第一章-模态分析理论基础

合集下载

模态分析

模态分析

[D()] 2[m] [c] [k] 0
(4)
2、模态分析理论和术语
2.2 有阻尼模态分析理论:
对于包含陀螺效应的旋转软化结构或需考虑阻尼的结构,则使用QR Damped法求解模态振型和复特征值。特征值 i 的表达式:
i i ji
i-复数特征值的实部; i -复数特征值的虚部
3、特征值和振型
特征值的平凡根等于结构的固 有频率(rad/s)
ANSYS Workbench输入和输出的 固有频率的单位为Hz,因为输入 和输出时候已经除以了2π。
模态计算中的特征向量表征了结构 的模态振型,如图所示该形状即为 假设结构按照频率249Hz振动时的 形状。
4、参与系数,有效质量
模态计算后除了能够获取结构的固有频率和振型外,还有参与 系数与有效质量,其中参与系数的计算公式:
M u Cu Ku 0 (1)
设其解为
{x} { }et
代入方程(1)得到
(2[m] [c] [k]){ } [D()]{ } {0}
(2) (3)
矩阵 [D()]称为系统的特征矩阵。方程(3)是一个“二次特征值”问题,
要(3)式有非零解的充要条件为
2、模态分析理论和术语
2.1式输出计算的固有频率:
fi

i 2
其中: fi的单位为Hz,即转/秒。 如果模型的约束不足导致产生刚体运动,则总体刚度矩阵[K]为半正
定型,则会出现固有频率为0的情况。
2、模态分析理论和术语
2.2 有阻尼模态分析理论:
有阻尼模态分析中假设结构没有外力作用,则控制方程变为
6、模态计算中接触设置
模态计算中可以定义不同结构之间的接触,但是因为模态计 算是一个纯线性分析,因此模态计算中接触定义与其他非线性 问题中定义中的接触不同,模态计算中接触的具体设置如下:

模态分析原理

模态分析原理

模态分析原理模态分析是指通过对物体或系统的振动特性进行分析,来确定其固有频率、振型和振动模态等相关参数的一种分析方法。

在工程领域中,模态分析被广泛应用于结构设计、振动控制、故障诊断等方面,具有重要的理论和实际意义。

本文将对模态分析的原理进行介绍,希望能够帮助读者更好地理解和应用模态分析技术。

模态分析的基本原理是通过对系统的动力学方程进行求解,得到系统的固有频率和振型。

在进行模态分析时,需要考虑系统的质量、刚度和阻尼等因素,这些因素将直接影响系统的振动特性。

在实际工程中,通常会采用有限元方法或者试验测量的方式来获取系统的动力学参数,然后利用模态分析的理论进行计算和分析。

在进行模态分析时,首先需要建立系统的动力学模型,这包括系统的质量矩阵、刚度矩阵和阻尼矩阵等参数。

然后利用模态分析的理论,可以求解系统的特征方程,从而得到系统的固有频率和振型。

通过对系统的固有频率和振型进行分析,可以了解系统的振动特性,包括主要振动模态、振动形式和振动幅值等信息。

在实际工程中,模态分析通常用于结构设计和振动控制方面。

通过对结构的模态进行分析,可以确定结构的主要振动模态和固有频率,从而指导结构设计和优化。

同时,还可以通过模态分析来评估结构的振动响应,为振动控制和减震设计提供依据。

除了在结构设计和振动控制方面的应用外,模态分析还被广泛应用于故障诊断和结构健康监测等领域。

通过对系统的模态进行分析,可以发现系统的异常振动模态和频率,从而判断系统的工作状态和健康状况。

这对于提前发现系统的故障和隐患,具有重要的意义。

总之,模态分析作为一种重要的振动分析方法,具有广泛的应用前景和理论价值。

通过对系统的振动特性进行分析,可以深入理解系统的动力学行为,为工程设计和故障诊断提供重要的依据。

希望本文的介绍能够帮助读者更好地理解和应用模态分析技术,推动其在工程领域的进一步发展和应用。

模态分析的基础理论

模态分析的基础理论

模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。

在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。

模态分析的基础理论包括概率论、统计学和模态分析技术等。

概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。

在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。

通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。

统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。

模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。

在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。

聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。

主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。

这可以帮助我们更好地理解系统模态之间的关系和重要性。

模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。

通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。

模态分析的基础理论对于理解和优化系统具有重要意义。

通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。

同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。

因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。

模态分析及意义介绍

模态分析及意义介绍

六 模 态 分 析 总 结
五 模 态 举 例 CAE
四 模 态 试 验 举 例
三 模 态 问 题 举 例
二 整 车 模 态 分 布
一 模 态 基 础 理 论
车架前三阶模态振型:

