曾谨言量子力学导论(第二版)答案

合集下载

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案量子力学是现代物理学的重要分支,研究微观世界的行为规律。

而曾谨言练习题则是量子力学学习过程中的一种重要辅助工具,有助于加深对于量子力学理论的理解和应用。

在这篇文章中,我们将探讨一些量子力学曾谨言练习题的答案,帮助读者更好地理解这一复杂而又神奇的学科。

首先,我们来看一个经典的量子力学练习题:双缝干涉实验。

在这个实验中,一束光通过两个狭缝后形成干涉条纹。

问题是,如果我们只通过其中一个缝让光通过,干涉条纹会发生什么变化?答案是,当只有一个缝让光通过时,干涉条纹会消失。

这是因为双缝干涉实验中的干涉效应依赖于两个缝同时让光通过,以形成干涉图样。

当只有一个缝让光通过时,就无法形成干涉,因此干涉条纹消失。

接下来,我们来看一个更复杂的问题:薛定谔方程。

薛定谔方程是描述量子力学中微观粒子行为的基本方程。

问题是,如何求解薛定谔方程?答案是,薛定谔方程是一个偏微分方程,可以通过一些数值和解析方法进行求解。

数值方法包括有限差分法和有限元法,可以通过离散化空间和时间来近似求解。

解析方法则包括分离变量法和变分法等,可以通过一系列数学技巧来得到解析解。

薛定谔方程的求解是量子力学研究的基础,对于理解和预测微观世界的行为至关重要。

除了理论问题,量子力学还涉及到一些实验上的考察。

例如,光电效应是量子力学的重要实验现象之一。

问题是,为什么在光电效应中,只有光的频率大于某个临界值时,才能引起电子的发射?答案是,光电效应是由光子与金属表面电子的相互作用引起的。

当光子的能量大于金属表面电子的束缚能时,光子能够将电子从金属中解离出来,形成光电子。

而光子的能量与频率有直接关系,即E=hf,其中E为光子的能量,h为普朗克常数,f为光的频率。

因此,只有光的频率大于某个临界值,光子的能量才能够大于金属表面电子的束缚能,从而引起电子的发射。

最后,我们来看一个与量子力学应用相关的问题:量子计算。

量子计算是利用量子力学的特性来进行计算的一种新型计算方式。

曾谨严量子力学习题解答2

曾谨严量子力学习题解答2
已知: ϕ ( x,0 ) =
1 [ϕ1 (x ) + ϕ 2 (x )] 2 1 1 ⎡ϕ1 ( x ) e − iE1t / h + ϕ 2 ( x ) e − iE2t / h ⎤ ⎡ϕ1 ( x, t ) + ϕ 2 ( x, t ) ⎤ = 则有:ϕ ( x, t ) = ⎣ ⎦ ⎦ 2⎣ 2 (2)求 x (t ) = ?
⎧ ⎛ nπ pa ⎞ ⎛ nπ pa ⎞ ⎫ a sin ⎜ − + ⎛ nπ pa ⎞ sin ⎜ ⎟ ⎟ i⎜ − ⎟ ⎪ n +1 ⎪ ⎝ 2 2h ⎠ ⎪ 2 2h ⎠ ⎪ ⎝ = π h e ⎝ 2 2h ⎠ ⎨ + ( −1) nπ pa nπ pa ⎬ 2i ⎪ ⎪ − + 2 2h 2 2h ⎭ ⎪ ⎪ ⎩
3. 《曾 P.163-5》 一维无限深势阱(如右图)中的粒子,设处于 ϕ n ( x ) 态。求其动量分布概率。当 n >> 1 时, 与经典粒子运动比较。 解:利用已知解:
⎧ 2 nπ x sin , ⎪ ϕn ( x ) = ⎨ a a ⎪0, ⎩
V ( x)
0
a
(0 < x < a) ( x < 0, x > a )

5π 2 h 2 5 1 = = E1 = ( E1 + E2 ) 2ma 2 2 2
2 (4)求 H = ?
H = ∫ ϕ ∗ ( x ) H 2ϕ ( x )dx
2 −∞
+∞
=∫
+∞
−∞ a
1 1 ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ ⋅ H 2 ⋅ ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ dx ⎣ ⎦ ⎣ ⎦ 2 2

