泳方法有平板电泳、SDS-PAGE(聚丙烯酰胺凝胶电泳)和Western blotting (免疫印迹法)等。

电泳能够根据蛋白质的电荷、分子大小和不同的电场力,在凝胶中分离蛋白质,使其形成带状。

通过切割所需蛋白质的带状区域,可以实现对目标蛋白质的纯化。

四、金属柱层析金属柱层析是利用金属离子与蛋白质之间的亲和性进行分离的方法。

金属柱通常被配制成金属离子亲和基质,并固定在柱子上。

目标蛋白质通过与金属离子发生亲和作用而被保留在柱中,其他杂质则从柱中流出。

通过调节洗脱缓冲液的离子浓度和pH值,可实现对目标蛋白质的纯化。

五、亲和层析亲和层析是利用配体与其特异性结合的蛋白质进行分离和纯化的方法。

通常将配体固定在柱子上,待蛋白质样品通过柱子时,目标蛋白质与配体结合,其他杂质则流失。

通过改变洗脱缓冲液的条件,如离子浓度、pH值和络合剂的添加,可以实现目标蛋白质的纯化。

六、离子交换层析离子交换层析是一种利用蛋白质与离子交换基质之间的相互作用进行分离和纯化的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易lIl。

但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。

相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。

纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。

这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。

在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。

本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。

1 蛋白纯化的一般原则蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。

每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。

蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。

粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。

精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨常用的离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。

选择性指树脂与目的蛋白结合的特异性,柱效则是指蛋白的各成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。

仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。

2.各种蛋白纯化方法及优缺点2.1蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸。

在蛋白质的等电点处若溶液的离子强度特别高或特别低,蛋白则倾向于从溶液中析出。

硫酸铵是沉淀蛋白质最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保护蛋白的活性。

硫酸铵分馏常用做纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。

蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。

在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。

其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。

除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。

蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。

其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。

2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。

不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液131。

假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用予大规模纯化中。

新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。

也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。

蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。

蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。

2-3离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法[4,51。

基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。

树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。

蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。

大多数蛋白在生理pH(pH 6—8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。

由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。

在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。

在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。

但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。

与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。

值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

2.4 亲和层析亲和层析基于目的蛋白与固相化的配基特异结合而滞留,其他杂蛋白会流过柱子。

本方法存在的问题是:单抗非常昂贵,而且也需先纯化;单抗与目的蛋白结合力太强.要用苛刻的条件来洗脱,这会使目的蛋白失活并破坏单抗;混合物中的其他蛋白如蛋白酶也可能破坏抗体或与它们非特异结合;某些单抗也会在纯化过程中从树脂上解离下来混入产物中,也需要从终产物中去除。

亲和柱通常在纯化过程的后期应用,此时标本体积已缩小,大部分的杂质已经去除。

谷胱甘肽S一转移酶(Glutathione S—transferase,GST)是最常用的亲和层析纯化标签之一,带有此标签的重组蛋白可用交联谷胱甘肽的层析介质纯化,但本方法有以下缺点:首先,蛋白上的GST必须能合适地折叠,形成与谷胱甘肽结合的空间结构才能用此方法纯化;其次,GST标签多达220个氨基酸,如此大的标签可能会影响表达蛋白的可溶性,使形成包涵体,这会破坏蛋白的天然结构,难于进行结构分析,有时即便纯化后再酶切去除GST标签也不一定能解决问题。

另一种可应用的亲和纯化标签是6组氨酸标签,组氨酸的咪唑侧链可亲和结合镍、锌和钴等金属离子,在中性和弱碱性条件下带组氨酸标签的目的蛋白与镍柱结合,在低pH下用咪唑竞争洗脱。

组氨酸标签与GST相比有许多优点,首先,由于只有6个氨基酸,分子量很小,一般需要酶切去除:其次,可以在变性条件下纯化蛋白,在高浓度的尿素和胍中仍能保持结合力;另外6组氨酸标签无免疫原性,重组蛋白可直接用来注射动物,也不影响免疫学分析。