图2-1 第一阶频率
模 态 举 例 CAE
图2-2 第二阶频率
图2-3 第三阶频率
五 模 态 举 例 CAE
阶次
CAE计算
一 模 态 基 础 理 论
1.3模态分析基本原理 模态分析有很多种方法,仅介绍频域法模态拟合的基本原理:
一 模 态 基 础 理 论
经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:
经过拉普拉斯变换等处理,可得到频率响应函数矩阵H(ω),该矩阵 中矩阵中第i行第j列的元素
ωr、ξr 、Φr分别称为第r 阶模态频率、模态阻尼比和模态振型 。
100
0.056
4.79
3.47
0.229
0.748
0.646
Mode3
26.684 Hz
0.013
0.056
100
0.012
0.11
5.384
0.002
0.003
Mode4
36.487 Hz
2.957
4.79
0.012
100
1.377
0.003
1.179
1.786
Mode5
51.299 Hz
1.022
3.2方向盘低速抖动问题 某样车5档缓加方向盘12点Z向振动colormap图

2700.00 2.01 4.90
模 态 问 题 举 例
Tacho1 (T1)

_模态分析理论基础

_模态分析理论基础
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
Iration Engineering, Northwestern Polytechnical University, China
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结 构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
•解的形式(s为复数)及拉氏 变换: x Xest (ms2 cs k ) x(s) f (s)
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China

单自由度模态分析理论

单自由度模态分析理论

要点二
非线性模态分析的研 究
目前,大多数模态分析研究都集中在 线性系统上。然而,在许多工程应用 中,非线性因素对结构振动的影响是 不可忽视的。因此,未来可以进一步 研究非线性模态分析方法,以更准确 地描述这些非线性效应。
要点三
智能材料和结构的应 用
随着智能材料和结构的发展,它们在 许多领域的应用越来越广泛。这些材 料和结构具有独特的动态特性,需要 新的模态分析方法来描述。因此,未 来的研究可以探索适用于智能材料和 结构的模态分析方法。
背景
随着工程结构的日益复杂化,模态分析在结构健康监测、振 动控制、地震工程等领域的应用越来越广泛。单自由度模态 分析作为模态分析的基础,为多自由度模态分析提供了理论 支持。
模态分析的定义
模态
模态是结构的固有振动特性,包 括频率、阻尼比和振型。
模态分析
模态分析是通过试验或数值方法 识别结构的模态参数的过程。
模态振型之间具有正交性, 即不同模态的振动不会相 互干扰。
选择性
在实际工程中,可以根据需要 选择特定的模态进行分析,以 简化计算和提高分析效率。
Part
03
单自由度系统的01
激振器激励
STEP 02
自由衰减振动
通过激振器对系统施加激励 ,使其产生振动响应,然后 采集响应信号进行分析。
04
单自由度系统的模态特性分析
模态正交性分析
模态正交性是指在模态空间中,不同的模态之间相互独立, 没有耦合关系。在单自由度系统中,模态正交性表现为各模 态振型函数的正交性,即它们的内积为零。
模态正交性的意义在于,它使得各模态之间互不干扰,各自 独立地响应外部激励,从而使得系统的响应可以通过叠加各 模态的响应得到。

模态分析的相关知识(目的、过程等)

模态分析的相关知识(目的、过程等)
定义和目的(续上页)
模态分析的好处: • 使结构设计避免共振或以特定频率进行振动(例如扬声器); • 使工程师可以认识到结构对于不同类型的动力载荷是如何响
应的; • 有助于在其它动力分析中估算求解控制参数(如时间步长)。
建议: 由于结构的振动特性决定结构对于各种动力载荷的响应情
况,所以在准备进行其它动力分析之前首先要进行模态分 析。
M2-28
模态分析步骤
观察结果(接上页)
列出自然频率: • 在通用后处理器菜单中选择 “Results Summary”; • 注意,每一个模态都保存在单独的子步中。
典型命令:
/POST1
SET,LIST
2021/10/10
M2-29
模态分析步骤
观察结果 (接上页)
观察振型: • 首先采用“ First Set”、“ Next