曾谨言量子力学导论(第二版)答案

曾谨言量子力学导论(第二版)答案

1 mω 2 a 2 。 2
−a
0
a
ቤተ መጻሕፍቲ ባይዱ
x
1
.
由此得
a = 2 E / mω 2 ,
(2)
x = ± a 即为粒子运动的转折点。有量子化条件 1 2 2 2 2 2 ∫ p ⋅ dx = 2 −∫a 2m( E − 2 mω x ) dx = 2mω −∫a a − x dx = 2 mω a 2 ⋅
ψ ( x, t ) = ϕ (k ) =
1 2π
+∞
2 m ⎡ imx ⎤ ⎛ mx ⎞ ⋅ϕ⎜ exp[− iπ 4] ⋅ exp ⎢ ⎟ t ⎦ ⎝ t ⎠ ⎣2 t ⎥
式中
−∞
∫ψ (x,0)e
α →∞
−ikx
dx 是ψ ( x,0 ) 的 Fourier 变换。
提示:利用
lim
α iπ / 4 −iαx e e = δ (x ) 。 π
= −∇ ⋅ s
所以
(定态波函数,几率密度 ρ 不随时间改变)
∂ω +∇⋅s = 0 。 ∂t
2.2 考虑单粒子的 Schrödinger 方程
i
V1 与 V2 为实函数。
2 ∂ ψ (r , t ) = − ψ (r , t ) ∇ 2ψ (r , t ) + [V1 (r ) + iV2 (r )] ∂t 2m
d d 3 rψ 1* r ,.t ψ 2 r , t = 0 。 ∫ dt
ip0 x /
( ) ( )
⎛ p2 ⎞ i ⎜ p0 x − 0 t ⎟ / ⎜ m ⎟ 2 ⎝ ⎠
2.4 设一维自由粒子的初态ψ ( x,0 ) = e
, 求ψ ( x, t ) 。

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学是现代物理学的重要分支之一,其研究对象是微观粒子的行为规律。

