拟合优度检验.ppt
合集下载
第六章 拟合优度检验
.
该表共有2行2列,称为2×2列联表。检验 程序如下:
. .
1、提出假设H0:给药方式与治疗效果无关 联(相互独立),即口服给药与注射给药 的治疗效果没有差异 。 2、确定显著水平: a =0.05
3、在假设H0:给药方式与治疗效果无关联 (相互独立)的前提下,计算理论数:
.
.
根据独立事件的概率乘法法则:若事件 A 和事件 B 是相互独立的 , 则 P(AB)=P(A)P(B) 。
.
.
2 i 1
k
O
i
Ti 0.5 Ti
2
.
(2)当理论数小于5时,由上式计算出的2 值与2分布偏离也较大。因此,应将理论数 小于5的项与相邻项合并直到理论数≥5,合 并后的组数为k 。
1、提出假设H0:实际观测数与理论数相 符合,记为H0:O-T=0 , HA:不符合
. .
.
0.016 0.101 0.135 0.218 0.470
.
312.75 104.25 108 104.252 32 34.752 104.25 34.75
.
4、推断:从附表6中查出23, 0.05=7.815, H0的拒绝域为2>7.815。由于实得2< 7.815 , 结论是接受H0,F2代表现型符合9:3:3:1的 分离比率。 [实例2] 用正常翅的野生型果蝇与残翅果蝇 杂交, F1 代均表现为正常翅。 F1 代自交, 在F2代中有311个正常翅和81个残翅。问这 一分离比是否符合孟德尔3∶1的理论比?
.
2 i 1
k
Oi Ti
Ti
2
.
1899年统计学家K.Pearson发现上式服从自 由度df=k-1-a的2分布,所以定义该统计 量为2。 k为类型数或组数;a为需由样本估计的参 数的个数。
该表共有2行2列,称为2×2列联表。检验 程序如下:
. .
1、提出假设H0:给药方式与治疗效果无关 联(相互独立),即口服给药与注射给药 的治疗效果没有差异 。 2、确定显著水平: a =0.05
3、在假设H0:给药方式与治疗效果无关联 (相互独立)的前提下,计算理论数:
.
.
根据独立事件的概率乘法法则:若事件 A 和事件 B 是相互独立的 , 则 P(AB)=P(A)P(B) 。
.
.
2 i 1
k
O
i
Ti 0.5 Ti
2
.
(2)当理论数小于5时,由上式计算出的2 值与2分布偏离也较大。因此,应将理论数 小于5的项与相邻项合并直到理论数≥5,合 并后的组数为k 。
1、提出假设H0:实际观测数与理论数相 符合,记为H0:O-T=0 , HA:不符合
. .
.
0.016 0.101 0.135 0.218 0.470
.
312.75 104.25 108 104.252 32 34.752 104.25 34.75
.
4、推断:从附表6中查出23, 0.05=7.815, H0的拒绝域为2>7.815。由于实得2< 7.815 , 结论是接受H0,F2代表现型符合9:3:3:1的 分离比率。 [实例2] 用正常翅的野生型果蝇与残翅果蝇 杂交, F1 代均表现为正常翅。 F1 代自交, 在F2代中有311个正常翅和81个残翅。问这 一分离比是否符合孟德尔3∶1的理论比?
.
2 i 1
k
Oi Ti
Ti
2
.
1899年统计学家K.Pearson发现上式服从自 由度df=k-1-a的2分布,所以定义该统计 量为2。 k为类型数或组数;a为需由样本估计的参 数的个数。
卡方拟合优度检验课件
卡方拟合优度检验与其他方法的结合应用
与贝叶斯方法结合
利用贝叶斯方法对数据进行先验信息的引入,提高卡方拟合优度 检验的准确性。
与主成分分析结合
通过主成分分析对多维数据进行降维处理,简化数据结构,再利用 卡方拟合优度检验进行模型检验。
与聚类分析结合
利用聚类分析将数据划分为不同的簇,再对每个簇进行卡方拟合优 度检验,提高检验的针对性。
实例三:教育程度分布的卡方检验
总结词
教育程度分布的卡方检验用于评估观察 到的教育程度分布与预期分布是否一致 。
VS
详细描述
教育程度分布的卡方检验可以用于比较不 同教育程度的人口比例是否符合预期。例 如,我们可以比较实际观察到的不同教育 程度的比例与理论预期的比例,以了解两 者是否存在显著差异。通过卡方统计量的 大小,可以判断实际教育程度分布与预期 分布的差异程度。
01
计算期望频数的公式:$期望频数 = frac{总频数 times 该类别的频 数}{该类别的观察数}$
02
根据期望频数对实际频数进行比 较,判断是否符合预期。
计算卡方值
卡方值的计算公式:$卡方值 = frac{(实际频数 - 期望频数)^2}{期望 频数}$
将计算出的卡方值与自由度进行比较 ,判断是否显著。
实例一:性别分布的卡方检验
总结词
性别分布的卡方检验用于评估观察到的性别分布与预期分布是否一致。
详细描述
假设我们有一个数据集,其中记录了某个地区的人口性别分布。通过卡方拟合优度检验,我们可以比较实际观察 到的性别分布与预期的均匀分布或某种理论分布是否存在显著差异。如果卡方统计量较小,说明实际分布与预期 分布较为接近;如果卡方统计量较大,则说明两者存在显著差异。
经典拟合优度检验.ppt
§8.4 拟合优度检验
在前面的讨论中,我们总假定总体的分 布形式是已知的。例如,假设总体分布为正
态分布 N(, 2), 总体分布为区间 (a, b) 上的
均匀分布,等等。
然而,在实际问题中,我们所遇到的总 体服从何种分布往往并不知道。需要我们先 对总体的分布形式提出假设,如:总体分布
是正态分布N( , 2),总体分布是区间(a, b)
(3). 计算各子区间 Ii 上的实际频数 fi 。
fi =﹟{ X1, X2, …, Xn ∈ Ii } , i=1, 2, …, k .