模态分析
2021/10/10
M2-1
模态分析
第一节: 模态分析的定义和目的 第二节: 对模态分析有关的概念、术语以及模态提取方法的讨论 第三节: 学会如何在ANSYS中做模态分析 第四节: 做几个模态分析的练习 第五节: 学会如何做具有预应力的模态分析 第六节: 学会如何在模态分析中利用循环对称性
的SPIN(旋转速度,弧度/秒)选项来说明陀螺效应; – 计算以复数表示的特征值和特征向量。
• 虚数部分就是自然频率; • 实数部分表示稳定性,负值表示稳定,正值表示不确定。
注意:
• 该方法采用Lanczos算法
• 不执行Sturm序列检查,所以遗漏高端频率
• 不同节点间存在相差
• 响应幅值 = 实部与虚部的矢量和
化:。 – 对振型进行相对于质量矩阵[M]的归一化处理是缺省选项,这种

模态分析与实验 第一章

模态分析与实验 第一章

jωk t
+ c−k e
−jωk t
=
k=−∞
ck ejkω0 t
(1-6)
在式 (1-1) 中, 若令 Ak =
2 则 a2 k + bk , A0 = a0 , ∞
xT (t) = A0 +
k=1
Ak sin(ωk t + θk )
(1-7)
这里 Ak 反映了频率为 kω 的谐波在 xT (t) 中所占的份额, 称为振幅。 在复指数形式中, 第 k 次谐波为 ck ejωk t + c−k e−jωk t 1 1 其中, ck = (ak − jbk ), c−k = (ak + jbk ), 则 2 2 |ck | = |c−k | = 即 Ak = 2|ck |, k = 0, 1, 2, · · · 。 –3– 1 2
2F0 =− T bk 2 = T 2 =− T 2F0 = T =
T 2
0
2F0 cos ωk tdt + T
T 2
0 0 −T 2
cos ωk tdt = 0 2 F0 sin ωk tdt + T
T 2 T 2
−T 2
2 F (t) sin ωk tdt = − T
0
0
F0 sin ωk tdt
= a0 +
k=1 ∞
= a0 +
k=1
1 1 令 c0 = a0 , ck = (ak − jbk ), c−k = (ak + jbk ), 则 2 2 其中 ck = 1 T
T /2 −T /2
xT (t)e−jkω0 t dt, c−k =
1 T

结构力学读书笔记

结构力学读书笔记

竭诚为您提供优质文档/双击可除结构力学读书笔记篇一:结构力学感想感悟结构力学这学期开设土木工程专业基础课结构力学,给我第一印象是:难并且复杂,但是实用。

结构力学(structuralmechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。

我以后专业方向可能选择结构方向,那么未来的工作和学习很可能一直需要学习结构力学并且研究它。

下面谈谈对结构力学初步的感悟。

结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。

结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。

这三种分析方法实用而且能把复杂的问题简单化,也就是简化实际工程中的问题。

在实际生活中,结构无处不在,结构体系是整个工程核心,结构一旦出问题,那么整个工程体系将会出现问题。

土建、水利等建筑工程首先考虑的就是建筑工程的结构,结构就是组成工程的灵魂。

任何复杂的工程体系都可以简化成一个个简单的结构体系来分析,进而强化改进整个建筑,使它们能够更安全、更经济、更耐久,满足工程需要。

结构力学在当前的实际中要靠建筑设计作为基础,在满足该设计的前提下进行结构分析与设计,单纯的从结构方面进行的建筑必定难以满足美观的要求,而在现在的建筑中,没有好的外观,纵使你的结构固若金汤也很难被接受。

多数情况下,结构设计在建筑设计之后支持那些设计师设计出的外观。

结构力学的学习就是为了这一目标,为建筑设计师设计出的建筑图纸设计满足要求的结构,最实用的东西,往往在幕后下功夫,不可否认,结构是关键性作用。

以后我如果学习结构的话,那么我将是一个幕后英雄了。

模态分析报告

模态分析报告

模态分析报告一、引言模态分析是研究结构动力特性的一种方法,通过对结构进行模态分析,可以了解结构的固有频率、振型等重要参数,为结构的设计、优化和故障诊断提供重要的依据。