曾谨言是一位著名的物理学家,他在量子力学领域有着杰出的贡献。

在学习量子力学的过程中,我们常常会遇到一些练习题,以下是曾谨言量子力学练习题的答案。

1. 问题:在双缝干涉实验中,光子通过两个狭缝后,在屏幕上形成干涉条纹。

如果将其中一个狭缝完全堵住,干涉条纹会发生什么变化?答案:当一个狭缝被堵住时,干涉条纹会消失,屏幕上只会出现一个单缝的衍射图样。

这是因为双缝干涉实验中,光子通过两个狭缝后会形成波的叠加,产生干涉现象。

而当一个狭缝被堵住时,只有一个光子通过,无法产生干涉。

2. 问题:在量子力学中,什么是波函数?答案:波函数是量子力学中描述微观粒子状态的数学函数。

它可以用来计算粒子在空间中的位置、动量等物理量的概率分布。

波函数的平方模的积分表示了粒子在某一位置的概率密度。

3. 问题:什么是量子纠缠?答案:量子纠缠是量子力学中一种特殊的现象,当两个或多个粒子发生相互作用后,它们的状态将无法被单独描述,而是成为一个整体系统的状态。

即使这些粒子之间距离很远,它们的状态仍然是相互关联的。

这种关联关系在量子通信和量子计算中有着重要的应用。

4. 问题:什么是量子隧穿?答案:量子隧穿是指微观粒子在经典力学中无法通过的势垒或势阱,在量子力学中却有一定概率穿越的现象。

这是由于量子力学中粒子的波粒二象性,粒子具有波动性质,可以在势垒或势阱的两侧存在一定的概率分布。

5. 问题:什么是量子比特?答案:量子比特,简称量子位或qubit,是量子计算中的基本单位。

与经典计算中的比特不同,量子比特可以同时处于多个状态的叠加态,这种叠加态可以通过量子门操作进行处理和控制,从而实现量子计算的优势。

以上是曾谨言量子力学练习题的答案。

量子力学作为一门复杂而又精密的学科,需要我们通过理论和练习来加深对其原理和应用的理解。

希望这些答案能够帮助大家更好地掌握量子力学的知识,并在学习和研究中取得更进一步的突破。

曾谨言量子力学课后答案

曾谨言量子力学课后答案

= V (x)
x=a
=
1 mω 2 x 2 。 2
−a
0a x
由此得
a = 2E / mω 2 ,
(2)
x = ±a 即为粒子运动的转折点。有量子化条件
∫ ∫ ∫ +a p ⋅ dx = 2
2m(E − 1 mω 2 x 2 ) dx = 2mω 2 +a
a 2 − x 2 dx
−a
2
−a
= 2mωa 2 ⋅ π = mωπ a 2 = nh
因而平面转子的能量
Em = pϕ2 / 2I = m2h 2 / 2I , m =1, 2,3,L
第二章 波函数与 Schrödinger 方程
2.1
设质量为
m
的粒子在势场V
v (r )
中运动。
∫ (a)证明粒子的能量平均值为 E = d 3r ⋅ w ,
w = h 2 ∇ψ *ψ +ψ *Vψ 2m
(3)
w = h 2 ∇ψ * ⋅ ∇ψ +ψ *Vψ , 2m
(4)
且能量平均值
∫ E = d 3r ⋅ w 。
(b)由(4)式,得
∂w ∂t
=
h2 2m
∇ψ. *⋅ ∇ψ
+
∇ψ
*
⋅ ∇ψ.

.
+ψ * Vψ

*V ψ.
=
h2 2m


ψ.
*
∇ψ
+ψ.
∇ψ
*
(能量密度)
(b)证明能量守恒公式
∂w ∂t
+


v s
=

量子力学_答案_曾谨言

量子力学_答案_曾谨言

第一章量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动,⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。

解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系λ/h p = (2)而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn hn dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(x m x V E a x ω===。

《量子力学导论》习题答案(曾谨言版,北京大学)(2)

《量子力学导论》习题答案(曾谨言版,北京大学)(2)

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。

量子力学 曾谨言 习题解答

量子力学 曾谨言 习题解答

a
p dx 2
2m(E 1 m 2 x2 ) dx 2m 2 a
a2 x2 dx
a
2
a
2ma2 m a2 nh 2
得 a2 nh 2n m m
(3)
代入(2),解出
En n,
n 1, 2,3,
(4)
积分公式:
a 2 u 2 du u a 2 u 2 a 2 arcsin u c
abc a
b
c
nx , ny , nz 1,2,3,
当 a b c 时,
En n n xyz
2 2 2ma 2
(n
2 x
n
2 y
n
2 z
)
n n n xy z
3
2 2 a
sin nx x sin ny y sin nz y
a
a
a
nx ny nz 时,能级不简并;
nx , n y , nz 三者中有二者相等,而第三者不等时,能级一般为三重简并的。
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
px dx nxh , nx 1, 2,3,

px 2a nxh ( 2a :一来一回为一个周期)
px nxh / 2a ,
6
t 2m ,
u
k
mx t

参照本题的解题提示,即得
x,t
1 e imx2 2t 2
2m t
e i
/
4
k
k
mx t
d
k
(2)
m t

量子力学——第四章作业参考答案

量子力学——第四章作业参考答案

( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
可见, ( r × l − l × r ) = r × l − l × r , r × l − l × r 为厄米算符。
+
3.3
证明:一维情况下,由 x 和 p 的对易关系 [ x, p ] = i , 可得 从而
(6) (7)
xp = i + px , px = xp − i

m −1 n m n +1 [ p, F ] = ∑ Cmn ( px m p n − x m p n+1 ) = ∑ Cmn ⎡ ⎣( xp − i ) x p − x p ⎤ ⎦ m,n =0 ∞ m,n =0
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
(b) pr =
1⎛r r ⎞ 1 ⎡r r ⎛ r ⎞⎤ ⎜ i p + p i ⎟ = ⎢ i p + i p − i ⎜ ∇i ⎟ ⎥ 2⎝ r r ⎠ 2 ⎣r r ⎝ r ⎠⎦