计数符号,取集 合中元素的个数
(4). 计算理论频数与实际频数的偏差平方和。
2
k
[
i1
fi
npi (ˆ)]2 npi (ˆ)
,
( 2)
每一项用npi (ˆ) 去除的其目的是:缩小理论
由度为 k-r-1=7。由
22.15 2 k2r1( ) 18.48.
于是,拒绝原假设,即认为棉纱拉力强
度不服从正态分布。
χ 2检验的一个著名应用例子是孟德尔豌豆 实验。奥地利生物学家孟德尔在1865年发表的 论文,事实上提出了基因学说,奠定了现代遗 传学的基础。他的这项伟大发现的过程有力地 证明了统计方法在科学研究中的作用。因此, 我们有必要在这里将这一情况介绍给大家。
孟德尔这个发现的深远意义是他开辟了 遗传学研究的新纪元。下面的例子就是用 χ 2 检验来检验孟德尔提出黄绿颜色豌豆数目之 比为 3:1的论断。
例2:孟德尔豌豆试验中,发现黄色豌豆为25 粒, 绿色豌豆11粒,试在α=0.05下, 检验豌豆 黄绿之比为3:1。
解:定义随机变量 X
X
1, 0,
豌豆为黄色, 豌豆为绿色.
在前面的讨论中,我们总假定总体的分 布形式是已知的。例如,假设总体分布为正
态分布 N(, 2), 总体分布为区间 (a, b) 上的
均匀分布,等等。
然而,在实际问题中,我们所遇到的总 体服从何种分布往往并不知道。需要我们先 对总体的分布形式提出假设,如:总体分布
是正态分布N( , 2),总体分布是区间(a, b)
(3). 计算各子区间 Ii 上的实际频数 fi 。
fi =﹟{ X1, X2, …, Xn ∈ Ii } , i=1, 2, …, k .
计数符号,取集 合中元素的个数
(4). 计算理论频数与实际频数的偏差平方和。
2
k
[
i1
fi
npi (ˆ)]2 npi (ˆ)
,
( 2)
每一项用npi (ˆ) 去除的其目的是:缩小理论
由度为 k-r-1=7。由
22.15 2 k2r1( ) 18.48.
于是,拒绝原假设,即认为棉纱拉力强
度不服从正态分布。
χ 2检验的一个著名应用例子是孟德尔豌豆 实验。奥地利生物学家孟德尔在1865年发表的 论文,事实上提出了基因学说,奠定了现代遗 传学的基础。他的这项伟大发现的过程有力地 证明了统计方法在科学研究中的作用。因此, 我们有必要在这里将这一情况介绍给大家。
孟德尔这个发现的深远意义是他开辟了 遗传学研究的新纪元。下面的例子就是用 χ 2 检验来检验孟德尔提出黄绿颜色豌豆数目之 比为 3:1的论断。
例2:孟德尔豌豆试验中,发现黄色豌豆为25 粒, 绿色豌豆11粒,试在α=0.05下, 检验豌豆 黄绿之比为3:1。
解:定义随机变量 X
X
1, 0,
豌豆为黄色, 豌豆为绿色.
第八章拟合优度检验
142 149 142 137 134 144 146 147 140 142
140 137 152 145
解 为粗略了解数据的分布情况,先画出直方图。
步骤如下: 1.找出数据的最小值、最大值为126、158,取区 间[124.5, 159.5],它能覆盖[126, 158]; 2.将区间[124.5, 159.5]等分为7个小区间,小区间的 长度Δ=(159.5-124.5)/7=5, Δ称为组距,小区 间的端点称为组限,建立下表:
Y 50 31 26
17
10
8
6
6
8
试检验相继两次地震间隔天数 X 服从指数分布.
解 所求问题为: 在水平 0.05下检验假设
H0 : X 的概率密度
f
(
x)
1
x
e
,
0,
x 0, x 0.
由于在 H0 中参数 未具体给出, 故先估计 .