本次模态分析的对象是一个机械结构,旨在评估其在不同工况下的动态性能。

二、模态分析的理论基础模态分析基于结构动力学的原理,假设结构在自由振动时的响应可以表示为一系列固有模态的线性组合。

每个固有模态具有特定的固有频率和振型,固有频率反映了结构的振动特性,振型则描述了结构在该频率下的振动形态。

三、实验设备与方法1、实验设备本次实验使用了加速度传感器、数据采集系统和模态分析软件。

加速度传感器用于测量结构在振动时的加速度响应,数据采集系统将传感器采集到的数据传输到计算机,模态分析软件则对数据进行处理和分析。

2、实验方法首先,在结构的关键位置安装加速度传感器,并对传感器进行校准。

然后,对结构施加激励,激励方式可以是锤击法或激振器法。

在激励过程中,同时采集传感器的数据。

最后,将采集到的数据导入模态分析软件进行处理和分析。

四、实验结果与分析1、固有频率通过模态分析,得到了结构的前若干阶固有频率。

固有频率的分布情况反映了结构的刚度特性。

较低的固有频率通常与结构的整体振动相关,而较高的固有频率则与局部结构的振动有关。

2、振型振型是结构在特定固有频率下的振动形态。

通过观察振型,可以了解结构在振动时的变形模式。

例如,某些振型可能表现为弯曲变形,而另一些振型可能表现为扭转变形。

3、模态参与因子模态参与因子反映了每个模态对结构总体响应的贡献程度。

通过分析模态参与因子,可以确定哪些模态对结构的动态性能影响较大。

五、结果讨论1、结构刚度评估根据固有频率的大小,可以对结构的刚度进行评估。

如果固有频率较低,可能表明结构的刚度不足,需要进行加强或改进。

2、共振风险分析当结构的工作频率接近其固有频率时,可能会发生共振现象,导致结构的振动加剧,甚至损坏。

通过模态分析,可以确定结构的共振频率范围,从而采取相应的措施避免共振的发生。

第一章模态分析理论基础

第一章模态分析理论基础

共振频率点
ds max d 1
• 粘滞阻尼系统
– Nyquist图
2
2
[H
R
( )]2
(H
I
( ))2
1
4k
1
4k
» 特点
»桃子形,阻尼比越小
轨迹圆越大
» ( 是变的,所以不是圆 )
在固有频率附近,曲线 接近圆,仍可利用圆
的特性
第20页/共60页
速度与加速度频响函数特性曲线
• 关系回顾
HR 1, 2
(
)
4k
1 (1
)
2
1
g
2
半功率带宽反映阻尼大小 阻尼越大,半功率带宽
越大,反之亦然
第17页/共60页
• 虚频图
• •
H
I
( )
g
k[(1 2 )2
(结构阻尼) (g粘2 ] 性阻尼)
• 以H结I构(阻) 尼k[为(1例:2 )22(2 )2 ]
– 系统共振时虚部达到最大值
– 系统共振时实部为零
m1
机架线
第30页/共60页
• 一般多自由度约束系统
机架线
– N自由度约束系统有N个共振频率,(N-1)个反共振频率 – 对原点函数共振反共振交替出现 – 对跨点频响函数无此规律 – 一般两个距离远的跨点出现反共振的机会比较近的跨点少
第31页/共60页
– 自由系统
• 两自由度系统运动方程(无阻尼)
第7页/共60页
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
•强迫fd振动方c程x 及其解
..
.
m x•解c的x形式k(xs为复f 数)及拉氏变换:

模态分析理论

模态分析理论

精心整理模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。

首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态22¨330m 0z k 2k k z 000m 0k k z 0z +--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。

主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。

主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为(去除项化简得以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(15)有非零解,则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(16)即()234222ω-m ω+4km ω-3k m =0(17)阶固有频率,每一个特征根对应一个特征矢量,表示对应模态下该由式3i i 21=z k 如果设定了1z 值,则就可以求出三个特征根值下,2z 和3z 相对于1z 的位移。

假设m=k=1, 一阶模态,1ω=0:21z =1z ,31z =1z ,即;二阶模态,223kω=m :21z=0z,31z=-1z,即;三阶模态,23kω=m :21z=-2z,31z=1z,即。