量子力学习题答案(曾谨言版)

量子力学习题答案(曾谨言版)
n
同理有
[ x, F ] i F p
P75 习题3.14
解:设lz算符的本征态为m,相应的本征值mћ ˆ dx l *l
x

m x
m
1 * ˆ ˆ ˆl ˆ ) dx m ( l y lz l z y m i 1 * ˆ ˆ * ˆ ˆ [ m l y lz m dx m lz l y m dx] i 1 * ˆ ˆ ) * l ˆ dx] [m m ly dx ( l z m z m y m i 1 * ˆ * ˆ [m m ly dx m z m m l y m dx ] 0 i 类似地可以证明 l y 0
1 2 1 ipx p e dp 常数 ( x ) 2m 2
因此(x)=(x) 非能量本征态。 (d) 任意波函数可按自由粒子的平面波函数展开:
( x, t ) C ( p) p ( x, t ) C ( p) p ( x , t )dp
p

Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
园轨道(l = n-1)下的径向概率分布函数
n,n1 ( r ) Cr e
2 d n,n1 ( r ) 0 dr
2
2 n 2 Zr na
最概然半径 rn 由下列极值条件决定:



右边


C ( p )dp p ( x , t ) p ' * ( x , t )dx


C ( p ) ( p p ')dp C ( p ')
所以

C ( p ) p * ( x , t ) ( x , t )dx

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案量子力学是物理学中的一门重要学科,研究微观世界的规律和现象。

在学习量子力学的过程中,练习题是不可或缺的一部分,通过解答练习题可以巩固对理论知识的理解和应用能力的提升。

曾谨言练习题是量子力学学习中常见的练习题之一,下面将给出一些曾谨言练习题的答案解析。

1. 一个自旋为1/2的粒子,其自旋在z方向上的观测值为1/2。

如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?根据量子力学的原理,自旋可以在不同方向上观测到不同的结果。

对于自旋1/2的粒子,在z方向上观测到1/2的结果,意味着其自旋在z方向上的投影为正半个单位。

而在x方向上观测自旋的结果,可能是正半个单位或负半个单位。

所以可能得到的结果是正半个单位或负半个单位。

2. 一个自旋为1的粒子,其自旋在z方向上的观测值为0。

如果测量其自旋在x 方向上的观测值,那么可能得到的结果是什么?对于自旋为1的粒子,在z方向上观测到0的结果,意味着其自旋在z方向上的投影为零。

而在x方向上观测自旋的结果,可能是正一个单位、零或负一个单位。

所以可能得到的结果是正一个单位、零或负一个单位。

3. 一个自旋为1/2的粒子,其自旋在z方向上的观测值为-1/2。

如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?对于自旋1/2的粒子,在z方向上观测到-1/2的结果,意味着其自旋在z方向上的投影为负半个单位。

而在x方向上观测自旋的结果,可能是正半个单位或负半个单位。

所以可能得到的结果是正半个单位或负半个单位。

4. 一个自旋为1的粒子,其自旋在z方向上的观测值为1。

如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?对于自旋为1的粒子,在z方向上观测到1的结果,意味着其自旋在z方向上的投影为正一个单位。

而在x方向上观测自旋的结果,可能是正一个单位、零或负一个单位。

所以可能得到的结果是正一个单位、零或负一个单位。

通过以上几个练习题的答案解析,我们可以看出在量子力学中,观测自旋的结果是具有不确定性的,不同方向上的观测结果是相互独立的。

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。

在学习量子力学的过程中,练习题是不可或缺的一部分。

本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。

1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。

根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。

2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。

根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。

3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。

4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。

根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。

5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。

对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。

6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。

量子力学曾谨严 第1章作业答案

量子力学曾谨严 第1章作业答案

教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。

曾谨言量子力学课后答案

曾谨言量子力学课后答案

h2 2m


(rv,
t
)
+
[V1
(rv
)
+
iV2
(rv
)]ψ
(rv,
t
)
V1 与V2 为实函数。
4
(1)
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积τ 内的几率随时间的变化为
( ) d
dt
∫∫∫ τ
d
3 rψ