由最大似然估计法得 ˆ x 2231 13.77,
A5 :19.5 x 24.5 10
A6 : 24.5 x 29.5 8
A7 : 29.5 x 34.5 6
A8 : 34.5 x 39.5 A9 : 39.5 x
6
8
pˆ i
npˆ i
fi2 / npˆi
0.2788 45.1656
55.3519
0.2196 35.5752
27.0132
A7 :154.5 x
npˆ i
0.73
4.36 5.09
14.72
26.21
23.61
11.22
3.15 14.37
fi2 / npˆi
4.91
6.79 41.55 24.40 10.02 =87.67
拟合优度检验-
对性状杂 交 二 代
的 分 离 现 象 符 合 孟 德 尔遗传规律中9∶3∶3∶1 的遗传比例。
例7.1;7.2(P93;94)
• 总体参数未知 例P95,表7-1 不同之处:要由样本估计出总体参数。
7.2.3 对正态分布的检验(P96) 7.2.4 其他类型问题的检验(P97)
表
性别
动物性别实际观察次数与理论次数
实际观察 理论次 次数Oi 数Ti O i-T i (Oi-Ti)2/Ti
雌
雄 合计
428
448 876
438
438 876
-10
10 0
0.2283
0.2283 0.4563
从上表可以看到 ,实际观察次数与理论次数存在
一定的差异。 这个差异是属于抽样误差、还是其性别
§7.3、独立性检验
7.3.1 列联表2 检验(P97)
一、独立性检验的意义
对次数资料,除进行拟合优度检验外,有时需 要分析两类因子是相互独立还是彼此相关。如研究 两类药物对实验动物某种疾病治疗效果的好坏,先 将动物分为两组,一组用第一种药物治疗,另一组 用第二种药物治疗,然后统计每种药物的治愈头数 和未治愈头数。
当自由度大于1时,原公式的2分布与连续型随机
变量2分布相近似,这时,可不作连续性矫正,但要
求各组内的理论次数不小于5。若某组的理论次数小 于5,则应把它与其相邻的一组或几组合并,直到理 论次数大 于5 为止。
• 统计量:
(Oi Ti ) Ti i 1
2 r
2
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
比例发生了实质性的变化?
要回答这个问题: ①首先需要确定一个统计量用以表示实际观察次数与 理论次数偏离的程度; ②然后判断这一偏离程度是否属于抽样误差,即进行 显著性检验。
的 分 离 现 象 符 合 孟 德 尔遗传规律中9∶3∶3∶1 的遗传比例。
例7.1;7.2(P93;94)
• 总体参数未知 例P95,表7-1 不同之处:要由样本估计出总体参数。
7.2.3 对正态分布的检验(P96) 7.2.4 其他类型问题的检验(P97)
表
性别
动物性别实际观察次数与理论次数
实际观察 理论次 次数Oi 数Ti O i-T i (Oi-Ti)2/Ti
雌
雄 合计
428
448 876
438
438 876
-10
10 0
0.2283
0.2283 0.4563
从上表可以看到 ,实际观察次数与理论次数存在
一定的差异。 这个差异是属于抽样误差、还是其性别
§7.3、独立性检验
7.3.1 列联表2 检验(P97)
一、独立性检验的意义
对次数资料,除进行拟合优度检验外,有时需 要分析两类因子是相互独立还是彼此相关。如研究 两类药物对实验动物某种疾病治疗效果的好坏,先 将动物分为两组,一组用第一种药物治疗,另一组 用第二种药物治疗,然后统计每种药物的治愈头数 和未治愈头数。
当自由度大于1时,原公式的2分布与连续型随机
变量2分布相近似,这时,可不作连续性矫正,但要
求各组内的理论次数不小于5。若某组的理论次数小 于5,则应把它与其相邻的一组或几组合并,直到理 论次数大 于5 为止。
• 统计量:
(Oi Ti ) Ti i 1
2 r
2
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
比例发生了实质性的变化?
要回答这个问题: ①首先需要确定一个统计量用以表示实际观察次数与 理论次数偏离的程度; ②然后判断这一偏离程度是否属于抽样误差,即进行 显著性检验。
拟合优度检验-PPT
总数 98 (n1 ) 95 (n2 ) 193 (N)
有效率 59.2% 67.4%
22
※二、2 2列联表的精确检验法(Fisher检验法)
前提条件:某一格的理论数小于5。 思 想:用古典概型的方法求出尾区的概率,
然后与给定的显著性水平 相比,大于则接
受 H 0 ,反之拒绝。 需要解决的问题:
1.用古典概型求2 2列联表出现某一组数值的概率
注射 c
d
Tij
(i行和 )(j列 N
和 )
自由度 df = 1
19
四格表资料 2 检验的专用公式:
和前面的结果 一样
2
(adbc)2n
(ab)(cd)(ac)(bd)
2 (|adbc|0.5n)2n
(ab)(cd)(ac)(bd)
20
2. rc列联表
n11 n12 n13 L n1c
n21 n22 n23 L n2c
与理论(期望)频数(Expected frequency )之差 是否由抽样误差所引起。
补充:皮尔逊定理(pearson) 设 (p1,p2,L,pr)为总体的真实概率分布,统计量
2 r (ni npi )2 i1 npi 随n的增加渐近于自由度为r-1的 2 分布。
6
r
X2
(Oi Ti)2 ~X2(r1)
Oi
实际频数
黄花 84
绿花 16
合计 100
12
【补例7.3】( Poisson分布的拟合优度检验)将酵母细
胞的稀释液置于某种计量仪器上,数出每一小方格内的酵
母细胞数,共观察了413个小方格,结果见表7.3第1、2列,
试问该资料是否服从Poisson分布?