运动方程的解耦图错误!未指定顺序。

运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化。

模态分析理论

模态分析理论

模态分析指的是以振动理论为基础、以模态参数为目标的分析方法..首先建立结构的物理参数模型;即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题;求得特征对特征值和特征矢量;进而得到模态参数模型;即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数..特征根问题以图3所示的三自由度无阻尼系统为例;设123m =m =m =m ;123k =k =k =k ;图 1 三自由度系统其齐次运动方程为: 8其中分别为系统的质量矩阵和刚度矩阵;123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;则运动方程展开式为:¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦9定义主振型由于是无阻尼系统;因此系统守恒;系统存在振动主振型..主振型意味着各物理坐标振动的相位角不是同相相差0o 就是反相位相差180o ;即同时达到平衡位置和最大位置..主振型定义如下:()i ij ωt+i i sin ωt+=Im(e)φφi mi mi z =z z 10其中为第i 阶频率下;各自有度的位移矢量;为第i 个特征矢量;表示第i 阶固有频率下的振型;i ω为第i 阶频率下的第i 个特征值;i φ为初始相位..对于三自由度系统;在第i 阶频率下;等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11mki z 表示第k 个自由度在第i 阶模态下的模态矩阵..特征值对式10二次求导;得2i i i =-ωsin(ω+)φ¨i mi z z 12代入齐次运动方程得13去除项化简得14以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦15 有非零解;则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦16即()234222ω-m ω+4km ω-3k m =0 17方程解如下:1ω=0;23k ω=m ±;3kω=m±..三个解对应该系统的前三阶固有频率;每一个特征根对应一个特征矢量;表示对应模态下该系统的振型..特征矢量由式得矩阵展开形式:2i m1i 2i m2i 2i m3i k-ωm -k 0z -k 2k-ωm -k z =00-k k-ωm z ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 18 展开第一行和第二行;忽略下脚标m 和i;得()()2i1221i3k-ωm z -kz =0-kz 2k-ωm kz+-= 19得22i 124223ii21z k-ωm =z k z m ω-3km ω+k =z k 20如果设定了1z 值;则就可以求出三个特征根值下;2z 和3z 相对于1z 的位移..假设m=k=1;一阶模态;1ω=0:21z =1z ;31z =1z ;即;二阶模态;223k ω=m :21z =0z ;31z =-1z ;即;三阶模态;23kω=m :21z =-2z ;31z =1z ;即..模态矩阵所谓模态矩阵就是指各列由各阶模态特征矢量构成的矩阵;如图4所示..图 2 模态矩阵对于前面提到的三自由度系统;模态矩阵如下:运动方程的解耦对于一个复杂的系统;在物理坐标系统中建立的运动方程之间存在耦合关系;因此求解起来比较麻烦;因此需要进行坐标系转化;将耦合的运动方程变为非耦合的运动方程;再将求得的结果转化为物理坐标系下的结果;运动方程解耦过程如下图5:图 3 运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化..任意上面的三自由度系统为例;由式得2122 对式21左乘得23 又因为因为系统对称所以;;则:24 对式24右乘25 则式23—式25得26 当时;则27 当;即;则可以为任何值;令28 则对质量矩阵和刚度矩阵的归一化结果如下:2930特征矢量的归一化由于特征矢量只是位移之比;而不是绝对振幅;因此可以对其进行归一化处理..令;其中3132对于对角质量矩阵33则三自由度系统:343m 2m 6m 326=003m 6m m 363m2m6m 326n z 35 则归一化的质量矩阵为100010001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Tn n n m =z mz 36 同理归一化后的刚度矩阵为000k =010m003⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦n k 37可以看出归一化后的刚度矩阵对角线上的各项就是各阶模态固有频率的平方..运动方程解耦将物理坐标系下的运动方程¨11¨22¨33z m 00k -k 0z 0 0m 0z +-k 2k -k z =000m 0-k k z 0z ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦按照前面介绍的归一化方法转化为主坐标系下的运动方程;其结果如下:¨p1p1¨p2p2¨p3p30z 00z 0k 00z +-k z =0m 00z 03k z 0-km 001101⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦38 可以看出在主坐标系中的运动方程之间没有耦合关系;分别单独描述各阶模态的运动特性..初始条件和激励的坐标转换物理坐标系中的非齐次运动方程为..mz+kz =F 39做如下变形..T -1T -1Tnn nn n n n z mz z z+z kz z z =z F 40 其中T n n z mz ;Tn n z kz 就是前面介绍的质量和刚度矩阵的对角化.. 令Tp n n m =z mz ;主坐标质量矩阵;Tp n n k =z kz ;主坐标刚度矩阵; ....-1p nz z =z ;主坐标系加速度矢量;-1n p z z =z ;主坐标系位移矢量; T n p z F =F ;主坐标系激励矢量..同样的关系也适用于初始位移和速度:-1op n o ..-1op n o z =z z z =z z 42两种坐标系的对比物理坐标系主坐标系物理坐标系中的运动方程的变量是速度和位移;在主坐标系中的变量是各阶振动模态下的位移和速度..由主坐标系转变为物理坐标系前面介绍了物理坐标系与主坐标系之间的关系为-1n p z z =z 43对式41左乘n z ;变为=-1n n n p z z z =z z z 44同理p =..n z z z 45非参数模型传递函数传递函数由系统的本质特性所决定;与系统的输入输出无关..知道了系统的传递函数就可以根据输入求输出或根据输出求输入..以图2的单自由度粘性阻尼系统为例;图 4 单自由度系统则该系统的运动方程为:...m z +c z +kz=F 1其中m 为质量;c 为阻尼系数;k 为刚度系数;z;分别为位移、速度和加速度..对二阶微分方程进行拉普拉斯变换;其中二阶导数项的拉普拉斯变换为:2假设初始位移和速度都为零;则3则经过拉普拉斯变换后的运动方程为:4求解拉氏方程得传递函数:22z(s)11/m==c k F(s)ms +cs+k s +s+m m5 其中定义2n kω=m为非阻尼系统的固有频率;rad/sec ;cr c 2km =阻尼值;ζ为阻尼比;一般为阻尼与临界阻尼的比值;cr c =c ζ;则n c 2ω=mζ.. 则传递函数又可以写成:22n nz(s)1/m=F(s)s +2ωs+ωζ 6 频响函数FRF用“j ω”代替s;得系统的频响函数;其中j 是虚数项:()()22n n 22n n z(j ω)1/m=F(j ω)j ω+2ζωj ω+ω1/m=-ω+2ζωωj+ω 7其中n kω=m ;=2kmζ则频响函数可以写成2z(j ω)1=F(j ω)-m ω+j ωc+k8 质量、阻尼、刚度对FRF 的影响刚度增大导致共振频率的增大;并且降低FRF 在低频段的幅值..增加阻尼会使共振频率略微减小;但它的主要作用是减小频响函数在共振点的幅值;同时使相位的改变较为平缓..如果阻尼为零;在共振点振动振幅将趋于无穷大;相位会突变180o ..增大质量会降低共振频率;同时也降低FRF 在高频段的幅值..。