=

h 2im
∫∫
S
ψ
*∇ψ
−ψ∇ψ *
v ⋅ dS +
2V2 h
第一章、量子力学的诞生
1.1 设质量为 m 的粒子在一维无限深势阱中运动,
V
( x)
=
∞,
0,
x < 0, x > a 0< x<a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有
a = n⋅λ 2
∴λ = 2a / n
(n = 1, 2, 3,L)
又据 de Broglie 关系
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
∫ px ⋅ dx = nx h , (nx = 1, 2 ,3,L)

px ⋅ 2a = nx h ( 2a :一来一回为一个周期)
∫∫∫d 3rψ *ψ τ
证:(a)式(1)取复共轭, 得
− ih
∂ ∂t
ψ
*
=

曾谨言量子力学课后答案

曾谨言量子力学课后答案

+
V
ψ
* 1
ψ
2
×
(3)
−ψ
* 1
×
(2),得
(3)
对全空间积分:
( ) ( ) − ih
∂ ∂t
ψ *ψ 12
=

h2 2m
ψ
2


* 1
−ψ 1*∇ 2ψ
2
pϕ dϕ
= nh,
n = 1, 2,L,
pϕ 是平面转子的角动量。转子的能量 E = pϕ2 / 2I 。
解:平面转子的转角(角位移)记为ϕ 。
它的角动量 pϕ = I ϕ. (广义动量), pϕ 是运动惯量。按量子化条件
∫ 2π 0
pϕ dx
= 2π

= mh,
m =1,2,3,L
∴ pϕ = mh ,
2im
h
(3)

∂ρ ∂t
+∇⋅
v j
=
2V2 h
ρ

0

此即几率不守恒的微分表达式。
(b)式(3)对空间体积τ 积分,得
∂ ∂t
∫∫∫d τ
(3r ψ

)=

h 2im
∫∫∫∇ τ
⋅ (ψ
*∇ψ
−ψ∇ψ
)* d 3r
+
2 h
∫∫∫d τ
( 3rV2 ψ

)
( ) ∫∫ ∫∫∫ = − h 2im S
ψ *∇ψ −ψ∇ψ *

v dS
+
2
h
τ
d 3rV2ψ *ψ
∫∫ 上式右边第一项代表单位时间内粒子经过表面进入体积τ 的几率( = −

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。

解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。

(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。

量子力学_答案_曾谨言

量子力学_答案_曾谨言
第一章 1.1 设质量为 m 的粒子在一维无限深势阱中运动,
量子力学的诞生
⎧∞, x < 0, x > a V ( x) = ⎨ ⎩0, 0 < x < a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
a = n⋅
λ
2
( n = 1, 2 , 3 , )
(1)
∴ λ = 2a / n
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(1)
(a)证明粒子的几率(粒子数)不守恒。 (b)证明粒子在空间体积 τ 内的几率随时间的变化为
2V d d 3 rψ *ψ = − ( ψ *∇ψ − ψ∇ψ * ) ⋅ dS + 2 ∫∫∫ ∫∫ 2im S dt τ
证: (a)式(1)取复共轭, 得
d ∫∫∫ τ
3
rψ *ψ
−i
2 ∂ * ψ =− ∇ 2ψ * + (V1 − iV2 ) ψ* ∂t 2m
0
pϕ dϕ = nh, n = 1, 2 ,
2 , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。 , pϕ 是运动惯量。按量子化条件 它的角动量 pϕ = I ϕ (广义动量)
.


因而平面转子的能量

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第八章 自旋8.1) 在z σ表象中,求x σ的本征态。

解:在z σ表象中,x σ的矩阵表示为:x σ⎪⎪⎭⎫⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。

,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫ ⎝⎛-1121 。

8.2) 在z σ表象中,求⋅的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫ ⎝⎛-=00i i , z σ⎪⎪⎭⎫⎝⎛-=1001 (1) 因此, z z y y x x n n n n n σσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y x y x ze e n inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn ,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e e i i λθθθλθϕϕ (3) 由(3)式的系数行列式0=,可解得1±=λ。

对于1=λ,代回(3)式,可得x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ϕϕθθθθ 归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫ ⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i ee (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档