《拟合优度检验》课件
柯克伦科夫勒检验
总结词
柯克伦科夫勒检验是一种基于概率的拟合优度检验方法,用于检验观测频数与期望频数之间的差异是否显著。
详细描述
柯克伦科夫勒检验基于二项分布,通过计算观测频数与期望频数的离差平方和,得到柯克伦科夫勒统计量。在样 本量足够大的情况下,柯克伦科夫勒统计量近似服从正态分布。通过比较柯克伦科夫勒统计量与临界值,可以判 断观测频数与期望频数是否存在显著差异。
03
拟合优度检验的步骤
Chapter
确定检验假设
零假设(H0)
样本数据与理论分布无显著差异。
对立假设(H1)
样本数据与理论分布存在显著差异。
计算检验统计量
统计量计算
根据样本数据和理论分布的性质,计 算相应的统计量,如卡方统计量、熵 值统计量等。
统计量性质
了解统计量的分布特性,以便后续的 临界值判断。
斯皮尔曼秩检验
总结词
斯皮尔曼秩检验是一种非参数拟合优度检验方法,用于检验观测频数与期望频数之间的差异是否显著 。
详细描述
斯皮尔曼秩检验基于秩次,通过将观测频数与期望频数按照大小排序,并计算秩次之差得到秩次统计 量。在自由度等于分类数减一的情况下,秩次统计量服从F分布。通过比较秩次统计量与临界值,可 以判断观测频数与期望频数是否存在显著差异。
Chapter
皮尔逊卡方检验
总结词
皮尔逊卡方检验是最常用的拟合优度检验方法之一 ,用于检验观测频数与期望频数之间的差异是否显 著。
详细描述
皮尔逊卡方检验基于卡方分布,通过计算观测频数 与期望频数的离差平方和,得到卡方统计量。在自 由度等于分类数减一的情况下,卡方统计量服从卡 方分布。通过比较卡方统计量与临界值,可以判断 观测频数与期望频数是否存在显著差异。
线性回归模型的拟合优度检验方法分析PPT(18张)
§3 线性回归模型的拟合优度 检验
说明
回归分析是要通过样本所估计的参数来代替总体 的真实参数,或者说是用样本回归线代替总体回归 线。尽管从统计性质上已知,如果有足够多的重复 抽样,参数的估计值的期望(均值)就等于其总体 的参数真值,但在一次抽样中,估计值不一定就等 于该真值。那么,在一次抽样中,参数的估计值与 真值的差异有多大,是否显著,这就需要进一步进 行统计检验。主要包括拟合优度检验、变量的显著 性检验及参数的区间估计。
TSS=ESS+RSS
Y的观测值围绕其均值的总离差(total variation)可分解为两部分:一部分来自回 归线(ESS),另一部分则来自随机势力 (RSS)。
在给定样本中,TSS不变,如果实际观测点 离样本回归线越近,则ESS在TSS中占的比重 越大,因此定义拟合优度:回归平方和ESS与 Y的总离差TSS的比值。
•
18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。
•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
•
9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。
•
10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。
说明
回归分析是要通过样本所估计的参数来代替总体 的真实参数,或者说是用样本回归线代替总体回归 线。尽管从统计性质上已知,如果有足够多的重复 抽样,参数的估计值的期望(均值)就等于其总体 的参数真值,但在一次抽样中,估计值不一定就等 于该真值。那么,在一次抽样中,参数的估计值与 真值的差异有多大,是否显著,这就需要进一步进 行统计检验。主要包括拟合优度检验、变量的显著 性检验及参数的区间估计。
TSS=ESS+RSS
Y的观测值围绕其均值的总离差(total variation)可分解为两部分:一部分来自回 归线(ESS),另一部分则来自随机势力 (RSS)。
在给定样本中,TSS不变,如果实际观测点 离样本回归线越近,则ESS在TSS中占的比重 越大,因此定义拟合优度:回归平方和ESS与 Y的总离差TSS的比值。
•
18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。
•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
•
9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。
•
10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。
生物统计学第7章拟合优度检验
拟合优度检验的两种类型 (1)检验观测数与理论值之间的一致性 (2)检验观测数与理论数之间的一致性判断事件之 间的独立性
7.1.2 拟合优度检验的统计量
• 拟合优度检验一般方法是: (1)将观测值分为k种不同的类别。 (2)共获得n个独立观测值,第i类观测值的数目为
Oi, (3)求第i类的概率Pi (4)第i类的期望数即理论数为Ti,Ti=nPi (5)Oi与Ti进行比较,判断二者之间总的不符合程
例7.3 表7-3是不同给药方式与给药效果表。
解:因为零假设是给药方式与给药效果之间无
关联,则口服与有效同时出现的理论频率应为
口服的频率与有效的频率的乘积, P(BA)=P(B)P(A)=(98/193)(122/193)。其理 论数 由理T论i 频率乘以总数得出,
Ti
( 98 )(122 )193 193 193
7.2.2 对二项分布的检验
1.总体参数已知 【例7.1】纯合的黄圆豌豆与绿皱豌豆杂交,F1代自交,第
二代分离数目如下,问是否符合自由组合律?