模态分析

模态分析

§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS 命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

模态分析基本原理

模态分析基本原理

模态分析基本原理
模态分析是一种用于研究系统的行为和性能的方法。

它可以帮助我们理解系统在不同条件下的行为和响应。

模态分析的基本原理是通过建立数学模型来描述系统的动力学特性。

这个模型通常由一组微分方程组成,描述了系统各个部分之间的相互作用和能量传递。

通过分析这些微分方程的解,可以得到系统的稳态和暂态响应。

为了进行模态分析,首先需要确定系统的状态空间。

状态空间是描述系统状态的一组变量,这些变量可以是位置、速度、加速度等。

状态空间的选择取决于具体问题的需求。

在模态分析过程中,还需要确定系统的边界条件和初始条件。

边界条件描述了系统与外界之间的交互,而初始条件描述了系统在初始时刻的状态。

模态分析通过研究系统的特征方程和特征根来揭示系统的行为模式。

特征方程是通过将系统的微分方程转化为代数方程得到的,而特征根是特征方程的解。

特征根的实部和虚部可以提供关于系统的稳定性和振荡特性的信息。

通过分析特征根,可以确定系统的模态响应。

模态响应描述了系统在不同特征根下的行为,包括稳定性、发散性和振荡性等。

模态分析可以应用于很多领域,包括机械工程、电气工程、控制系统等。

它可以帮助工程师设计和优化系统,提高系统的性
能和可靠性。

总之,模态分析是一种基于数学模型的方法,通过研究系统的行为特性和相互关系来理解和优化系统的性能。

模态分析

模态分析

模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数(参数即固有频率、阻尼比和模态振型)可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

通常,模态分析都是指试验模态分析。

振动模态是弹性结构的固有的、整体的特性。

如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。

因此,模态分析是结构动态设计及设备的故障诊断的重要方法。

简单理解,模态是物体的固有特性,任何物体都有他的模态。

通俗一点:汽车的玻璃有模态,有固有频率。

所以一旦汽车的震动频率和玻璃的固有频率一样,就会共振模态是线性分析机构动力学是不是范围小点,主要是牛顿欧拉方程和拉各朗日,还有其他方法机械动力学包括弹性啊,柔性啊等等动力学求解方法我觉得不管机构动力学还是机械动力学都得涉及动力学求解方法吧动力学求解方法太复杂,机械上偏应用。