虽然有这么多的优点,但此标签仍有不足,如目的蛋白易形成包涵体、难以溶解、稳定性差及错误折叠等。

镍柱纯化时金属镍离子容易脱落漏出混入蛋白溶液,不但会通过氧化破坏目的蛋白的氨基酸侧链,而且柱子也会非特异吸附蛋白质,影响纯化效果。

若目的蛋白可与某种碳水化合物特异结合,或者需要某种特殊的辅因子,可将该碳水化合物或辅因子固相化制成亲和柱,结合后目的蛋白可用高浓度的碳水化合物或辅因子洗脱[9]。

2.5 疏水作用层析蛋白是由疏水性和亲水性氨基酸组成’的。

疏水性氨基酸位于蛋白空间结构的中心部位,远离表面的水分子。

亲水性氨基酸残基则位于蛋白表面。

由于亲水性氨基酸吸引了许多的水分子,所以通常情况下整个蛋白分子被水分子包围着,疏水性氨基酸不会暴露在外。

在高盐浓度的环境中蛋白的疏水性区域则会暴露并与疏水性介质表面的疏水性配基结合。

不同的蛋白疏水性不同,与疏水作用力大小也不同,通过逐渐降低缓冲液中盐浓度冲洗柱子,在盐浓度很低时,蛋白恢复自然状态,疏水作用力减弱被洗脱出来。

疏水性树脂的选择性是由疏水性配基的结构决定的,常用的直链配体为烷基配体(alkyl ligands)和芳基配体(arylligands),链越长结合蛋白的能力也越强。

理想树脂种类的选择应根据目的蛋白的化学性质而定,不能选择结合力太强的树脂,结合力太强的树脂会很难洗脱,所以开始时应选用中等结合力的苯基树脂探讨条件。

为了使选择合适的介质更容易,Amersham Biosciences推出了疏水作用树脂选择试剂盒,里面包括5种不同的树脂供比较。

疏水层析很适合作为离子交换纯化的下一个步骤,因为疏水作用层析在高盐浓度下上样,从离子交换得到的产物不需更换缓冲液即可使用。

蛋白又在低盐缓冲液中洗脱,又省去了下一步纯化前的更换缓冲液的步骤,既节约了时间,又减少了蛋白的丢失。

2.6 排阻层析也叫凝胶过滤或分子筛。

排阻层析柱的填充颗粒是多孔的介质,柱中围绕着颗粒所能容纳的液体量叫流动相,也称无效体积。

太大的蛋白不能进入颗粒的孔内,只能存在于无效体积的溶液中,将会最早从柱中洗脱出来,对这部分蛋白无纯化效果。

由于各种蛋白的分子大小不同,扩散进入特定大小孔径颗粒内的能力也各异。

大的蛋白分子会被先洗脱出来,分子越小,洗脱出来的越晚。

为得到最佳的纯化效果,应将孔径大小选在目的蛋白能在无效体积和总柱床体积的中点附近洗脱。

排阻层析有其他方法所不具备的优点,首先所能纯化的蛋白分子量范围宽,Tosoh Biosep公司的聚合物树脂,排阻极限可达20o000kD;其次,树脂微孔的形状适合分离球形的蛋白质,纯化过程中也不需要能引起蛋白变性的有机溶剂。

应该注意的是某些蛋白不适合用凝胶过滤纯化,因为本技术所用树脂有轻度的亲水性,电荷密度较高的蛋白容易吸附在上面。

排阻层析从不用于纯化过程的早期,因为这种方法要求标本高度浓缩,上样量只能在柱体积的1%--4%之间,柱子要细而长才能得到好的分离效果,树脂本身也比较昂贵,规模化的工业生产中不太适用。

2.7 丙烯酰胺凝胶电泳通常用来查看蛋白混合物样品的复杂程度和监测纯化效果。

这种方法分离效果极好,可惜很难在不丧失精度情况下放大到制备规模,因为随着胶厚度的增加,电泳时的热效应会严重干扰蛋白的泳动。

在基础研究中,有时仅需要少量的纯蛋白进行研究,如蛋白质测序等,此时电泳纯化不失为一种简便快速的好方法。

丙烯酰胺凝胶电泳也是蛋白纯化过程中重要的分析工具,可以检测目的蛋白是在哪个梯度的离子交换柱盐洗脱液中;可用来判定近年来随着各学科的迅猛发展,对蛋白纯化技术的需求不断增长,已有的纯化方法被日益改进,新型的纯化方法也相继涌现。

相关文档
最新文档