1. 分组,根据孟德尔独立分配规律,YyRr×YyRr= Y_R_ :Y_rr :yyR_ :yyrr=9/16:3/16:3/16: 1/16,因此可分4组。
度是否由于机会所造成的。
2 k (Oi Ti )2
i 1
Ti
若理论数小于5 时应将相邻组 合并,直到大
于5为止。
当df=1时
2 k | oi Ti |2 0.5
i 1
Ti
Χ2的自由度:df=k-1-a
a为需要由样本估计的参数个数
7.2 拟合优度检验
7.2.1一般程序 (1)对数据进行分组(离散型数据组间距通常是1) (2)根据总体分布类型和样本含量n 计算理论数Ti。 (3)有时需用样本数据估计总体参数。记所估计的参数的个 数为a。 (4)分别合并两个尾区的理论数,使之不小于5,合并后的 组数计为k。 (5)相应于2的自由度为k-1, 相应于3的自由度为k-1-a。 (6)零假设:因为拟合优度检验不是针对总体参数做检验的, 因而零假设不需提出具体参数值,只需判断观测数是否符合理 论数或某一理论分布。它的零假设是观测数与理论数相符合, 可以形象化地记为H0:O-T=0。 (7)计算χ2值。
7.1.2 拟合优度检验的统计量
• 拟合优度检验一般方法是: (1)将观测值分为k种不同的类别。 (2)共获得n个独立观测值,第i类观测值的数目为
Oi, (3)求第i类的概率Pi (4)第i类的期望数即理论数为Ti,Ti=nPi (5)Oi与Ti进行比较,判断二者之间总的不符合程
例7.3 表7-3是不同给药方式与给药效果表。
解:因为零假设是给药方式与给药效果之间无
关联,则口服与有效同时出现的理论频率应为
口服的频率与有效的频率的乘积, P(BA)=P(B)P(A)=(98/193)(122/193)。其理 论数 由理T论i 频率乘以总数得出,
Ti
( 98 )(122 )193 193 193
7.2.2 对二项分布的检验
1.总体参数已知 【例7.1】纯合的黄圆豌豆与绿皱豌豆杂交,F1代自交,第
二代分离数目如下,问是否符合自由组合律?
1. 分组,根据孟德尔独立分配规律,YyRr×YyRr= Y_R_ :Y_rr :yyR_ :yyrr=9/16:3/16:3/16: 1/16,因此可分4组。
度是否由于机会所造成的。
2 k (Oi Ti )2
i 1
Ti
若理论数小于5 时应将相邻组 合并,直到大
于5为止。
当df=1时
2 k | oi Ti |2 0.5
i 1
Ti
Χ2的自由度:df=k-1-a
a为需要由样本估计的参数个数
7.2 拟合优度检验
7.2.1一般程序 (1)对数据进行分组(离散型数据组间距通常是1) (2)根据总体分布类型和样本含量n 计算理论数Ti。 (3)有时需用样本数据估计总体参数。记所估计的参数的个 数为a。 (4)分别合并两个尾区的理论数,使之不小于5,合并后的 组数计为k。 (5)相应于2的自由度为k-1, 相应于3的自由度为k-1-a。 (6)零假设:因为拟合优度检验不是针对总体参数做检验的, 因而零假设不需提出具体参数值,只需判断观测数是否符合理 论数或某一理论分布。它的零假设是观测数与理论数相符合, 可以形象化地记为H0:O-T=0。 (7)计算χ2值。
卡方-拟合优度检验PPT
对于某些有序分类变量,可能需要使用其他适合的统计方法来进行分析。
THANKS FOR WATCHING
感谢您的观看
目的
通过比较理论分布与实际数据的差异, 评估模型的拟合程度,从而判断模型 的有效性和可靠性。
理论基础
1 2
概率论
卡方-拟合优度检验基于概率论的基本原理,通 过比较理论概率与实际观测频数之间的差异来评 估模型的拟合程度。
统计学
该检验属于非参数统计方法,不需要假设数据服 从特定的概率分布,因此具有较高的灵活性。
卡方-拟合优度检验
目 录
• 引言 • 卡方-拟合优度检验的基本概念 • 卡方-拟合优度检验的步骤 • 卡方-拟合优度检验的结果解读 • 卡方-拟合优度检验的应用 • 卡方-拟合优度检验的局限性
01 引言
定义与目的
定义
卡方-拟合优度检验是一种统计方法, 用于检验一个理论分布或模型是否与 实际观测数据匹配。
3
卡方-拟合优度检验通过比较观测频数与期望频数, 评估实际数据与理论模型之间的匹配程度。
03 卡方-拟合优度检验的步 骤
计算期望频数
总结词
期望频数是理论频数的计算结果,基于假设的分布情况。
详细描述
在卡方-拟合优度检验中,首先需要计算期望频数。期望频数是根据假设的分布 情况,将每个观察频数按照比例分配到各个理论频数中,从而得到期望频数。
R语言
在R语言中,可以使用相应的统计包(如 chisq.test()函数)来执行卡方-拟合优度检 验,从而实现数据的分析和模型的检验。
06 卡方-拟合优度检验的局 限性
对样本量要求较高
卡方-拟合优度检验要求样本量足够大, 以便能够准确地估计期望频数和实际 频数之间的差异。如果样本量较小, 检验的准确性将受到限制。
THANKS FOR WATCHING
感谢您的观看
目的
通过比较理论分布与实际数据的差异, 评估模型的拟合程度,从而判断模型 的有效性和可靠性。
理论基础
1 2
概率论
卡方-拟合优度检验基于概率论的基本原理,通 过比较理论概率与实际观测频数之间的差异来评 估模型的拟合程度。
统计学