具体我也只是搞过轴承转子系统,不容易,好出东西。

机械动力学的书多,内容感觉大不相同。

最初我看机床动力学,比较经典的书后来看现代机械动力学,感觉就是机构动力学再后来,看转子动力学,感觉就一个方法,传递矩阵方法。

其实后来听报告,动力学求解才是一个最大的问题。

机械动力学是机械原理的主要组成部分,它主要研究机械在运转过程中的受力情况,机械中各构件的质量与机械运动之间的相互关系等等,是现代机械设计的理论基础。

研究机械运转过程中能量的平衡和分配关系。

机械动力学主要研究的是:在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。

模态识别技术

模态识别技术

1.1模态分析的基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。

模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。

一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。

模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

模态分析经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。

模态分析方法主要分三类,分别是试验模态分析EMA、工作模态分析OMA和工作变形分析ODS。

(1)试验模态分析(Experimental Modal Analysis,EMA),也称为传统模态分析或经典模态分析,是指通过输入装置对结构进行激励,在激励的同时测量结构的响应的一种测试分析方法。

输入装置主要有力锤和激振器,因此,实验模态分析又分为力锤激励EMA技术和激振器激励EMA技术。

(2)工作模态分析(Operational Modal Analysis,OMA),也称为只有输出的模态分析,而在土木桥梁行业,工作模态分析又称为环境激励模态分析。

这类分析最明显的特征是对测量结构的输出响应,不需要或者无法测量输入。

当受传感器数量和采集仪通道数限制时,需要分批次进行测量。

(3)工作变形分析(Operational Deflection Shape,ODS),也称为运行响应模态。

模态分析理论

模态分析理论

机械模态分析理论基础假设:系统是线性、定常与稳定的线性时不变系统 线性:描述系统振动的微分方程为线性方程,其响应对激励具有叠加性;定常:振动系统的动态特性(如质量、阻尼、刚度等)不随时间变化,即具有频率保持性;如系统受简谐激励-响应的频率必定与激励一致。

稳定:系统对有限激励必将产生一个有限响应,即系统满足傅氏变换和拉氏变换的条件。

振动系统分类:空间角度:离散(有限自由度)系统和连续(无限自由度)系统 时间角度:连续时间系统和离散时间系统 连续模拟信号--离散数字信号研究步骤:(1)建立结构的物理参数模型(以质量、阻尼、刚度为参数的关于位移的振动微分方程)(2)研究其特征值问题,求得特征值和特征矢量,得到结构的模态参数模型(模态频率、模态矢量、模态阻尼比、模态质量、模态阻尼、模态刚度等参数)。