该检验属于非参数统计方法,不需要假设数据服 从特定的概率分布,因此具有较高的灵活性。
卡方-拟合优度检验
目 录
• 引言 • 卡方-拟合优度检验的基本概念 • 卡方-拟合优度检验的步骤 • 卡方-拟合优度检验的结果解读 • 卡方-拟合优度检验的应用 • 卡方-拟合优度检验的局限性
01 引言
定义与目的
定义
卡方-拟合优度检验是一种统计方法, 用于检验一个理论分布或模型是否与 实际观测数据匹配。
3
卡方-拟合优度检验通过比较观测频数与期望频数, 评估实际数据与理论模型之间的匹配程度。
03 卡方-拟合优度检验的步 骤
计算期望频数
总结词
期望频数是理论频数的计算结果,基于假设的分布情况。
详细描述
在卡方-拟合优度检验中,首先需要计算期望频数。期望频数是根据假设的分布 情况,将每个观察频数按照比例分配到各个理论频数中,从而得到期望频数。
R语言
在R语言中,可以使用相应的统计包(如 chisq.test()函数)来执行卡方-拟合优度检 验,从而实现数据的分析和模型的检验。
06 卡方-拟合优度检验的局 限性
对样本量要求较高
卡方-拟合优度检验要求样本量足够大, 以便能够准确地估计期望频数和实际 频数之间的差异。如果样本量较小, 检验的准确性将受到限制。
K-S分布检验和拟合优度χ2检验.ppt
个分布用相同的间隔或分类,并利用尽可能多 的间隔。
❖3、计算检验统计量D值,如是单尾检验,应 按H 的方向计算D值。 1
三、检验步骤
❖4、显著性检验:
❖⑴小样本情况下,及n1= n2=n,n≤30,用附 表12。对于单尾检验和双尾检验,该表列出 了不同显著性水平下的临界值。
❖K-S检验法是一种精确分布的方法,不受观察次 数多少的限制。这个方法可应用于分组或不分组的 情形。检验量Dn也可用于检验随机样本是否抽自某 特定的总体的问题。
第二节 K-S双样本分布检验
❖一、适用范围 ❖K-S双样本检验主要用来检验两个独立样本是否来自
同一总体(或两样本的总体分布是否相同)。其单 尾检验主要用来检验某一样本的总体值是否随机地 大于(或小于)另一样本的总体值。 ❖二、理论依据和方法 ❖1、理论依据: ❖与K-S单样本检验相似,K-S双样本检验是通过两个 样本的累计频数分布是否相当接近来判断Ho是否为 真。如果两个样本间的累计概率分布的离差很大,
1第八章分布检验和拟合优度2检验第八章分布检验和拟合优度2检验kolmogorovsmirnov单样本检验及一些正态性检验1235kolmogorovsmirnov两样本分布检验pearson2拟合优度检验第一节ks单样本分布检验一适用范围kolmogorovsmirnov检验常译为柯尔莫哥洛夫斯米尔诺夫检验简写为ks检验亦称d检验法也是一种拟合优度检验法
第三节 卡方(X2)拟合优度检验
❖一、什么是卡方(X2)拟合优度检验
❖人们通常关心随机变量的概率分布,如:“随机变 量服从参数为n=10和p=2的二项分布”,这样的命 题假设可以用“拟合优度检验”来检验。即设计一 个检验来比较从假设的分布中抽取的样本,看所假 设的分布函数与样本数据是否“拟合”。
❖3、计算检验统计量D值,如是单尾检验,应 按H 的方向计算D值。 1
三、检验步骤
❖4、显著性检验:
❖⑴小样本情况下,及n1= n2=n,n≤30,用附 表12。对于单尾检验和双尾检验,该表列出 了不同显著性水平下的临界值。
❖K-S检验法是一种精确分布的方法,不受观察次 数多少的限制。这个方法可应用于分组或不分组的 情形。检验量Dn也可用于检验随机样本是否抽自某 特定的总体的问题。
第二节 K-S双样本分布检验
❖一、适用范围 ❖K-S双样本检验主要用来检验两个独立样本是否来自
同一总体(或两样本的总体分布是否相同)。其单 尾检验主要用来检验某一样本的总体值是否随机地 大于(或小于)另一样本的总体值。 ❖二、理论依据和方法 ❖1、理论依据: ❖与K-S单样本检验相似,K-S双样本检验是通过两个 样本的累计频数分布是否相当接近来判断Ho是否为 真。如果两个样本间的累计概率分布的离差很大,
1第八章分布检验和拟合优度2检验第八章分布检验和拟合优度2检验kolmogorovsmirnov单样本检验及一些正态性检验1235kolmogorovsmirnov两样本分布检验pearson2拟合优度检验第一节ks单样本分布检验一适用范围kolmogorovsmirnov检验常译为柯尔莫哥洛夫斯米尔诺夫检验简写为ks检验亦称d检验法也是一种拟合优度检验法
第三节 卡方(X2)拟合优度检验
❖一、什么是卡方(X2)拟合优度检验
❖人们通常关心随机变量的概率分布,如:“随机变 量服从参数为n=10和p=2的二项分布”,这样的命 题假设可以用“拟合优度检验”来检验。即设计一 个检验来比较从假设的分布中抽取的样本,看所假 设的分布函数与样本数据是否“拟合”。
[课件]第07章 拟合优度检验PPT
解:假设3种方法增重不显著。 2lnP服从2自由度的x2分布
判断: x2=13.90 > x26, 0.05=12.592 ,拒绝假设
解:假设两种饲料饲养增重没差异。 因为有一个值为0,所以可以直接计算组合概率。
5 ! 6 ! 4 ! 7 ! P 0 . 015 判断:计算的P=0.015 < P=0.025 11 ! 4 ! 1 ! 0 ! 6 !
拒绝假设。
第七章 拟合优度检验——x2-检验
三、独立性检验——列联表x2检验
(无重复试验x2检验)
例题分析 精确列联表x2检验对于2×2列联表
性别 有 无 小计 例7.6 观测性别对药物的 4 1 5 男 0组合的概率都计入, 反应见右侧表: 之所以将这种组合的概率以及最小值变为 3 6 9 女 问男女对药物反应有无差异? 是因为这样才能构成一个尾区的概率。 7 7 14 解:假设男女对药物反应没差异。 小计
判断:接受假设。
第七章 拟合优度检验——x2-检验
四、x2的可加性
(一) x2的齐性检验
例1 试验绿玉米G对黄玉米Y的理论比为3:1。共收集了11个 谱系,每一个谱系的x2值都不具显著性,即都可能是从3:1 的总体中抽取的,问这11个谱系是否具齐性? 绿x2 +黄x2 解:假设具齐性。 3 1
Ni 4 Ni 4
第七章 拟合优度检验——x2-检验
二、一致性检验 解:假设该试验结果符合自由组合律。
有许多质量性状表型比值为: 9 1:1, 3 32:1, 1 3:1, 9:7, 13:3, Y-R-:Y-rr:yyR-:yyrr= : : :2 15:1, 63:1, 1:2:1, 9:3:3:1 对这些试验进行检验, 16 等。用 16 16x 16 都属适合度检验,它们的共同特点是总体参数概率 φ已知。 根据公式计算理论值 T =NP ,此例中N=556
卡方-拟合优度检验PPT课件
求各组内的理论次数不小于5。若某组的理论次数小 于5,则应把它与其相邻的一组或几组合并,直到理 论次数大 于5 为止。
精选ppt课件最新
13
• 统计量:
2 r (Oi Ti )2
i1
Ti
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
r
2
(Oi Ti 0.5)2
i1
精选ppt课件最新
27
(二)拟合优度检验按已知的属性分类理论或学说, 计算理论次数。独立性检验在计算理论次数时没有现 成的理论或学说可资利用,理论次数是在两因子相互 独立的假设下进行计算。
(三)在拟合优度检验中确定自由度时,只有一个 约束条件:各理论次数之和等于各实际次数之和,自 由度为属性类别数减1。而在r×c列联表的独立性检 验中,共有rc个理论次数,但受到以下条件的约束:
而另一组实际观察次数为26理论次数为21相差亦为了弥补b这一不足将各差数平方除以相应的理论次数后再相加并记之为也就是说2是度量实际观察次数与理论次数偏离程度的一个统计量2越小表明实际观察次数与理论次数越接近
生物统计学
第七章 拟合优度检验- 2检验
精选ppt课件最新
1
§7.1、拟合优度检验的一般原理
若20.05≤2 (或2c)<20.01, 若2 ( 或2c)≥20.01,
精选ppt课件最新
18
7.2.2 对二项分布的检验(P93)
下面结合实例说明适合性检验方法。
(总体参数已知 )
【例】 在研究牛的毛色和角的有无两对相对性状分离
现象时 ,用黑色无角牛和红色有角牛杂交 ,子二代出 现黑色无角牛192头,黑色有角牛78头,红色无角牛72 头,红色有角牛18头,共360头。试 问这两对性状是否 符合孟德尔遗传规律中9∶3∶3∶1的遗传比例?
精选ppt课件最新
13
• 统计量:
2 r (Oi Ti )2
i1
Ti
• 使用条件:
– 各理论值均大于5。 – 若自由度为1,则应作连续性矫正:
r
2
(Oi Ti 0.5)2
i1
精选ppt课件最新
27
(二)拟合优度检验按已知的属性分类理论或学说, 计算理论次数。独立性检验在计算理论次数时没有现 成的理论或学说可资利用,理论次数是在两因子相互 独立的假设下进行计算。
(三)在拟合优度检验中确定自由度时,只有一个 约束条件:各理论次数之和等于各实际次数之和,自 由度为属性类别数减1。而在r×c列联表的独立性检 验中,共有rc个理论次数,但受到以下条件的约束:
而另一组实际观察次数为26理论次数为21相差亦为了弥补b这一不足将各差数平方除以相应的理论次数后再相加并记之为也就是说2是度量实际观察次数与理论次数偏离程度的一个统计量2越小表明实际观察次数与理论次数越接近
生物统计学
第七章 拟合优度检验- 2检验
精选ppt课件最新
1
§7.1、拟合优度检验的一般原理
若20.05≤2 (或2c)<20.01, 若2 ( 或2c)≥20.01,
精选ppt课件最新
18
7.2.2 对二项分布的检验(P93)
下面结合实例说明适合性检验方法。
(总体参数已知 )
【例】 在研究牛的毛色和角的有无两对相对性状分离
现象时 ,用黑色无角牛和红色有角牛杂交 ,子二代出 现黑色无角牛192头,黑色有角牛78头,红色无角牛72 头,红色有角牛18头,共360头。试 问这两对性状是否 符合孟德尔遗传规律中9∶3∶3∶1的遗传比例?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际频数
理论频数
nk npk
标志着经验分布与理论分布之间的差异的大小.
皮尔逊引进如下统计量表示经验分布
与理论分布之间的差异:
2 r (nk npk )2
k 1
npk
在理论分布 已知的条件下,
npk是常量
统计量 2 的分布是什么?
皮尔逊证明了如下定理:
若原假设中的理论分布F0(x)已经完全给
小区间[ai-1,ai], i=1,…r, 记作A1, A2, …, Ar .
2.把落入第k个小区间Ak的样本值的个数记 作 nk , 称为实际频数.
3.根据所假设的理论分布,可以算出总体X的 值落入每个Ak的概率pk,于是npk就是落入Ak 的样本值的理论频数.
pk P( Ak ) P(ak1 ak ) F0 (ak ) F0 (ak1)
定,那么当n 时,统计量
2 r (nk npk )2
k 1
npk
的分布渐近(r-1)个自由度的
2分布.