正则化,解耦。

(3)通过研究受迫动力响应问题,可得到系统的非参数模型(频响函数和脉冲响应函数)。

频响函数和脉冲响应函数是试验模态分析系统识别模态参数的基础。

根据阻尼模型的不同,分为:无阻尼系统、比例阻尼系统、结构阻尼系统、粘性阻尼系统1、 单自由度系统的振动粘性阻尼系统的振动微分方程:)(t f kx x c x m =++&&&自由振动:0=++kx x c x m &&&正则形式:0220=++x x x ωσ&&&其中:m c 2=σ:衰减系数(衰减指数);mk =0ω:无阻尼固有频率(固有频率) 引入阻尼比(无量纲阻尼系数):mkc 20==ωσζ运动微分方程可写成:02200=++x x x ωζω&&&特解为:t e xλϕ=,λ为方程的特征值,因此: 0)(2=++ϕλλk c m为使系统有非零解,很显然:02=++k c m λλ因此可得到λ的解为:d j ωσλ±-=2,1 式中:201ζωω-=d 成为阻尼固有频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 运动方程及拉氏变换
..
m x kxjx f
[ms 2 (1 jg )k]x(s) f (s)
•传递函数和频率响应函数
H (s)
ms 2
1 (1
jg
)k
H ()
1
m 2 (1 jg )k
(1+jg)k — 复刚度
–用实部和虚部表示
H ()
1 k
1 2
(1
2
)
2
g2
j
gHale Waihona Puke (1 2 )2e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
s1,2 0 j0 1 2
c /(2 km)
0 k / m
实部:衰减因子,反映系统阻尼 虚部:有阻尼系统的固有频率
阻尼比 范围(0-1)
内为欠阻尼
无阻尼固有频率
结构阻尼(滞后阻尼)系统
• 阻尼力:与位移成正比,相位比位移超前90度
fd jx
• 结构阻尼系数
gk
g — 为结构阻尼比或结构损耗因子
f. 有限元模性修正与确认
当今工程结构计算采用最广泛的计算模型就是有限元模型。再好的 算法和软件都是建立在理想的结构物理参数和边界条件假设上的。结构 有限元计算结果和试验往往存在不小差距。此时在模态试验可信的前提 下,一般是以试验结果来对有限元模型进行修正和确认。经过修正和确 认的有限元模型具有优化概念下的与试验结果最大的接近。可以进一步 用于后继的响应、载荷和强度计算。
d. 振动与噪声控制
既然结构振动是各阶振型响应的迭加,只要设法控制相关频率附近 的优势模态(改设计和加阻尼材料等或使用智能材料)就可以达到控 制结构振动的目的。
对汽车车厢内或室内辐射噪声的控制,道理也一样。车厢座舱或室 内辐射噪声与其结构的振动特性(模态)关系密切,由于辐射噪声是 由结构振动“辐射”出来的。控制了结构的振动,也就是实现了辐射 噪声的控制。
模态分析定义为:将线性时不变系统振动微分方程组中 的物理坐标变换为模态坐标,使方程组解耦,成为一组以 模态坐标及模态参数描述的独立方程,坐标变换的变换矩 阵为振型矩阵,其每列即为各阶振型。
解析模态分析可用有限元计算实现,而试验模态分析则是对结构进行 可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数 矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结 构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。
g2
与粘性阻尼系统相比频响函数形式相同 g 和2 相互置换即可得各自表达式
位移、速度和加速度传递函数
Hd (s)
x(s) f (s)
Hv(s)
v(s) f (s)
Ha (s)
a(s) f (s)
• 位移、速度和加速度频率响应函数
H d ( )
x( ) f ()
Hv ( )
v( ) f ()
• 三者之间的关系
H a ( )
a( ) f ()
Ha () jHv () ( j)2 Hd () 2Hd ()
• 动刚度(位移阻抗) Z (s) ms 2 cs k

动柔度(位移导纳)
H (s)
1 ms2 cs k
• 质量阻抗、阻尼阻抗、刚度阻抗(位移、速度、加速度) • 质量导纳、阻尼导纳、刚度导纳(位移、速度、加速度)
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准
确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
试验模态分析的典型应用
a. 获得结构的固有频率,可避免共振现象的发生
当外界激励力的频率等于振动系统的固有频率时,系统发生共振 现象。此时系统最大限度地从外界吸收能量,导致结构过大有害振动。 结构设计人员要设法使结构不工作在固有频率环境中。
相反,共振现象并非总是有害的:振动筛、粉末碾磨机、打夯机 和灭虫声发射装置等等就是共振现象的利用。结构设计人员此时要设 法使这种器械工作在固有频率环境中,可以获得最大能量利用率。
左至右 阻抗除 j , 导纳乘j
•单自由度频响函数的特性曲线
Bode图(幅频图和相频图)
•幅频图:频响函数的幅值与频率的关

H()
H R () 2 H I () 2 k
第一章模态分析理论基础
姜节胜 西北工业大学 振动工程研究所
0/26
模态分析理论基础是20世纪30年代机械阻抗 与导纳的概念上发展起来。吸取了振动理论、 信号分析、数据处理、数理统计、自动控制理 论的有关营养,形成一套独特的理论。
模态分析的最终目标是识别出系统的模态 参数,为结构系统的振动分析、振动故障诊断 和预报、结构动力特性的优化设计提供依据。
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
fd cx
•强迫振动方程及其解
..
.
m x c x kx f
•解的形式(s为复数)及拉氏 变换:
x Xest (ms 2 cs k)x(s) f (s)
自由振动
.. .
m x c x kx 0
ms2 cs k 0
b. 为了应用模态叠加法求结构响应,确定动强度, 和疲劳寿命
分析告诉我们任何线性结构在已知外激励作用下他的响应是可以 通过每个模态的响应迭加而成的。所以模态分析另一主要的应用是建 立结构动态响应的预测模型,为结构的动强度设计及疲劳寿命的估计 服务。
c. 载荷(外激励)识别
由激励和模态参数预测响应的问题称为动力学正问题,反之由响应 和模态参数求激励称为反问题。原则上只要全部的各阶模态参数都求 得, 由响应就可以求出外激励(称为载荷识别)。
相关文档
最新文档