如果理论分布F0(x)中有m个未知参数需
用相应的估计量来代替,那么当n 时,
统计量 2的分布渐近 (r-m-1) 个自由度 的 2
分布.
根据这个定理,对给定的显著性水平 ,
查
2分布表可得临界值
2 检验 Chi-Squared Test
Goodness-of-fit Test 拟合优度检验 &
Test of Row and Column Independenc 独立性检验
2分布 (图示)
n=1 n=4 n=10
n=20
2
样本方差的分布
1. 在重复选取容量为n的样本时,由样本方差的 所有可能取值形成的相对频数分布
问该厂生产的钟的误差是否服从正态 分布?
再如,某工厂制造一批骰子, 声称它是均匀的.
也就是说,在投掷中,出 现1点,2点,…,6点的概 率都应是1/6.
为检验骰子是否均匀,要把骰子实地投掷 若干次,统计各点出现的频率与1/6的差距.
问题是: 得到的数据能否说明“骰子均匀” 的假设是可信的?
解决这类问题的工具是英国统计学家
然后根据样本的经验分布和所假设的理论分 布之间的吻合程度来决定是否接受原假设.
这种检验通常称作拟合优度检验,它是一 种非参数检验.
在用 2检验法检验假设H0时,若在H0下
分布类型已知,但其参数未知,这时需要先 估计参数,然后作检验.
分布拟合的 2检验法 的基本原理和步
骤如பைடு நூலகம்:
1. 将总体X的取值范围分成 r 个互不重迭的
K.皮尔逊在1900年发表的一篇文章中引进
的所谓 2检验法.
这是一项很重要的工作,不少人 把它视为近代统计学的开端.
K.皮尔逊
2检验法是在总体X 的分布未知时,
根据来自总体的样本,检验关于总体分 布的假设的一种检验方法.
使用 2检验法对总体分布进行检验时,
我们先提出原假设: H0:总体X的分布函数为F0(x)
2
,使得
P( 2 2 )
得拒绝域: 2 2 (r 1) (不需估计参数)
2 2 (r m 1) (估计 r 个参数)
如果根据所给的样本值 X1,X2, …,Xn算得
统计量 2的实测值落入拒绝域,则拒绝原假
设,否则就认为差异不显著而接受原假设.
皮尔逊定理是在n无限增大时推导出来 的,因而在使用时要注意n要足够大,以及 npi 不太小这两个条件.
然而可能遇到这样的情形,总体服从何 种理论分布并不知道,要求我们直接对总体 分布提出一个假设 .
例如,从1500到1931年的432年间,每年 爆发战争的次数可以看作一个随机变量,椐统 计,这432年间共爆发了299次战争,具体数据 如下:
战争次数X 发生 X次战争的年数
0
223
1
142
2
48
3
15
4
4
在概率论中,大家对泊松分布产生的一 般条件已有所了解,容易想到,每年爆发战 争的次数,可以用一个泊松随机变量来近似 描述 . 也就是说,我们可以假设每年爆发战 争次数分布X近似泊松分布.
现在的问题是:
上面的数据能否证实X 具有 泊松分布的假设是正确的?
又如,某钟表厂对生产的钟进行精确性检 查,抽取100个钟作试验,拨准后隔24小时 以后进行检查,将每个钟的误差(快或慢) 按秒记录下来.
pˆi e0.690.69i i !,i=0,1,2,3,4
将有关计算结果列表如下:
战争次数 x
0 1 234
实测频数 fi 223 142 48 15 4
pˆi 0.58 0.31 0.18 0.01 0.02 n pˆi 216.7 149.5 51.6 12.0 2.16
2. 设 X ~ N(, 2 ) ,则
z X ~ N(0,1)
3. 令 Y z 2 ,则 Y 服从自由度为1的2分布,即
Y ~ 2 (1)
4. 当总体 X ~ N(, 2 ) ,从中抽取容量为n的样本,则
n
(xi x)2
i 1
2
~ 2 (n 1)
2分布 (性质和特点)
1. 分布的变量值始终为正 2. 分布的形状取决于其自由度n的大小,通
根据计算实践,要求n不小于50,以及 npi 都不小于 5. 否则应适当合并区间,使 npi满足这个要求 .
让我们回到开始的一个例子,检验每
年爆发战争次数分布是否服从泊松分布.
提出假设H0: X服从参数为 的泊松分布
根据观察结果,得参数 的极大似然估计为
ˆ X =0.69
按参数为0.69的泊松分布,计算事件X=i 的 概率pi ,pi的估计是
2. 对于来自正态总体的简单随机样本,则比值
(n 1)s2
2
的抽样分布服从自由度为 (n -1) 的2分布,即
(n 1)s2
2
~
2 (n 1)
2分布 (2 distribution)
1. 由阿贝(Abbe) 于1863年首先给出,后来由海尔墨 特(Hermert)和卡·皮尔逊(K·Pearson) 分别于1875 年和1900年推导出来
常为不对称的正偏分布,但随着自由度的 增大逐渐趋于对称
3. 期望为:E(2)=n,方差为:D(2)=2n(n
为自由度)
4. 可加性:若U和V为两个独立的2分布随 机变量,U~2(n1), V~2(n2),则U+V这 一随机变量服从自由度为n1+n2的2分布
当总体分布为正态时,关于其中未知 参数的假设检验问题占据了本科数理统计 的重要篇幅 .